26
PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric Bayesian Inference: Applications in Pharmacokinetics and Pharmacodynamics SAMSI, Research Triangle Park, July 14 2010

PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Embed Size (px)

Citation preview

Page 1: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

PK/PD Modeling of Therapeutic Effects of Erythropoietin

Wojciech Krzyzanski, PhD, MADepartment of Pharmaceutical Sciences

University at Buffalo

Semiparametric Bayesian Inference: Applications in Pharmacokinetics and Pharmacodynamics

SAMSI, Research Triangle Park, July 14 2010

Page 2: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

General Model of Hematopiesis

From Kaushansky, N. Engl. J. Med. 354:2034 (2006).

Page 3: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Regulation of Erythropoiesis

Wolber and Jelkmann., News Physiol. Sci. 17: 6 (2002)

Red blood cells(O2-capacity, arterial pO2)

pO2-dependent production

Kidney

Erythropoietin(EPO)

Bone marrow

+

Page 4: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Erythropoietin

EPO is a 30.4 kD glycoprotein responsible for survival, proliferation, and maturation of erythroid cells.

EPO is produced by peritubal cells in the kidneys in response to tissue hypoxia.

Indications for rHuEPO:

- Anemia of chronic renal failure - Chemotherapy induced anemia - Anemia of prematurity

Page 5: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Erythropoietin Receptor

Sawyer et al., JBC 262: 5554 (1987); Broudy et al., Blood 77: 2583 (1991)

EPOR is a 185 kD member of the class 1 cytokine receptor superfamily.

Expressed on erythroid progenitor cells, epicardium, neurons, liver, gut, endothelium.

Upon binding to EPO homodimerizes and activates JAK2 tyrosine kinase.

EPO-EPOR complex is internalized and degraded by the endosome-lysosome pathway.

KD ~ 100-200 pM

Internalization rate ~ 0.7 h-1

300- 1000 receptors per erythroid cell

Page 6: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Time (hr)0 80 160 240 320 400

rHu

EP

O c

on

cen

trat

ion

(IU

/l)

1

10

100

1000

10000300 IU/kg600 IU/kg1200 IU/kg2400 IU/kg

rHuEPO Pharmacokinetics

Ramakrishnan et al., J. Clin. Pharmacol. 44:991-1002 (2004).

Time, hr

0 10 20 30 40

rHuE

PO

Ser

um C

onc.

IU/L

100

1000

10000

10000010 IU/kg50 IU/kg150 IU/kg500 IU/kg1000 IU/kg

IV SC

Flaharty et al., Clin. Pharmacol. Ther. 47: 557-64 (1990).

Distribution: Vd = 3-5 L. Moderate nonlinear clearance: t1/2 = 4-11 hr. Minimal renal and hepatic clearance. Receptor binding, internalization, and degradation in bone marrow.

Dose dependent bioavailability: F = 0.4-1. Slow absorption from the injection site: flip-flop kinetics.

Page 7: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

rHuEPO Pharmacodynamics

0 5 10 15 20 25

Ret

icu

locy

tes,

%

1

2

3

4

5

0 5 10 15 20 25

RB

C C

ou

nt,

10

12 c

ells

/L

4.5

4.8

5.1

5.4

Time, days

0 5 10 15 20 25

Hem

og

lob

in,

g/d

L

14

15

16

Time, days

0 7 14 21 28

Ser

um

EP

O, I

U/L

10

100

rHuEPO was administered SC to healthy subjects 150 IU/kg t.i.w for four weeks.

rHuEPO pharmacodynamic responses

Reticuloctyte count RBC Hemoglobin concentration

Krzyzanski et al., EJPS 26:295-306 (2005).

Page 8: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

PK/PD Modeling Paradigm

Mager and Jusko, Clin. Pharmacol. Ther. 70:210-16 (2001).

Page 9: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Receptor Mediated EPO Endocytosis and Degradation

Gross and Lodish, J. Biol. Chem. 281:2024 (2006).

Page 10: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

DIV

DPO, F•kaKo, TINF

SerumCpVc

TissueDT

ReceptorComplex

DR

kon

koff

kel km

kpt

ktp

FreeReceptor[Rmax-DR]

kdeg

ksyn

+

Target-Mediated Drug Disposition

DRkkCpDRRkdt

dDR

DRkCpDRRkVc

DkCpkk)t(In

dt

dCp

moffmaxon

offmaxonT

tpptel

Mager and Jusko. J Pharmacokinet Pharmacodyn. 28:507-32 (2001)

Page 11: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Erythropoietic Cascade

Stem CellStem Cell

BFU-eBFU-e

CFU-eCFU-eProerythroblastProerythroblast ErythroblastErythroblast

ReticulocyteReticulocyte

RBCRBC

EPO responsive cellsEPO responsive cells

EPOR-/EPOR-/++

EPOR++EPOR++++

EPOR+EPOR+

EPOR-EPOR-

EPOR+/-EPOR+/-

EPOR-EPOR-

EPOR-EPOR-

Page 12: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Lifespan Distribution

Lifespan0 2 4 6 8 10

Pro

bab

ility

Den

sity

0

1

Tmean

Cell lifespan - time a cell remains in the population

Mean lifespan-population mean of the lifespan distribution

0

mean dt)t(tT

Page 13: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Lifespan Controlled Cell Loss

Rkin(t) (kin*)(t)

0

inin (z)dzz)(tk)(t)*(k

Point Lifespan Distribution: (t) = (t-TR)

(kin* )(t) = kin(t-TR)

Page 14: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

kin

S(t)

Rkin

S(t-TR)

C(t)

)Tt(Sk)t(Skdt

dRRinin

)Tt(Sk)t(Skdt

dRRinin

γγ50

γmax

C(t)SC

C(t)S1S(t)

Basic Model: Stimulation of kin

Baseline: R0 = kin·TR

Krzyzanski and Jusko, JPB 27: 467 (1999).

Page 15: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

PK/PD of rHuEPO in Rats

Mean serum rHuEPO concentrations, reticulocyte, and hemoglobin levels following IV bolus administration of 10, 100, 450, 1350, and 4050 IU/kg in rats.

Woo et al., JPP 34:849-68 (2007).

Page 16: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

TMDD PK/PD Model of rHuEPO

Woo et al., JPP 34:849-68 (2007).

Page 17: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

PK/PD Model Equations

pTtppteloffonEPO VAkCkkRCkCRkkdt

dC

TtppptT AkVCk

dt

dA

RkRCkCRkkdt

dRdegoffonsyn

)TTTt(I)TTt(S)TTTt(Sk

)TTt(I)Tt(S)TTt(Skdt

dRET

RET2P1PRET2PRET2P1Pin

2P1P2P2P1Pin

)TTTTt(I

)TTTt(S)TTTTt(Sk

)TTTt(I)TTt(S)TTTt(Skdt

dRBC

RBCRET2P1P

RBCRET2PRBCRET2P1Pin

RET2P1PRET2PRET2P1PinM

Woo et al., JPP 34:849-68 (2007).

RCkkCRkdt

dRCintoffon

Page 18: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

PK/PD Model Equations

)t(RCSC

)t(RCS1)t(S

50

max

)t(HbIC

)t(HbI1)t(I

50

max

)0(Hb)t(Hb)t(Hb

)t(RBCMCH)t(Hb

)t(RBC)t(RET)t(RBC M

Woo et al., JPP 34:849-68 (2007).

Page 19: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Initial Conditions

0C)t(C p

IV0 V

DC)0(C , for t < 0, and

tp

p0ptT k

VCk)t(A

, for t 0

0R)t(R , for t 0

0RC)t(RC

0RET)t(RET

00M RETRBC)t(RBC

, for t 0

, for t 0

, for t 0

Woo et al., JPP 34:849-68 (2007).

Page 20: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Baseline Equations

intoff

00on0 kk

CRkRC

0int0elEPO RCkCkk

0int0degsyn RCkRkk

RBCRET

0RET0 TT

RBCTRET

Donoff Kkk

Woo et al., JPP 34:849-68 (2007).

Page 21: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Residual Error Variance Model

CC)C(Var Cobs

RETRET)RET(Var RETobs

RBCRBC)RBC(Var RBCobs

HbHb)Hb(Var Hbobs

Parameter estimates were obtained by minimizing the -2LL objective function in ADAPT II.

Woo et al., JPP 34:849-68 (2007).

Page 22: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Parameter Estimates Parameter Estimate CV%

Vp (ml/kg) 56.94 1

kel (h-1) 0.2256 2

kpt (h-1) 0.2092 6

ktp (h-1) 0.1721 6

kint (h-1) 0.8228 66

kdeg (h-1) 0.1133 58

kon (nM-1h-1) 11.32 80

KD (nM) 1.297 70

R0 (nM) 0.0632 43

C0 (nM) 0a

RBC0 (106 cells/l) 6.128a

MCH (pg/cell) 20.0a

TP1 (h) 42.97 8

TP2 (h) 3.02 75

TRET (h) 72.33 4

TRBC (h) 1440a

Smax 3.48 7

SC50 (pM) 1.7 35

Imax 1.0a

IC50 (g/dl) 1.79 10

a Parameter was fixed. Woo et al., JPP 34:849-68 (2007).

Page 23: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Numerical Challenges

• Stiffness: Receptor binding (kon, R0) is typically much faster than distribution and elimination (kel,ktp,kpt).

• Delay differential equations: Lifespan based PD model requires a DDE solver.

Page 24: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Parameter Estimability

• Large number of model parameters.• Observable data (blood compartments) are poorly

informative about processes occurring in the bone marrow: receptor binding, cell maturation, negative feedback.

• Large values of SE of corresponding parameter estimates, correlations, singularity of covariance matrix.

• Necessary reduction of the number of model parameters:

- fixing at known physiological values. - simplifying assumptions: quasi steady-state etc.

Page 25: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Conclusions

• rHuEPO nonlinear PK can be explained by receptor mediated disposition.

• PD response is significantly delayed with respect to PK exposure.

• PK/PD model exhibits stiffness and requires DDE solver.

• System large dimension and data based on blood measurements lead to parameter estimability problems.

Page 26: PK/PD Modeling of Therapeutic Effects of Erythropoietin Wojciech Krzyzanski, PhD, MA Department of Pharmaceutical Sciences University at Buffalo Semiparametric

Acknowledgments

• Sukyung Woo, PhD.

• William Jusko, PhD.