Pile Capacity & Settlement

  • Upload
    bonnico

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 Pile Capacity & Settlement

    1/7

    PAGE ___ OF ___ NO. 0 1 2 3 4

    DATE

    JOB NO. 00-3310 BY AR

    CLIENT PT.VICO INDONESIA REVIEW

    LOCATION BADAK FIELD, EAST KALIMANTAN CHECK

    SUBJECT RECTANGULAR 2nd PILE ARRANGEMENT APPR.

    PILE FOUNDATION

    c = 2.400 m

    h = 0.600 m

    k = 0.500 m

    n = 1.800 m

    p = 1.800 m

    q = 0.300 m

    gc = 2.400 t/m

    gs = 1.560 t/m

    Pile Arrangement

    L = 12 m pile lengthD = 300 mm pile outside diameter

    ID = 180 mm pile inside diameter

    gp = 0.109 t/m pile weight

    Ap = 0.0707 m pile area

    p = 0.9425 m pile perimeter

    sp = 1.80 m length between pile

    mx = 2 nos number of pile x-dir

    ny = 1 nos number of pile y-dir

    n = 2 nos total number of pile

    Efficiency Group Pile for Axial

    q = arc.tg D/sp = 9.46 degrees

    Eg1 = 1 - q.[(ny- 1).mx+ (mx- 1).ny]/90.mx.ny = 0.95

    Efficiency Group Pile for Lateral

    Eg2 = sp/(6.D) >0,5 = 1.00

    Pile Allowable Capacity

    PC = 0.95 x 22.06 = 20.96 ton allowable compression

    PT = 0.95 x 21.74 = 20.65 ton allowable tension

    PH = 1.00 x 1.31 = 1.31 ton allowable lateral

    PM = 1.00 x 2.39 = 2.39 ton allowable moment

    LOADING DATA (see page )

    Vertical Load at each pedestal

    Vertical Load V1 = 1.230 ton at pedestal 1

    V2 = 1.203 ton at pedestal 2

    Horizontal Load at each pedestalSeismic Load H1x = -0.001 ton at pedestal 1

    H1y = 0.000 ton at pedestal 1

    H2x = 0.001 ton at pedestal 2

    H2y = 0.000 ton at pedestal 2

    Moment Load at each pedestal

    Seismic Moment M1x = -0.018 ton m at pedestal 1

    M1y = 0.000 ton m at pedestal 1

    M2x = -0.005 ton m at pedestal 2

    M2y = 0.000 ton m at pedestal 2

    Combined Vertical Load

    E(O) = V1 + V2 = 2.433 ton

    R

    EVISION

    c

    h

    k

    n

    1 2

    L

    q p q

  • 8/10/2019 Pile Capacity & Settlement

    2/7

    Combined Horizontal Load

    HSx = H1x + H2x = 0.000 ton

    HSy = H1y + H2y = 0.000 ton

    Combined Moment Load

    Excentricity cause by vertical load

    ex = [V1.(c/2-n/2) + V2.(c/2+n/2)] / E(O) - c/2 = -0.010 mMSx = M1x + M2x = -0.023 ton m

    MSy = M1y + M2y + E(O).ex = -0.024 ton m

    Foundation Weight

    Wf = (h.c.k).gc = 1.73 ton footing weight

    Wpi = (n.L).gp = 2.61 ton pile weight

    WF = Wf+Wpi = 4.33 ton total weight

    PILE CAPACITY

    Lateral Load (x - direction)

    Total Horizontal Force (Hx)

    Hx = HS(O) = 0.000 ton

    H1 = Hx / n = 0.000 ton < 1.31ok

    Total Axial Force (Pu)

    Qg = WF+E(O) = 6.767 ton

    My = MS(O)+HS(O).k = 0.024 ton.m

    wy = Sxi2/ xi = 3.600 m

    Pu+ = Qg/ n + My / wy = 3.390 ton < 20.96...ok

    Pu- = Qg/ n - My / wy = 3.377 ton > 0ok

    Lateral Load (y - direction)

    Total Axial ForceQg = WF+E(O) = 6.767 ton

    Q1 = g n = 3.384 ton < 20.96...ok

    Total Horizontal Force

    Hp = HS(O) = 0.000 ton < 1.31ok

    Total Moment Force

    Mp = MS(O)+HS(O).k = 0.024 ton < 2.39ok

    Rebar Calculation for Pilecap of Foundation

    L = 1.800 m

    P = 1,4.[WF+E(O)] = 9.474 ton

    M = 1,7.1,1.MSy + 1,7.1,1.HSx.k/2 = 0.045 ton.m

    Maximum Positif Moment

    M+ = M + 1/4.P.L = 4.3084 ton.m/m'

    Maximum Negatif Moment

    M- = 30%.M+ = 1.2925 ton.m/m'

    Design of Flexural Reinforcement

    P

    L

    M

  • 8/10/2019 Pile Capacity & Settlement

    3/7

    Bottom Reinforcement

    b = 100 cm

    h = 50 cm

    d = 42.5 cm

    fc' = 210 kg/cm2

    fy = 4000 kg/cm2

    M+ = 4.3084 ton.m/m'

    Rn = M+ / (0,9.b.d2) = 2.6503

    r = 0,85 .fc' / fy [1 - (1 - 2.Rn / 0,85 .fc')0.5

    ] = 0.00067

    r min = 0.0018

    As = larger r bd & r min.bd = 7.65 cm2/m'

    D 13 @ 150 As = 8.84 cm2/m'

    Top Reinforcement

    b = 100 cm

    h = 50 cm

    d = 42.5 cm

    fc' = 210 kg/cm2

    fy = 4000 kg/cm2

    M- = 1.2925 ton.m/m'

    Rn = M- / (0,9.b.d2) = 0.7951

    r = 0,85 .fc' / fy [1 - (1 - 2.Rn / 0,85 .fc')0.5

    ] = 0.00020

    r min = 0.0018

    As = larger r bd & r min.bd = 7.65 cm2/m'

    D 13 @ 150 As = 8.84 cm2/m'

    Check of Punching Shear

    two way action shearfc' = 210 kg/cm

    2

    d = 42.5 cm

    bo = 1/2.p.(D+d) (pile critical perimeter) = 113.88 cm

    j Vn = 0,85.1,06(fc')0.5

    bo.d = 63.19 ton

    Pu+ = 1,7.1,1.Qp = 6.33 ton < 63.19...ok

    SETTLEMENT CALCULATION

    Bg = 0.30 m pile group width

    Lg = 2.10 m pile group Length

    m = 0.3 poisson ratio

    Ep = 200000 kg/cm2

    modulus of elasticity of pile

    cp = 6.5 t/m2 cohesion of soil below the tip of the pile

    Esp = 250.cp = 1625 t/m2 modulus elasticity of soil below the tip of the pile

    cs = 3.175 t/m2 cohesion of soil average along the pile shaft

    Ess = 250.cs = 793.75 t/m2 modulus elasticity of soil average along the pile shaft

    Immediate Settlement due to Pile deformation

    Qp = Qg/n = 3.38 ton

    Qwp = 0.049 ton end bearing contributed by pile load

    Qws = 3.331 ton friction contributed by pile load

  • 8/10/2019 Pile Capacity & Settlement

    4/7

    x = 0.67 triangular friction distribution on pile

    Si1 = [Qwp+ x.Qws].L /(Ap.Ep) = 0.0002 m

    Immediate Settlement due to End Bearing Load

    Iwp = 0.82 influence factor

    qwp = Qwp/Ap = 0.6936 t/m2

    Si2 = qwp.D/Esp.(1-m2).Iwp = 1E-04 m

    Immediate Settlement due to Friction Load

    Iws = 2+0,35.(L/D)0.5

    influence factor = 4.2136

    Si3 = [Qws/p.L].D/Ess.(1-m2).Iws = 0.0004 m

    Immediate Settlement of Pile

    Si = Si1+ Si2+ Si3 = 0.0007 m

    Immediate Settlement of Group Pile

    Sg = Si.(Bg/D)0.5

    = 0.0007 m

    Consolidation Settlement at Center of Group PilesPc = preconsolidation pressure

    eo = initial void ratio

    Cc = compression index = 0,75.(eo - 0.8)

    Hough approach for highly micaceous soils

    Cs = swell index = 1/6.Cc

    H = settlement calculation for 12.5 m below footing

    Qg = 6.77 ton

    Dp = Qg/ [(Bg+z).(Lg+z)]

    If Pc < Po Normally Consolidation (NC) - Eq.1

    Sc = SCc.H/(1+eo) .log [(Po+DP)/Po]

    If Po < Pc < Po+Dp Over Consolidation (OC) - Eq. 2

    Sc = SCs.H/(1+eo) .log [pc/po] + Cc.H/(1+eo) .log [(Po+DP)/Pc]

    If Pc > Po + Dp Over Consolidation (OC) - Eq. 3

    Sc = SCs.H/(1+eo) .log [(Po+DP)/Po]

    H (m) z (m) gs (t/m2) Pc (t/m

    2) eo Cc Cs Dp (t/m

    2) Po (t/m

    2) Sc (m)

    8.5 0.5 1.590 10.5 2.05 0.9375 NC 3.2534 24.016 0.017 Eq. 1

    9.5 1.5 1.590 21 1.64 0.63 NC 1.0443 25.606 0.0041 Eq. 1

    10.5 2.5 1.590 21 1.64 0.63 NC 0.5254 27.196 0.002 Eq. 1

    11.5 3.5 1.590 21 1.64 0.63 NC 0.318 28.786 0.0011 Eq. 1

    12.5 4.5 1.660 14 1.16 0.27 NC 0.2136 30.411 0.0004 Eq. 1

    SSc = 0.0246 m

    Total settlement at Center of Group PilesScenter = Sig+ Sc = 0.0253 m = 25.32 mm check

    Material Take Off

    Total unit

    Foundation 0.72 m3

    Pile 24.00 m

    Rebar (75 kg/m3) 54.00 kg

    Formwork (4.96 m2/m

    3) 3.57 m

    2

    Leveling concrete (50 mm) 0.07 m3

    Excavation 2.24 m3

    L

    2/3L

    1

    2

  • 8/10/2019 Pile Capacity & Settlement

    5/7

    Backfill 2.24 m3

    Soil Disposal 0.00 m3

    Bowplank 6.00 m1

  • 8/10/2019 Pile Capacity & Settlement

    6/7

  • 8/10/2019 Pile Capacity & Settlement

    7/7

    L

    h1

    h2

    be

    c

    a

    backfill

    dd

    f

    f

    t