38
David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center Piezoelectric Micromachined Ultrasonic Transducers in Consumer Electronics Professor David Horsley University of California, Davis University of California, Berkeley Chirp Microsystems Inc. MEMS Engineer Forum 2017 Tokyo Japan, April 2017

Piezoelectric Micromachined Ultrasonic Transducers in ......Commercial Piezoelectric MEMS 6 Autofocus Lens Piezoelectric Microphone FBAR Now: Announced: David Horsley, UC Davis April

  • Upload
    others

  • View
    16

  • Download
    1

Embed Size (px)

Citation preview

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Piezoelectric MicromachinedUltrasonic Transducers in Consumer

    Electronics Professor David Horsley

    University of California, Davis University of California, Berkeley

    Chirp Microsystems Inc.

    MEMS Engineer Forum 2017Tokyo Japan, April 2017

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Outline

    • History and motivation

    • Air-coupled ultrasonic transducers

    • Ultrasonic fingerprint sensors

    2

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    30+ Years of MUTs

    3

    PMUTRoyer et al (Honeywell)SNA 1983

    CMUTHaller & Khuri-Yakub(Stanford)IUS 1994

    “MUTs enjoy the inherent advantages of microfabrication, which include low cost, array fabrication, and the possibility to integrate electronics either on chip or as a multi-chip module.”

    “The sensitivity and SNR of the ZnO acoustic sensor … do not compare well with … commonly used electret microphones”

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Integration demonstrated 20 years ago(!)

    4

    Surface micromachinedultrasound transducers in CMOS technologyEccardt, Niederer, Scheiter, Hierold (Siemens)IUS 1996

    “new microfabrication technologies have emerged, allowing a highly reproducible fabrication of electrostatically driven membranes.”

    30x30 CMUT Array

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    What’s New Today?Technology• Piezoelectric materials greatly improved• Well-developed manufacturing infrastructure

    – MEMS foundries, packaging & test suppliers

    Market• Strong market pull for new sensors

    – IoT, drones, autonomous vehicles, AR/VR, new interface technology

    • Every flagship phone needs a fingerprint sensor

    5

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Commercial Piezoelectric MEMS

    6

    Autofocus Lens

    Piezoelectric Microphone

    FBAR

    Now: Announced:

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Outline

    • History and motivation

    • Air-coupled ultrasonic transducers

    • Ultrasonic fingerprint sensors

    7

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    [D.R. Griffin, J. Animal Behaviour, 1960]

    Uses ultrasound to navigate

    Identifies insects from wing velocity

    Targets mosquitoes from 80 cm away

    Observations from Nature

    8

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    • Advantages:– High output pressure– Directional, if desired

    • Disadvantages:– Inefficient coupling to air– Matching layers required– Too big for consumer electronics– Dumb sensor. Lots of external electronics required.

    Existing Ultrasonic Transducers

    10 mm

    senscomp.com5.2 mm

    muratamericas.com

    maxbotix.com

    20 mm

    9

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Micromachined Ultrasonic Transducers

    10

    • Extremely low power (15 µW) • Long range > 1 m • Small size

    – 1000x smaller volume than conventional U/S transducer

    • Digital interface– All signal processing performed

    on-chip– Autonomous operation for

    always-on sensing (host CPU can be in sleep mode)

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    • Suspended plate structure• Increased coupling due to low acoustic impedance• Array fabrication possible• Micro-patterning allows mechanics to be modified

    Features of MUTs

    11

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Actuating Air-Coupled MUTsWant:• Large output pressure despite air’s low acoustic

    impedance→ Large transducer displacement→ Piezoelectric Actuation

    Wygant et al., IEEE TUFFC 2009

    Capacitive (CMUT)

    S. Shelton et al., IEEE IUS, 2009

    R. Przybyla et al., IEEE Sensors J., 2011

    Piezoelectric (PMUT)

    MoAlNAlN

    Al

    vs.

    12

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    fo ≈ 200 kHz

    BW ≈ 10 kHz

    Aluminum Nitride (AlN) PMUT Cross Section

    Si

    Al

    500μm

    +

    AlN

    AlNMo

    AlNAl

    1μm

    13

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    MUT Animation

    14

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    15

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Outline

    • History and motivation

    • Air-coupled ultrasonic transducers

    • Ultrasonic fingerprint sensors

    16

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Ultrasound vs. Optical Fingerprint Sensor

    J. K. Schneider, “Ultrasonic fingerprint sensors,” in Advances in Biometrics. 2008 17

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    State of the art: Commercial Ultrasonic Fingerprint Sensor

    Reference: Ultra-scan®, U.S. patent 5224174

    lens

    transducer

    Mechanical scanning

    Pros:Dermal detection

    Cons: Large system mechanical scanning

    18

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Bulk Piezo Fingerprint Sensors

    Sonavation Inc.

    Drawbacks:

    • Interconnect is challenging

    • Readout based on resonator Q (no advantage over capacitance)

    • High manufacturing cost.

    19

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Qualcomm’s Ultrasonic Fingerprint Sensor

    • TFT-based manufacturing

    • 500 dpi• Scalable to virtually any

    size • Single-finger, four-

    finger, and full hand sensor.

    20J. K. Schneider, “Biometrics Within the Wireless and Mobile Computing Industry,” 2013

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Ultrasonic

    transducers

    Operating Principle

    Air (Valley)ridge

    21

    Tissue

    Skin

    PDMS

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Operating Principle

    22

    Tissue

    Skin

    PDMS

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Operating Principle

    Huge Impedance Mismatch

    23

    Tissue

    Skin

    PDMS

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Operating Principle

    Impedance Match

    24

    Tissue

    Skin

    PDMS

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Operating Principle

    Impedance Mismatch

    25

    Tissue

    Skin

    PDMS

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Operating Principle

    26

    Tissue

    Skin

    PDMS

    tValley

    tRidge

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Fingerprint

    Left/Right/Double Loop

    Level 1 Features: Pattern

    Level 3 Features

    PoresJain, et al. IEEE, (2007)

    Level 2 Features: Minutia Points

    Ending

    500+ dpi

    FBI Standard 500 dpi

    Epidermis

    Dermis

    ~200 μm

    Sensor Resolution

    Requirement

    - Biometric Identity

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    MEMS

    Sensor Array

    Parameters ValuePixel size 43×58μm2

    Resolution 582×431 dpiFill-factor 51.7%

    6160 pixels

    28H. Tang et al, “11.2 3D Ultrasonic Fingerprint Sensor on a Chip,” 2016 ISSCC, pp. 202-203

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    CMOS

    Wafer-BondingMEMS

    29

    Anchor

    CMOS

    MEMS

    Eutectic Bonding

    PMUT area

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Sensor Die

    30

    Before Assembly Assembled

    X. Jiang et al, “Monolithic 591x438 DPI ultrasonic fingerprint sensor” IEEE MEMS 2016, pp. 107-110.

    J.M. Tsai, et al, “Versatile CMOS-MEMS integrated piezoelectric platform”, Transducers 2015, pp. 2248-2251

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    5 × 5 PMUT array

    PMUT motion at 28 MHz captured via LDV

    31

    Y. Lu, et al, “Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics,” Appl. Phys. Lett. , vol. 106, p. 263503, 2015

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Measurement Cycle56 pixels measure

    simultaneously

    33

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    DemodulatorDemodulator

    S&HVpixel

    Envelope

    VenveVsig

    Vpixel

    timg

    t

    Vsig

    V Venve

    himg

    timg

    Finger

    PDMSSensor

    34

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Epidermis Dermis

    35

    timg

    Pulse Echo Fingerprint Imaging

    Epidermis

    Dermis

    4.6 mm

    3.2 mm

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Multi-Layer Phantom

    Valley Ridge

    36

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Multi-Layer Phantom

    Valley RidgeNormal Operation

    ✔ E/ Image: 280μJ✔ 2.8mW @ 10fps✔ Throughput: 380fps

    Wakeup Mode✔ E/ Image: 25μJ✔ 5μW @ 2fps 37

    timgdimg

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Summary & Conclusions

    After 30+ years, PMUTs are a disruptive technology for consumer electronics• PMUTs and other piezo-MEMS are poised for a

    big impact thanks to maturity of thin-film piezoelectric materials.

    • In air: Tiny 0.5 mm PMUTs have over 1 m range.• In tissue: pulse-echo fingerprint imaging

    demonstrated w/ 1.8V supply.

    38

  • David Horsley, UC Davis April 2017 Berkeley Sensor & Actuator Center

    Acknowledgments

    • Horsley group (BSAC - UC Davis)– Stefon Shelton, Yipeng Lu, Ofer Rozen, Andre Guedes,

    Stephanie Fung, Qi Wang, Xiaoyue Joy Jiang• Prof. Bernhard Boser’s group (BSAC - UC Berkeley)

    – Richard Przybyla, Hao-Yen Tang, Igor Izyumen

    39

    Piezoelectric Micromachined Ultrasonic Transducers in Consumer Electronics Outline30+ Years of MUTsIntegration demonstrated 20 years ago(!)What’s New Today?Commercial Piezoelectric MEMSOutlineObservations from NatureExisting Ultrasonic TransducersMicromachined Ultrasonic TransducersFeatures of MUTsActuating Air-Coupled MUTsAluminum Nitride (AlN) PMUT Cross SectionMUT AnimationSlide Number 15OutlineUltrasound vs. Optical Fingerprint SensorState of the art: Commercial Ultrasonic Fingerprint SensorBulk Piezo Fingerprint SensorsQualcomm’s Ultrasonic Fingerprint SensorOperating PrincipleOperating PrincipleOperating PrincipleOperating PrincipleOperating PrincipleOperating PrincipleSlide Number 27Sensor ArrayWafer-BondingSensor DieSlide Number 31Slide Number 33DemodulatorSlide Number 35Slide Number 36Slide Number 37Summary & ConclusionsAcknowledgmentsQuestions?Measurement Result: Fraud Detection Finger with contamination