25
The physics of RFID Matt Reynolds Founding Partner ThingMagic LLC

Physics of Rfid (Read Distance)-Thingmagic

Embed Size (px)

Citation preview

Page 1: Physics of Rfid (Read Distance)-Thingmagic

The physics of RFID

Matt ReynoldsFounding PartnerThingMagic LLC

Page 2: Physics of Rfid (Read Distance)-Thingmagic

Vision General

• Una breve Historia de RFID• Elementos de un sistema de RFID• Un modelo ideal de Tag and practical

constraints• Un modelo ideal de Lector and practical

constraints• La base de una radio frecuencia

propagación• La base de RF interación con materiales• Conclusiones

Page 3: Physics of Rfid (Read Distance)-Thingmagic

Una breve historia de RFID

1862 1886 1942 1948 1972 2003

printinglasers

IC / VLSInetworkingsupply chain scaling

Page 4: Physics of Rfid (Read Distance)-Thingmagic

What is an RFID Reader?

Cuatro principales elementos: Tags, Lectores, Antenas, y Network Systems

(eg Savant)

Elementos de un sistema RFID

Page 5: Physics of Rfid (Read Distance)-Thingmagic

Variables de un sistema RF

1. Elección de la frecuencia operativa

2. Tag IC, diseño antena tag

3. Lector, diseño de la antena del Lector

4. Proximate materials

5. Fuentes de externas interferencias

Page 6: Physics of Rfid (Read Distance)-Thingmagic

Mayor RFID mercados by frequency

US, Canada125KHz13.56MHz902-928MHz

EU Countries125KHz13.56MHz868-870MHz

Japan125KHz13.56MHz950-956MHz

Page 7: Physics of Rfid (Read Distance)-Thingmagic

RFID tags en diferentes frecuencias

125 KHz

TI

Philips

Others

13.56 MHz

Tagsys

Philips

TI

Microchip

Others

915 MHz

Intermec

SCS

Matrics

Alien

Philips

TI

2.4 GHz

Intermec

SCS

Hitachi

Page 8: Physics of Rfid (Read Distance)-Thingmagic

Anatomia Tag

Substrate

Tag IC

Antenna

Die attach

Page 9: Physics of Rfid (Read Distance)-Thingmagic

Diagrama de bloquesTag

Antenna

Power Supply

Tx Modulator

Rx Demodulator

Control Logic(Finite State machine)

MemoryCells

Tag Integrated Circuit (IC)

Page 10: Physics of Rfid (Read Distance)-Thingmagic

¿ Que un lector hace?

• Primarias funciones:

Remota alimentación tags

Establecer una bidireccional data link

Inventario tags, filtrar resultados

Comunicación con networked server(s)

Page 11: Physics of Rfid (Read Distance)-Thingmagic

Anatomia Lector

915MHzRadio

NetworkProcessor

Digital SignalProcessor(DSP)

13.56MHzRadio

PowerSupply

Page 12: Physics of Rfid (Read Distance)-Thingmagic

Diagrama Bloques de un Lector

antennaSubsystem

Band 1

Band ModuleBand 1

dspsubsystem

network processor

rx

tx

data

control

TCP/IP

data

control

antennaSubsystem

Band 2

Band Module Band 2

rx

tx control

data

antennaSubsystem

Band n

Band ModuleBand n

rx

tx control

data

Page 13: Physics of Rfid (Read Distance)-Thingmagic

915MHz band module schematic

UHF (915MHz) reader RF section

Page 14: Physics of Rfid (Read Distance)-Thingmagic

A passive RFID communication model

Tags

Reader

Power from RF field

ReaderAntenna

Reader->Tag Commands

Tag->Reader Responses

RFID Communication Channel

Page 15: Physics of Rfid (Read Distance)-Thingmagic

Limiting factors for passive RFID

1. Lector potencia trasmitida Pr (Gov’t. limited)

2. Reader receiver sensitivity Sr 3. Reader antenna gain Gr (Gov’t. limited)4. Tag antenna gain Gt (Size limited)5. Potencia requerida en un tag Pt (Silicon

process limited)6. Tag modulator efficiency Et

Page 16: Physics of Rfid (Read Distance)-Thingmagic

Lectores ->potencia suministrada Tag

Lector

LectorAntena

Tag

Q: Si un lector transmite Pr watios, Cuanta potencia Pt el tag recive a una distancia de separación d?

A: Depende -UHF (915MHz) : Far field propagation : Pt 1/d2

HF (13.56MHz) : Inductive coupling : Pt 1/d6

Separacióndistancia d

Page 17: Physics of Rfid (Read Distance)-Thingmagic

Parametros tipicos sistema UHF

• Reader Transmit Power Pr = 30dBm (1 Watt)• Reader Receiver Sensitivity Sr = -80dBm (10 -11 Watts)• Reader Antenna Gain Gr = 6dBi

• Tag Power Requirement Pt = -10dBm (100 microwatts)• Tag Antenna Gain Gt = 1dBi• Tag Backscatter Efficiency Et = -20dB

• System operating wavelength = 33cm (915MHz)

Page 18: Physics of Rfid (Read Distance)-Thingmagic

Far field path loss

d

Pr

Pt

Pt = Pr • Gr • Gt • 2

4 π d2

Page 19: Physics of Rfid (Read Distance)-Thingmagic

• Two cases: Tag power limited, or reader sensitivity limited.

Well designed systems are tag power limited.

Pt = Pr • Gr • Gt • 2

4 π d2

dmax = sqrt ( Pr • Gr • Gt • 2 )

4 π Pt

dmax = 19.4 meters, theoretical maximum

UHF read range estimation

Page 20: Physics of Rfid (Read Distance)-Thingmagic

Reader sensitivity limit

• Let’s assume we can build a tag IC requiring 1 microwatt (100 times better than current practice)

• dmax = 194 meters tag power limit for this hypothetical IC.

Pt->r = Pr • Gr • Gt • Et • 2

4 π d4

Pt->r = 2.65x10 -13 Watts (-95.6dBm)

Noise power in 50 ohm resistor at 500KHz BW=4kTB=-109dBm.

With a practical receiver of NF=3dB, Pn=-106dBm, SNR=10dB.This signal is at the edge of decodability.

Page 21: Physics of Rfid (Read Distance)-Thingmagic

Lessons from the simple model

• Since Pt 1/d2 , doubling read range requires 4X the transmitter power.

• Larger antennas can help, but at the expense of larger physical size because G{t,r} Area.

• More advanced CMOS process technology will help by reducing Pt.

• At large distances, reader sensitivity limitations dominate.

Page 22: Physics of Rfid (Read Distance)-Thingmagic

RF señales y materiales

Materiales en campo RF puede tener varios efectos:

1. Reflexión / refración

2. Absorción (perdidas)

3. Efectos dielectricos (detuning)

4. Complejos efectos de propagación (photonic bandgap)

Page 23: Physics of Rfid (Read Distance)-Thingmagic

Efectos RF en comunes materiales

Material Efectos de una señal RF

Carton Absorption (moisture)

Detuning (dielectric)

Conductive liquids (shampoo)

Absorption

Plasticos Detuning (dielectric)

Metales Reflection

Groups of cans Complex effects (lenses, filters)

Reflection

Cuerpo Humano / animales Absorption

Detuning (dielectric)

Reflection

Page 24: Physics of Rfid (Read Distance)-Thingmagic

Effective shielding of UHF signals• Any conductive material exhibits a skin depth

effect

= sqrt ( 2 / ( 2 f 0 ) )

where 0 = 4 x10 -7 H/m.

For aluminum, = 2.65x10 -6 ohm-cm. An effective aluminum shield is only 27 microns thick.

For dilute salt water, = 10 -2 ohm-cm. An effective salt water shield is 1 mm thick.

Page 25: Physics of Rfid (Read Distance)-Thingmagic

Conclusions

• There are serious practical limitations to passive RFID read range.

• It is not practical to read a passive UHF RFID tag from Earth orbit.

• Improvements to tag IC design will yield commercially helpful, but probably privacy-insignificant increase in read range.

• UHF RFID signals are easily shielded by

common materials (aluminum foil, antistatic bags, or your hands).