70
Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics Michael Chertkov 1 & Vladimir Chernyak 2,1 1 Theory Division, LANL and 2 Wayne State, Detroit June 4, 2007 Argonne NL Thanks to M. Stepanov (UofA, Tucson) Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

Outline

Physics of AlgorithmsLoop Calculus in Information Theory and Statistical Physics

Michael Chertkov1 & Vladimir Chernyak 2,1

1Theory Division, LANL and 2Wayne State, Detroit

June 4, 2007Argonne NL

Thanks to M. Stepanov (UofA, Tucson)

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 2: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

Outline

Outline

1 IntroductionEnabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

2 Loop CalculusGauge Transformations and BPLoop Series in terms of BP

3 ApplicationsAnalysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

4 Conclusions

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 3: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Error Correction

Scheme:

Example of Additive White Gaussian Channel:

P(xout |xin) =∏

i=bits

p(xout;i |xin;i )

p(x|y) ∼ exp(−s2(x − y)2/2)

Channelis noisy ”black box” with only statistical information available

Encoding:use redundancy to redistribute damaging effect of the noise

Decoding [Algorithm]:reconstruct most probable codeword by noisy (polluted) channel

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 4: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Low Density Parity Check Codes

N bits, M checks, L = N − M information bitsexample: N = 10, M = 5, L = 5

2L codewords of 2N possible patterns

Parity check: Hv = c = 0example:

H =

1 1 1 1 0 1 1 0 0 00 0 1 1 1 1 1 1 0 00 1 0 1 0 1 0 1 1 11 0 1 0 1 0 0 1 1 11 1 0 0 1 0 1 0 1 1

LDPC = graph (parity check matrix) is sparse

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 5: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Shannon Transition

Phase Transition

Ensemble of Codes[analysis & design]

Thermodynamiclimit but ...

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 6: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Statistical Models

Ising model σi = ±1

P(σ) = Z−1 exp(∑

i ,j Jijσiσj

)Jij define the graph (lattice)

Decoding σi = ±1

P(σ|x) = Z−1(x)∏α

δ

(∏i∈α

σi ,+1

)∏i

p(σi |xi )

Hard (check) constraints define the graph/code

N.Sourlas ’89; A.Montanari ’00: Error-correction as a Statistical Mechanics

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 7: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Graphical models

Factorization (Forney ’01, Loeliger ’01)

P(σ|x) = Z−1∏a

fa(xa|σa)

Z(x) =∑σ

∏a

fa(xa|σa))︸ ︷︷ ︸partition function

fa ≥ 0

σab = σba = ±1

σ1 = (σ12, σ14, σ18)

σ2 = (σ12, σ13)

Example: Error-Correction (linear code, bipartite Tanner graph)

fi (hi |σi ) = exp(σihi )·{

1, ∀α, β 3 i , σiα = σiβ

0, otherwise

fα(σα) = δ

∏i∈α

σi , +1

hi - log-likelihoods

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 8: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Statistical Inference

σorig ⇒ x ⇒ σ

original

dataσorig ∈ Ccodeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

Maximum Likelihood [ground state]

Maximum-a-Posteriori[magnetization]

ML = arg maxσP(x|σ) MAPi = arg max

σi

∑σ\σi

P(x|σ)

Exhaustive search is generally expensive:complexity of the algorithm ∼ 2N

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 9: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Statistical Inference

σorig ⇒ x ⇒ σ

original

dataσorig ∈ Ccodeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

Maximum Likelihood [ground state]

Maximum-a-Posteriori[magnetization]

ML = arg maxσP(x|σ) MAPi = arg max

σi

∑σ\σi

P(x|σ)

Exhaustive search is generally expensive:complexity of the algorithm ∼ 2N

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 10: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Statistical Inference

σorig ⇒ x ⇒ σ

original

dataσorig ∈ Ccodeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

Maximum Likelihood [ground state]

Maximum-a-Posteriori[magnetization]

ML = arg maxσP(x|σ) MAPi = arg max

σi

∑σ\σi

P(x|σ)

Exhaustive search is generally expensive:complexity of the algorithm ∼ 2N

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 11: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Statistical Inference

σorig ⇒ x ⇒ σ

original

dataσorig ∈ Ccodeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

σ = (σ1, · · · , σN), N finite, σi = ±1 (example)

Maximum Likelihood [ground state]Maximum-a-Posteriori [magnetization]

ML = arg maxσP(x|σ) MAPi = arg max

σi

∑σ\σi

P(x|σ)

Exhaustive search is generally expensive:complexity of the algorithm ∼ 2N

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 12: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Variational Method in Statistical Mechanics

P(σ) =∏

a fa(σa)Z , Z ≡

∑σ

∏a fa(σa)

Exact Variational Principe Kullback-Leibler ’51

F{b(σ)} = −∑σ

b(σ)∑a

fa(σa)−∑σ

b(σ) ln b(σ)

δFδb(σ)

∣∣∣b(σ)=p(σ)

= 0 under∑σ

b(σ) = 1

Variational Ansatz

Mean-Field: p(σ) ≈ b(σ) =∏i

bi (σi )

Belief Propagation:

p(σ) ≈ b(σ) =

∏a ba(σa)∏

(a,b) bab(σab)(exact on a tree)

ba(σa) =∑σ\σa

b(σ), bab(σab) =∑

σ\σab

b(σ)

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 13: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Variational Method in Statistical Mechanics

P(σ) =∏

a fa(σa)Z , Z ≡

∑σ

∏a fa(σa)

Exact Variational Principe Kullback-Leibler ’51

F{b(σ)} = −∑σ

b(σ)∑a

fa(σa)−∑σ

b(σ) ln b(σ)

δFδb(σ)

∣∣∣b(σ)=p(σ)

= 0 under∑σ

b(σ) = 1

Variational Ansatz

Mean-Field: p(σ) ≈ b(σ) =∏i

bi (σi )

Belief Propagation:

p(σ) ≈ b(σ) =

∏a ba(σa)∏

(a,b) bab(σab)(exact on a tree)

ba(σa) =∑σ\σa

b(σ), bab(σab) =∑

σ\σab

b(σ)

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 14: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Bethe free energy: variational approach(Yedidia,Freeman,Weiss ’01 - inspired by Bethe ’35, Peierls ’36)

F = −∑

a

∑σa

ba(σa) ln fa(σa)︸ ︷︷ ︸self-energy

+∑

a

∑σa

ba(σa) ln ba(σa)−∑(a,c)

bac (σac ) ln bac (σac )

︸ ︷︷ ︸configurational entropy

∀ a; c ∈ a :∑

σaba(σa) = 1, bac (σac ) =

∑σa\σac

ba(σa)

⇒Belief-Propagation Equations: δFδb

∣∣constr.

= 0

MAP≈BP=Belief-Propagation (Bethe-Pieirls): iterative ⇒ Gallager ’61; MacKay ’98

Exact on a tree Derivation Sketch

Trading optimality for reduction in complexity: ∼ 2L →∼ L

BP = solving equations on the graph:

ηαj = hj +j∈β∑β 6=α

tanh−1

(i∈β∏i 6=j

tanh ηβi

)⇐ LDPC representation

Message Passing = iterative BP

Convergence of MP to minimum of Bethe Free energy can be enforced

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 15: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Bethe free energy: variational approach(Yedidia,Freeman,Weiss ’01 - inspired by Bethe ’35, Peierls ’36)

F = −∑

a

∑σa

ba(σa) ln fa(σa)︸ ︷︷ ︸self-energy

+∑

a

∑σa

ba(σa) ln ba(σa)−∑(a,c)

bac (σac ) ln bac (σac )

︸ ︷︷ ︸configurational entropy

∀ a; c ∈ a :∑

σaba(σa) = 1, bac (σac ) =

∑σa\σac

ba(σa)

⇒Belief-Propagation Equations: δFδb

∣∣constr.

= 0

MAP≈BP=Belief-Propagation (Bethe-Pieirls): iterative ⇒ Gallager ’61; MacKay ’98

Exact on a tree Derivation Sketch

Trading optimality for reduction in complexity: ∼ 2L →∼ L

BP = solving equations on the graph:

ηαj = hj +j∈β∑β 6=α

tanh−1

(i∈β∏i 6=j

tanh ηβi

)⇐ LDPC representation

Message Passing = iterative BP

Convergence of MP to minimum of Bethe Free energy can be enforced

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 16: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Linear Programming version of Belief Propagation

In the limit of large SNR, ln fa → ±∞: BP→LP

Minimize F ≈ E = −∑a

∑σa

ba(σa) ln fa(σa) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger ’03

ML can be restated as an LP over a codeword polytope

LP decoding is a “local codewords” relaxation of LP-ML

Codeword convergence certificate

Discrete and Nice for Analysis

Large polytope {bα, bi} ⇒ Small polytope {bi}

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 17: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Enabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

Linear Programming version of Belief Propagation

In the limit of large SNR, ln fa → ±∞: BP→LP

Minimize F ≈ E = −∑a

∑σa

ba(σa) ln fa(σa) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger ’03

ML can be restated as an LP over a codeword polytope

LP decoding is a “local codewords” relaxation of LP-ML

Codeword convergence certificate

Discrete and Nice for Analysis

Large polytope {bα, bi} ⇒ Small polytope {bi}

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 18: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

1 IntroductionEnabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

2 Loop CalculusGauge Transformations and BPLoop Series in terms of BP

3 ApplicationsAnalysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

4 Conclusions

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 19: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

BP does not account for Loops

Questions:

Is BP just a heuristic in a loopy case?

Why does it (often) work so well?

Does exact inference allow an expression in terms of BP?

Can one correct BP systematically?

Previous Considerations:

Rizzo, Montanari ’05 - Corrections to BP approximation

Parisi, Slanina ’05 - BP as a saddle-point + corrections

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 20: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Chertkov,Chernyak ’06

Local Gauge, G , Transformations

a

b c

e

d

if g

Z =∑σ

∏a fa(σa), σa = (σab, σac , · · · ), σab = σba = ±1

fa(σa = (σab, · · · )) →∑

σ′ab

Gab

(σab, σ′ab

)fa(σ′ab, · · · )∑

σabGab(σab, σ′)Gba(σab, σ′′) = δ(σ′, σ′′)

The partition function is invariant under any G -gauge!

Z =∑σ

∏a

fa (σa) =∑σ

∏a

(∑σ′a

fa(σ′a)∏b∈a

Gab(σab, σ′ab)

)︸ ︷︷ ︸

graphical traceMichael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 21: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Chertkov,Chernyak ’06

Local Gauge, G , Transformations

c

a

b

e

d

if g

Z =∑σ

∏a fa(σa), σa = (σab, σac , · · · ), σab = σba = ±1

fa(σa = (σab, · · · )) →∑

σ′ab

Gab

(σab, σ′ab

)fa(σ′ab, · · · )∑

σabGab(σab, σ′)Gba(σab, σ′′) = δ(σ′, σ′′)

The partition function is invariant under any G -gauge!

Z =∑σ

∏a

fa (σa) =∑σ

∏a

(∑σ′a

fa(σ′a)∏b∈a

Gab(σab, σ′ab)

)︸ ︷︷ ︸

graphical traceMichael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 22: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Chertkov,Chernyak ’06

Local Gauge, G , Transformations

a

b c

e

d

if g

Z =∑σ

∏a fa(σa), σa = (σab, σac , · · · ), σab = σba = ±1

fa(σa = (σab, · · · )) →∑

σ′ab

Gab

(σab, σ′ab

)fa(σ′ab, · · · )∑

σabGab(σab, σ′)Gba(σab, σ′′) = δ(σ′, σ′′)

The partition function is invariant under any G -gauge!

Z =∑σ

∏a

fa (σa) =∑σ

∏a

(∑σ′a

fa(σ′a)∏b∈a

Gab(σab, σ′ab)

)︸ ︷︷ ︸

graphical trace

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 23: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Chertkov,Chernyak ’06

Local Gauge, G , Transformations

a

b c

e

d

if g

Z =∑σ

∏a fa(σa), σa = (σab, σac , · · · ), σab = σba = ±1

fa(σa = (σab, · · · )) →∑

σ′ab

Gab

(σab, σ′ab

)fa(σ′ab, · · · )∑

σabGab(σab, σ′)Gba(σab, σ′′) = δ(σ′, σ′′)

The partition function is invariant under any G -gauge!

Z =∑σ

∏a

fa (σa) =∑σ

∏a

(∑σ′a

fa(σ′a)∏b∈a

Gab(σab, σ′ab)

)︸ ︷︷ ︸

graphical trace

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 24: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Gauge Transformation: Binary Representation

Z =∑

σ

∏a fa(σa) =

∑σ′∏

a fa(σa)∏

bc1+σbcσcb

2, σbc 6= σcb

The binary trick: 1 + σbcσcb=

exp(σbcηcb+σcbηcb)cosh(ηbc+ηcb)

(1 + (tanh(ηbc + ηcb)− σbc )(tanh(ηbc + ηcb)− σcb) cosh2(ηbc + ηcb)

)fa(σa) = fa(σa)

∏b∈a exp(ηabσab)

Vbc (σbc , σcb) = 1 + (tanh(ηbc + ηcb)− σbc ) (tanh(ηbc + ηcb)− σcb) cosh2(ηbc + ηcb)

Graph Coloring

Z = (∏bc

2 cosh(ηbc + ηcb))−1∑σ′

∏a

fa(σa)∏bc

Vbc

Z = Z0(η)︸ ︷︷ ︸ground state

σ = +1

+∑

all possible colorings of the graph

Zc (η)

︸ ︷︷ ︸excited states

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 25: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Gauges and BP

Fixing the gauges ⇒ BP equations!!

Two alternative ways to understand BP-gauges:BP equations

Color Principe:no loose ends

Z = Z0(η) +∑

c=colorings

Zc(η)

Zc(η) =∏

a∈C Ψa;C (η)

Variational Principe:ground state is η-independent

Z → Z0(η)

δZ0δηab

∣∣∣∣∣η(bp)

= 0

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 26: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Gauges and BP

Fixing the gauges ⇒ BP equations!!

Two alternative ways to understand BP-gauges:BP equations

Color Principe:no loose ends

Z = Z0(η) +∑

c=colorings

Zc(η)

Zc(η) =∏

a∈C Ψa;C (η)

** … * ** … *

Variational Principe:ground state is η-independent

Z → Z0(η)

δZ0δηab

∣∣∣∣∣η(bp)

= 0

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 27: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Gauges and BP

Fixing the gauges ⇒ BP equations!!

Two alternative ways to understand BP-gauges:BP equations

Color Principe:no loose ends

Z = Z0(η) +∑

c=colorings

Zc(η)

Zc(η) =∏

a∈C Ψa;C (η)

** … * ** … *

Variational Principe:ground state is η-independent

Z → Z0(η)

δZ0δηab

∣∣∣∣∣η(bp)

= 0

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 28: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Gauges and BP

Fixing the gauges ⇒ BP equations!!

Two alternative ways to understand BP-gauges:BP equations

Color Principe:no loose ends

Z = Z0(η) +∑

c=colorings

Zc(η)

Zc(η) =∏

a∈C Ψa;C (η)

** … * ** … *

Variational Principe:ground state is η-independent

Z → Z0(η)

δZ0δηab

∣∣∣∣∣η(bp)

= 0

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 29: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Loop Series: Chertkov,Chernyak ’06

Exact (!!) expression in terms of BP

Z =∑σσ

∏a

fa(σa) = Z0

(1 +

∑C

r(C)

)

r(C) =

∏a∈C

µa∏(ab)∈C

(1−m2ab)

=∏a∈C

µa

C ∈ Generalized Loops = Loops without loose ends

mab =

∫dσab

(bp)a (σa)σab

µa =

∫dσab

(bp)a (σa)

∏b∈a,C

(σab −mab)

The Loop Series is finite

All terms in the series arecalculated within BP

BP is exact on a tree

BP is a Gauge fixing condition.Other choices of Gauges wouldlead to different representation.

Features of the Loop Calculus/Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 30: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Gauge Transformations and BPLoop Series in terms of BP

Loops are important ...

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 31: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

1 IntroductionEnabling Example: Error CorrectionStatistical InferenceBethe Free Energy and Belief Propagation (BP)

2 Loop CalculusGauge Transformations and BPLoop Series in terms of BP

3 ApplicationsAnalysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

4 Conclusions

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 32: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Error-Floor

Signal-to-Noise Ratio

Err

or R

ate

Ensembles of LDPC codes

Error floor

Waterfall

Optimized II

Optimized I

Random

Old/badcodes

BER vs SNR = measure ofperformance

Finite size effects

Waterfall ↔ Error-floor

Error-floor typically emerges dueto sub-optimality of decoding

Monte-Carlo is useless atFER . 10−8

Need an efficient method toanalyze error-floor

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 33: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords:

Wiberg ’96; Forney et.al’99; Frey et.al ’01;

Richardson ’03; Vontobel, Koetter ’04-’06

Instanton = optimal conf of the noise

BER =

∫d(noise) WEIGHT (noise)

BER ∼ WEIGHT

(optimal confof the noise

)optimal confof the noise

=Point at the ESclosest to ”0”

Chernyak, Chertkov, Stepanov, Vasic ’04;’05

Instantons are decoded to

Pseudo-Codewords

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 34: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Pseudo-codeword & instanton search

1 2 3 4 5

1

10

10

10

10

10

–2

–4

–6

–8

–10

SNR

Fram

e-E

rror

-Rat

e (F

ER

)

5

5 5 5

7

3

3 3

4 4

1 1

BP, 4 iter

BP, 1024 iter

LP

BP, 8 iter

BP, 128 iter

Pseudo-codeword search

Instanton-amoeba

Stepanov, et.al ’04,’05,’06LP-search

Chertkov, Stepanov ’06,’07

What does Loop Calculus show for dangerous Pseudo-codewords?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 35: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Pseudo-codeword & instanton search

1 2 3 4 5

1

10

10

10

10

10

–2

–4

–6

–8

–10

SNR

Fram

e-E

rror

-Rat

e (F

ER

)

5

5 5 5

7

3

3 3

4 4

1 1

BP, 4 iter

BP, 1024 iter

LP

BP, 8 iter

BP, 128 iter

Pseudo-codeword search

Instanton-amoeba

Stepanov, et.al ’04,’05,’06LP-search

Chertkov, Stepanov ’06,’07

What does Loop Calculus show for dangerous Pseudo-codewords?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 36: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 37: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 38: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 39: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 40: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 41: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Why loops?

If BP/LP fails while ML/MAP would not [pseudo-codewords]... one needs to account for Loops

How many loops are critical to recover from the failure?

Will accounting for a single most important loop be sufficient?

How long is the critical loop?

Will it be difficult to find the critical loop?

If there are many ...how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 42: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Loop Calculus & Pseudo-Codeword Analysis

Single loop truncation

Z = Z0(1 +∑

C rC ) ≈ Z0(1 + r(Γ))

Synthesis of Pseudo-Codeword Search Algorithm(Chertkov, Stepanov ’06) & Loop Calculus

Consider pseudo-codewords one after other

For an individual pseudo-codeword/instanton identify a criticalloop, Γ, giving major contribution to the loop series.

Hint: look for single connected loops and use local ”triad”

contributions as a tester: r(Γ)=∏

α∈Γ µ(bp)α

Proof-of-Concept test [(155, 64, 20) code over AWGN]

∀ pseudo-codewords with 16.4037 < d < 20 (∼ 200 found)there always exists a simple single-connected critical loop(s)with r(Γ) ∼ 1.

Pseudo-codewords with the lowest d show r(Γ) = 1

Invariant with respect to other choices of the original codeword

0 50 100 150−1

0

1

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

oods

Instanton #1, deff

=16.4037

Bigger Set

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 43: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:δZ0δηab

∣∣∣∣∣η(bp)

= 0

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)δηab

∣∣∣ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ∑σa

(tanh(ηab+ηba)−σab)Pa(σa)∑σa

Pa(σa)

∣∣∣∣ηeff

= explicitly known contribution|ηeff6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 44: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:δZ0δηab

∣∣∣∣∣η(bp)

= 0

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)δηab

∣∣∣ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ∑σa

(tanh(ηab+ηba)−σab)Pa(σa)∑σa

Pa(σa)

∣∣∣∣ηeff

= explicitly known contribution|ηeff6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 45: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:δZ0δηab

∣∣∣∣∣η(bp)

= 0

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)δηab

∣∣∣ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ∑σa

(tanh(ηab+ηba)−σab)Pa(σa)∑σa

Pa(σa)

∣∣∣∣ηeff

= explicitly known contribution|ηeff6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 46: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:δZ0δηab

∣∣∣∣∣η(bp)

= 0

New choice of Gauges guided by the knowledge of the critical loop Γ

δ exp(−F)δηab

∣∣∣ηeff

=0, F ≡ − ln(Z0 + ZΓ)

BP-equations are modified along the critical loop Γ∑σa

(tanh(ηab+ηba)−σab)Pa(σa)∑σa

Pa(σa)

∣∣∣∣ηeff

= explicitly known contribution|ηeff6= 0 [along Γ]

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop Γ that corresponds to the maximal |rΓ|. Triad search is helping.

3. Solve the modified-BP equations for the given Γ. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved Γ-loop selection.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 47: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

LP-erasure = simple heuristics1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).

2. If LP fails, find the most relevant loop Γ that corresponds to the maximal amplitude r(Γ).

3. Modify the log-likelihoods along the loop Γ introducing a shift towards zero, i.e. introduce a completeor partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if themodified LP succeeds.

4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64, 20) Test

IT WORKS!All troublemakers (∼ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithmmethod were successfully corrected by the LP-erasure algorithm.

Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

Loop-erasure algorithm is capable of reducing the error-floor

Bottleneck is in finding the critical loop

Local adjustment of the algorithm, anywhere along the critical loop, in the spiritof the Facet Guessing (Dimakis, Wainwright ’06), may be sufficient

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 48: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

LP-erasure = simple heuristics1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).

2. If LP fails, find the most relevant loop Γ that corresponds to the maximal amplitude r(Γ).

3. Modify the log-likelihoods along the loop Γ introducing a shift towards zero, i.e. introduce a completeor partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if themodified LP succeeds.

4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64, 20) Test

IT WORKS!All troublemakers (∼ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithmmethod were successfully corrected by the LP-erasure algorithm.

Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

Loop-erasure algorithm is capable of reducing the error-floor

Bottleneck is in finding the critical loop

Local adjustment of the algorithm, anywhere along the critical loop, in the spiritof the Facet Guessing (Dimakis, Wainwright ’06), may be sufficient

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 49: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

LP-erasure = simple heuristics1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).

2. If LP fails, find the most relevant loop Γ that corresponds to the maximal amplitude r(Γ).

3. Modify the log-likelihoods along the loop Γ introducing a shift towards zero, i.e. introduce a completeor partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if themodified LP succeeds.

4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64, 20) Test

IT WORKS!All troublemakers (∼ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithmmethod were successfully corrected by the LP-erasure algorithm.

Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

Loop-erasure algorithm is capable of reducing the error-floor

Bottleneck is in finding the critical loop

Local adjustment of the algorithm, anywhere along the critical loop, in the spiritof the Facet Guessing (Dimakis, Wainwright ’06), may be sufficient

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 50: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Error-correction is probably (?) easy

BP is improvable with few loops

Pseudo-codewords are correctable

How about difficult applications?

SAT, spin-glasses, ...

E.g. ... If there are many critical loops,how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 51: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Error-correction is probably (?) easy

BP is improvable with few loops

Pseudo-codewords are correctable

How about difficult applications?

SAT, spin-glasses, ...

E.g. ... If there are many critical loops,how are the critical loops distributed over scales?

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 52: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

Analysis and Improvement of LDPC-BP/LP DecodingLong Correlations and Loops in Statistical Mechanics

Dilute Gas of Loops: Z = Z0(1 +∑

C rC ) ≈ Z0 ·∏

Csc=single connected

(1 + rsc)

Applies toLattice problems in high spatial dimensions

Large Erdos-Renyi problems (random graphs with controlled connectivity degree)

The approximation allows an easy multi-scale re-summation

In the para-magnetic phase and h = 0: the only solution of BP is a trivial one

η = 0, Z0 → 1, and the Loop Series is reduced to the high-temperature

expansion [Domb, Fisher, et al ’58-’90]

Ising model in the factor graph terms

Z =∑σ

∏α=(i,j)∈X

exp(Jij σi σj

)=

∑σ

∏a∈{i}∪{α}

fa(σa)

fi (σi ) =

{exp(hi σi ), σiα =σiβ =σi ∀α, β 3 i

0, otherwise;

fα(σα = (σαi , σαj )

)= exp

(Jij σαi σαj

)

Loop Series trivially pass the common”loop” tests (from Rizzo, Montanari ’05)

Evaluation of the critical temperature in theconstant exchange, zero field Ising model

Leading 1/N corrections to the Free Energy of theViana-Bray model in the vicinity of the criticalpoint (glass transition)

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 53: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Results

BP is better then just a heuristic in the loopy case ... BP is thespecial Gauge condition eliminating all contributions but loops.

Exact Marginal probability allows explicit Loop Series expression interms of a solution of the Belief Propagation equations.

Truncation and/or Re-summation of the Loop Series providehierarchy of systematically improvable approximations/algorithms.Standard BP/LP is a first member in the hierarchy.

Local example (truncation). Finding a critical loop, or a smallnumber of critical loops, can be algorithmically sufficient for drasticimprovement of BP decoding in the error-floor domain.

Multi-scale example of stat-mech problems with long correlations.Re-summation is needed to improve upon BP.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 54: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Results

BP is better then just a heuristic in the loopy case ... BP is thespecial Gauge condition eliminating all contributions but loops.

Exact Marginal probability allows explicit Loop Series expression interms of a solution of the Belief Propagation equations.

Truncation and/or Re-summation of the Loop Series providehierarchy of systematically improvable approximations/algorithms.Standard BP/LP is a first member in the hierarchy.

Local example (truncation). Finding a critical loop, or a smallnumber of critical loops, can be algorithmically sufficient for drasticimprovement of BP decoding in the error-floor domain.

Multi-scale example of stat-mech problems with long correlations.Re-summation is needed to improve upon BP.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 55: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Results

BP is better then just a heuristic in the loopy case ... BP is thespecial Gauge condition eliminating all contributions but loops.

Exact Marginal probability allows explicit Loop Series expression interms of a solution of the Belief Propagation equations.

Truncation and/or Re-summation of the Loop Series providehierarchy of systematically improvable approximations/algorithms.Standard BP/LP is a first member in the hierarchy.

Local example (truncation). Finding a critical loop, or a smallnumber of critical loops, can be algorithmically sufficient for drasticimprovement of BP decoding in the error-floor domain.

Multi-scale example of stat-mech problems with long correlations.Re-summation is needed to improve upon BP.

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 56: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Future ChallengesBetter Algorithms: Loop Series Truncation/Resummation

Generalizations. q-ary and continuous alphabets. Quantum spins, Quantumerror-correction.

Loop calculus based analysis of graph ensembles, e.g. understanding andimproving the cavity method [Mezard, Parisi ’85-’03]

Extending the list of Loop Calculus Applications, e.g. SAT and cryptography

Non-BP gauges, e.g. for stat problems on regular and irregular lattices

Relation to graph ζ-functions [Koetter, Li, Vontobel, Walker ’05]

Other complementary developments, e.g. wrt Algorithms:

Improving BP [Survey Propagation = Mezard et.al ’02; Generalized BP =Yedidia et.al ’01]

Correcting for Loops in BP [Montanarri, Rizzo ’05; Parisi, Slanina ’05]

Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov ’06]

Reducing LP-LDPC complexity [Taghavi, Siegel ’06; Vontobel, Koetter ’06;Chertkov, Stepanov ’07]

Improving LP-LDPC [Dimakis, Wainwright ’06]Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 57: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Future ChallengesBetter Algorithms: Loop Series Truncation/Resummation

Generalizations. q-ary and continuous alphabets. Quantum spins, Quantumerror-correction.

Loop calculus based analysis of graph ensembles, e.g. understanding andimproving the cavity method [Mezard, Parisi ’85-’03]

Extending the list of Loop Calculus Applications, e.g. SAT and cryptography

Non-BP gauges, e.g. for stat problems on regular and irregular lattices

Relation to graph ζ-functions [Koetter, Li, Vontobel, Walker ’05]

Other complementary developments, e.g. wrt Algorithms:

Improving BP [Survey Propagation = Mezard et.al ’02; Generalized BP =Yedidia et.al ’01]

Correcting for Loops in BP [Montanarri, Rizzo ’05; Parisi, Slanina ’05]

Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov ’06]

Reducing LP-LDPC complexity [Taghavi, Siegel ’06; Vontobel, Koetter ’06;Chertkov, Stepanov ’07]

Improving LP-LDPC [Dimakis, Wainwright ’06]Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 58: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

IntroductionLoop Calculus

ApplicationsConclusions

ResultsPath ForwardBibliography

Bibliography

M. Chertkov, V.Y. Chernyak, Loop Calculus and Belief Propagation for q-aryAlphabet: Loop Tower, proceeding of ISIT 2007, June 2007, Nice,cs.IT/0701086.

M. Chertkov, V.Y. Chernyak, Loop Calculus Helps to Improve BeliefPropagation and Linear Programming Decodings of Low-Density-Parity-CheckCodes, 44th Allerton Conference (September 27-29, 2006, Allerton, IL);arXiv:cs.IT/0609154.

M. Chertkov, V.Y. Chernyak, Loop Calculus in Statistical Physics andInformation Science, Phys. Rev. E 73, 065102(R) (2006); cond-mat/0601487.

M. Chertkov, V.Y. Chernyak, Loop series for discrete statistical models ongraphs, J. Stat. Mech. (2006) P06009, cond-mat/0603189.

M. Chertkov, M.G. Stepanov, An Efficient Pseudo-Codeword Search Algorithmfor Linear Programming Decoding of LDPC Codes, arXiv:cs.IT/0601113,submitted to IEEE Transactions on Information Theory.

All papers are available at http://cnls.lanl.gov/∼chertkov/pub.htm

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 59: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z (h) =∑σ

M∏α=1

δ

(∏i∈α

σi , 1

)exp

(N∑

i=1hiσi

)hi is a log-likelihood at a bit (outcome of the channel)

Z±jα(h>) ≡σj=±1∑

σ>

∏β>

δ

(∏i∈β

σi , 1

)exp

(∑i>

hiσi

)

Z±jα = exp(±hj)

j∈β∏β 6=α

1

2

i∈β∏i 6=j

(Z+iβ + Z−iβ)±

i∈β∏i 6=j

(Z+iβ − Z−iβ)

ηjα ≡

1

2ln

(Z+

Z−jα

), ηjα = hj +

j∈β∑β 6=α

tanh−1

i∈β∏i 6=j

tanh ηiβ

Bethe Free Energy

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 60: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Gauges and BP equations

Partition function in the colored representation

Z = (∏bc

2 cosh(ηbc + ηcb))−1∑σ′

∏a

fa∏bc

Vbc , fa(σa ; ηa) = fa(σa)∏b∈a

exp(ηabσab)

Vbc (σbc , σcb) = 1 + (tanh(ηbc + ηcb) − σbc ) (tanh(ηbc + ηcb) − σcb) cosh2(ηbc + ηcb)

Fixing the gauges ⇒ BP equations!!

∑σa

(tanh(η

(bp)ab

+ η(bp)ba

) − σab

)fa(σa ; ηa) = 0 ⇒ η

bpαj = hj +

j∈β∑β 6=α

tanh−1(

i∈β∏i 6=j

tanh ηbpβi

)

︸ ︷︷ ︸LDPC case

Gauges and BP

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 61: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 62: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 63: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 64: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 65: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 66: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

Z = Z0(1 +∑

C rC ), rC =∏

a∈C µa

Bethe Free Energy is related to the “ground state” term in the partitionfunction: F (b∗(η)) = − ln Z0(η), where

b∗a (σa) =fa(σa) exp(

∑b∈a ηabσab)∑

σafa(σa) exp(

∑b∈a ηabσab)

, b∗ab(σab) = exp((ηab+ηba)σab)2 cosh(ηab+ηba)

Extrema of F (b) are in one-to-one correspondence with extrema of Z0(η).

Loop series can be built around any extremum (minimum, maximum orsaddle-point) of the Bethe Free energy.

−1 ≤ rC , µa ≤ 1. The tasks of finding all µa (over the graph) and rC for a givenloop are (computationally) not difficult. All that suggests simple heuristic forfinding loops with large rC .

Linear Programming limit of the Loop Calculus is well defined.

Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at anedge, is expressed as modified Loop Series.

Loop Series

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 67: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

LP decoding (σi = 0, 1 AWGN channel)

Minimize, E =∑

α

∑σα

bα(σα)∑

i∈α σi (1− 2xi )/qi , under 0 ≤ bi (σi ), bα(σα) ≤ 1

∀ α :∑

σαbα(σα) = 1, & ∀ i ∀ α 3 i : bi (σi ) =

∑σα\σi

bα(σα)

“0”-codeword

Error-Surface

dangerouspseudo-codeword

Weighted Median:

xinst = σ2

∑i σi∑i σ2

i

, d =(∑

i σi )2∑

i σ2i

FER ∼ exp(−d · s2/2)Wiberg ’96; Forney et.al ’01Vontobel, Koetter ’03,’05

Pseudo-Codeword-Search AlgorithmChertkov, Stepanov ’06

Start: Initiate x(0).

Step 1: x(k) is decoded to σ(k).

Step 2: Find y(k) - weighted median

between σ(k), and ”0”

Step 3: If y(k) = y(k−1), k∗ = k End.Otherwise go to Step 2 with

x(k+1) = y(k) + 0.

(155, 64, 20), AWGN test:• Fast Convergence

bit label, = 0, ..., 154i0 50 100 150

012

16.4037

2x i

012

16.4044

2x i

012

16.4058

2x i

012

16.4060

2x i

012

16.4095

2x i

012

16.4113

2x i

012

16.4119

2x i

012

16.4145

2x i

∼ 200 pseudo-codewords within16.4037 < d < 20

Pseudo-codewords & Instantons

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 68: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

LP decoding (σi = 0, 1 AWGN channel)

Minimize, E =∑

α

∑σα

bα(σα)∑

i∈α σi (1− 2xi )/qi , under 0 ≤ bi (σi ), bα(σα) ≤ 1

∀ α :∑

σαbα(σα) = 1, & ∀ i ∀ α 3 i : bi (σi ) =

∑σα\σi

bα(σα)

“0”-codeword

Error-Surface

dangerouspseudo-codeword

Weighted Median:

xinst = σ2

∑i σi∑i σ2

i

, d =(∑

i σi )2∑

i σ2i

FER ∼ exp(−d · s2/2)Wiberg ’96; Forney et.al ’01Vontobel, Koetter ’03,’05

Pseudo-Codeword-Search AlgorithmChertkov, Stepanov ’06

000

xxx(0)

xxx(1)

xxx(2)

xxx(3)

σσσ(0)

σσσ(1)

σσσ(2,3)

xxx(0) start

step 2

step 3

σσσ(2) = σσσ(3) end

Start: Initiate x(0).

Step 1: x(k) is decoded to σ(k).

Step 2: Find y(k) - weighted median

between σ(k), and ”0”

Step 3: If y(k) = y(k−1), k∗ = k End.Otherwise go to Step 2 with

x(k+1) = y(k) + 0.

(155, 64, 20), AWGN test:• Fast Convergence

bit label, = 0, ..., 154i0 50 100 150

012

16.4037

2x i

012

16.4044

2x i

012

16.4058

2x i

012

16.4060

2x i

012

16.4095

2x i

012

16.4113

2x i

012

16.4119

2x i

012

16.4145

2x i

∼ 200 pseudo-codewords within16.4037 < d < 20

Pseudo-codewords & Instantons

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 69: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

LP decoding (σi = 0, 1 AWGN channel)

Minimize, E =∑

α

∑σα

bα(σα)∑

i∈α σi (1− 2xi )/qi , under 0 ≤ bi (σi ), bα(σα) ≤ 1

∀ α :∑

σαbα(σα) = 1, & ∀ i ∀ α 3 i : bi (σi ) =

∑σα\σi

bα(σα)

“0”-codeword

Error-Surface

dangerouspseudo-codeword

Weighted Median:

xinst = σ2

∑i σi∑i σ2

i

, d =(∑

i σi )2∑

i σ2i

FER ∼ exp(−d · s2/2)Wiberg ’96; Forney et.al ’01Vontobel, Koetter ’03,’05

Pseudo-Codeword-Search AlgorithmChertkov, Stepanov ’06

000

xxx(0)

xxx(1)

xxx(2)

xxx(3)

σσσ(0)

σσσ(1)

σσσ(2,3)

xxx(0) start

step 2

step 3

σσσ(2) = σσσ(3) end

Start: Initiate x(0).

Step 1: x(k) is decoded to σ(k).

Step 2: Find y(k) - weighted median

between σ(k), and ”0”

Step 3: If y(k) = y(k−1), k∗ = k End.Otherwise go to Step 2 with

x(k+1) = y(k) + 0.

(155, 64, 20), AWGN test:• Fast Convergence

bit label, = 0, ..., 154i0 50 100 150

012

16.4037

2x i

012

16.4044

2x i

012

16.4058

2x i

012

16.4060

2x i

012

16.4095

2x i

012

16.4113

2x i

012

16.4119

2x i

012

16.4145

2x i

∼ 200 pseudo-codewords within16.4037 < d < 20

Pseudo-codewords & Instantons

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus

Page 70: Physics of Algorithmscnls.lanl.gov/~chertkov/Talks/FEC/phys_alg_50min.pdf · 2014-09-24 · Outline Physics of Algorithms Loop Calculus in Information Theory and Statistical Physics

BP is Exact on a Tree (LDPC)BP equationsFeatures of the Loop CalculusPseudo-Codeword Search AlgorithmPseudo-Codewords & Loops

0 50 100 150−1

0

1

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

oods

Instanton #1, deff

=16.4037

139 100

38 140

1

1 1

1

0 50 100 150−1

0

1

Instanton #33, deff

=16.7531

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

ood

140 101

39 141

0.5676

1 0.5676

1

0 50 100 150−1

0

1

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

ood

Instanton #50, deff

=17.0171

78 113

116 16

1

1

-0.6963

1

153

-0.6963

0 50 100 150−1

0

1

Instanton #100, deff

=17.7366

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

ood

131 122

60 28

0.7077

1

0.8665

9

74

0.9085

0.7493

0.9903

0 50 100 150−1

0

1

Instanton #140, deff

=18.8339

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

ood

104 4

7 39

0.9441

1

1

0.9441

141

1

0 50 100 150−1

0

1

Instanton #192, deff

=19.9997

bit label, i=1,...,155

A−

post

erio

ri lo

g−lik

elih

ood

65

100

103

116

1 1

1

3

1

1 1

Back

Michael Chertkov, Los Alamos Physics of Algorithms/Loop Calculus