6
Mark Riley 3107631608 RESULTS/CALULATIONS PAGE3 TABLE1a. Maximum extension of spring when a 1.00kg weight was added - Extension of spring when a 9.81N force is applied Force applied Fw = (1.00x9.81) = 9.81N 1 st Trial 2 nd Trial 3 rd Trial 4 th Trial 5 th Trial 6 th Trial 7 th Trial 8 th Trial 9 th Trial 10 th Trial 0.505m 0.505m 0.500m 0.500m 0.510m 0.508m 0.510m 0.512m 0.510m 0.510m TABLE2a. Extension of spring (x) versus Mass (m) and Force Applied (Fw) Extension (m) 0.000m 0.000m 0.010m 0.046m 0.090m 0.111m 0.145m 0.181m 0.216m 0.251m Mass (kg) 0.100kg 0.200kg 0.300kg 0.400kg 0.500kg 0.600kg 0.700kg 0.800kg 0.900kg 1.00kg Force Applied 0.981N 1.96N 2.94N 3.92N 4.91N 5.88N 6.86N 7.84N 8.83N 9.81N LIMITATIONS OF THE EQUIPMENT MUST BE TAKEN INTO CONSIDERATION FOR ALL MEASUREMENTS OF EXTENSION AND MASS IN TABLE 1A. AND 2A. PRECISION OF RULER 1mm โˆด ยฑ0.5mm PRECISION OF MASS 1gram โˆด ยฑ0.5g GRAPH A. y = 31.98x + 2.0376 0.000 2.000 4.000 6.000 8.000 10.000 12.000 0.000 0.050 0.100 0.150 0.200 0.250 0.300 Force (N) Extension (m) Force versus Extension

Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Embed Size (px)

DESCRIPTION

SENIOR HIGH SCHOOL REPORTThis was PART B of a Physics Lab (part A should be below)- Conservation of Energy- Elastic Potential Energy. This was just your typical conservation of energy lab where the energy is not conserved due to a non ideal spring, with the slight exception that the wanted you to overcome the 'non ideality' LOL of the spring in order to come up with the correct answer. Probably not that hard when I think about it now but I remember it took me longer than I had expected.If u want the original just msg me where u want it sent-

Citation preview

Page 1: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALULATIONS PAGE3

TABLE1a.

Maximum extension of spring when a 1.00kg weight was added -

Extension of spring when a 9.81N force is applied Force applied Fw = (1.00x9.81) = 9.81N

1st Trial 2nd Trial 3rd Trial 4th Trial 5th Trial 6th Trial 7th Trial 8th Trial 9th Trial 10th Trial

0.505m 0.505m 0.500m 0.500m 0.510m 0.508m 0.510m 0.512m 0.510m 0.510m

TABLE2a.

Extension of spring (x) versus Mass (m) and Force Applied (Fw)

Extension (m) 0.000m 0.000m 0.010m 0.046m 0.090m 0.111m 0.145m 0.181m 0.216m 0.251m

Mass (kg) 0.100kg 0.200kg 0.300kg 0.400kg 0.500kg 0.600kg 0.700kg 0.800kg 0.900kg 1.00kg

Force Applied 0.981N 1.96N 2.94N 3.92N 4.91N 5.88N 6.86N 7.84N 8.83N 9.81N

LIMITATIONS OF THE EQUIPMENT MUST BE TAKEN INTO CONSIDERATION FOR ALL MEASUREMENTS OF

EXTENSION AND MASS IN TABLE 1A. AND 2A.

PRECISION OF RULER 1mm โˆด ยฑ0.5mm PRECISION OF MASS 1gram โˆด ยฑ0.5g

GRAPH A.

y = 31.98x + 2.0376

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Forc

e (N

)

Extension (m)

Force versus Extension

Page 2: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALULATIONS PAGE4

GRAPH B.

Blue values represent data that was disregarded when plotting the trend line

TABLE3b.

Extension (m x 10-2) Force (N)

0.00 0.981

0.00 1.96

1.00 2.94

4.60 3.92

9.00 4.91

11.1 5.89

14.5 6.87

18.1 7.85

21.6 8.83

25.1 9.81

y = 28.901x + 2.5832

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Forc

e (N

)

Extension (m )

Force versus Extension

Page 3: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALULATIONS PAGE5

CALC1a. The average maximum extension (x) of 1kg weight using values from TABLE1a.

๐Ÿ“๐ŸŽ.๐Ÿ“๐’„๐’Ž + ๐Ÿ“๐ŸŽ.๐Ÿ“๐’„๐’Ž + ๐Ÿ“๐ŸŽ.๐ŸŽ๐’„๐’Ž + ๐Ÿ“๐ŸŽ.๐ŸŽ๐’„๐’Ž + ๐Ÿ“๐Ÿ.๐ŸŽ๐’„๐’Ž + ๐Ÿ“๐ŸŽ. ๐Ÿ–๐’„๐’Ž + ๐Ÿ“๐Ÿ.๐ŸŽ๐’„๐’Ž + ๐Ÿ“๐Ÿ.๐Ÿ๐’„๐’Ž + ๐Ÿ“๐Ÿ.๐ŸŽ๐’„๐’Ž + ๐Ÿ“๐Ÿ.๐ŸŽ๐’„๐’Ž

๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’•๐’“๐’Š๐’‚๐’๐’” ๐Ÿ๐ŸŽ.๐ŸŽ

๐Ÿ“๐ŸŽ๐Ÿ•๐’„๐’Ž

๐Ÿ๐ŸŽ.๐ŸŽ= ๐Ÿ“๐ŸŽ.๐Ÿ•๐’„๐’Ž = ๐ŸŽ. ๐Ÿ“๐ŸŽ๐Ÿ•๐’Ž๐’†๐’•๐’“๐’†๐’” ๐’๐’“ ๐Ÿ“.๐ŸŽ๐Ÿ•๐ฑ๐Ÿ๐ŸŽโˆ’๐Ÿ๐’Ž๐’†๐’•๐’“๐’†๐’”

CALC1b. Uncertainty in the measure of extension(x) for the 1kg weight

50.7 โˆ’ 50.5 = ๐ŸŽ. ๐Ÿ 50.7 โˆ’ 50.5 = ๐ŸŽ.๐Ÿ 50.7 โˆ’ 50 = ๐ŸŽ. ๐Ÿ• 50.7 โˆ’ 50 = ๐ŸŽ. ๐Ÿ•

51.0 โˆ’ 50.7 = ๐ŸŽ. ๐Ÿ‘ 50.8 โˆ’ 50.7 = ๐ŸŽ.๐Ÿ 51.0 โˆ’ 50.7 = ๐ŸŽ. ๐Ÿ‘ 51.2 โˆ’ 50.7 = ๐ŸŽ.๐Ÿ“

51.0 โˆ’ 50.7 = ๐ŸŽ. ๐Ÿ‘ 51 โˆ’ 50.7 = ๐ŸŽ. ๐Ÿ‘

๐ŸŽ.๐Ÿ๐’„๐’Ž + ๐ŸŽ.๐Ÿ๐’„๐’Ž + ๐ŸŽ.๐Ÿ•๐’„๐’Ž + ๐ŸŽ.๐Ÿ•๐’„๐’Ž + ๐ŸŽ. ๐Ÿ‘๐’„๐’Ž + ๐ŸŽ. ๐Ÿ๐’„๐’Ž + ๐ŸŽ. ๐Ÿ‘๐’„๐’Ž + ๐ŸŽ. ๐Ÿ“๐’„๐’Ž + ๐ŸŽ.๐Ÿ‘๐’„๐’Ž + ๐ŸŽ.๐Ÿ‘๐’„๐’Ž

๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’•๐’“๐’Š๐’‚๐’๐’” ๐Ÿ๐ŸŽ

๐Ÿ‘.๐Ÿ”๐’„๐’Ž

๐Ÿ๐ŸŽ= ๐ŸŽ. ๐Ÿ‘๐Ÿ”๐’„๐’Ž = ๐ŸŽ.๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ”๐’Ž๐’†๐’•๐’“๐’†๐’” ๐’๐’“ ๐Ÿ‘.๐Ÿ”๐ฑ๐Ÿ๐ŸŽโˆ’๐Ÿ‘๐’Ž๐’†๐’•๐’“๐’†๐’”

โˆ†x = ยฑ 3.6mm

CALC1c. Express this uncertainty as a percentage

๐ŸŽ. ๐Ÿ‘๐Ÿ”๐’„๐’Ž

๐Ÿ“๐ŸŽ.๐Ÿ•๐’„๐’Ž ๐ฑ ๐Ÿ๐ŸŽ๐ŸŽ = ๐ŸŽ. ๐Ÿ•๐Ÿ%

Page 4: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALULATIONS PAGE6

CALC3a. Spring constant = the gradient of a Force applied vs extension graph. Using the two

points that best fit the trend line in respect to GRAPH B.

๐˜๐Ÿโˆ’ ๐˜๐Ÿ

๐—๐Ÿโˆ’ ๐—๐Ÿ โˆด

๐Ÿ–.๐Ÿ–๐Ÿ‘ โ€“ ๐Ÿ‘.๐Ÿ—๐Ÿ

๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ”โˆ’๐ŸŽ.๐ŸŽ๐Ÿ’ ๐Ÿ”= ๐Ÿ๐Ÿ–.๐Ÿ— ๐Š = ๐Ÿ๐Ÿ–.๐Ÿ— ๐‰

CALC4a. Loss of Gravitation Potential Energy (GPE) using height (x) value from CALC1a. All

GPE is transferred at the relative height of zero.

๐‘ฎ๐‘ท๐‘ฌ = ๐’Ž๐’ˆ๐’‰ ๐’Ž = ๐’Ž๐’‚๐’”๐’” ๐’ˆ = ๐’ˆ๐’“๐’‚๐’—๐’Š๐’•๐’š (๐Ÿ—.๐Ÿ–๐Ÿ) h=height (extension in this case)

๐‘ฎ๐‘ท๐‘ฌ ๐’•๐’“๐’‚๐’๐’”๐’‡๐’†๐’“๐’“๐’†๐’… = ๐Ÿ.๐ŸŽ๐ŸŽ๐’Œ๐’ˆ ๐ฑ ๐Ÿ—.๐Ÿ–๐Ÿ ๐ฑ ๐ŸŽ.๐Ÿ“๐ŸŽ๐Ÿ•๐’Ž = ๐Ÿ’.๐Ÿ—๐Ÿ• ๐‘ฑ

CALC4b. Gain in Elastic Potential Energy (EPE) using K value from CALC3a. and the X value

from CALC1a.

๐‘ฌ๐‘ท๐‘ฌ = ๐Ÿ

๐Ÿ๐’Œ๐’™๐Ÿ ๐’Œ = ๐’”๐’‘๐’“๐’Š๐’๐’ˆ ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’™ = ๐’†๐’™๐’•๐’†๐’๐’”๐’Š๐’๐’

๐‘ฌ๐‘ท๐‘ฌ ๐’ˆ๐’‚๐’Š๐’๐’†๐’… =๐Ÿ

๐Ÿ ๐ฑ ๐Ÿ๐Ÿ–.๐Ÿ— ๐ฑ ๐ŸŽ.๐Ÿ“๐ŸŽ๐Ÿ•๐Ÿ = ๐Ÿ‘.๐Ÿ•๐Ÿ ๐‘ฑ

CALC5a. Difference between loss of GPE and gain of EPE using values from CALC4a. &

CALC4b.

๐‘ฎ๐‘ท๐‘ฌโˆ’ ๐‘ฌ๐‘ท๐‘ฌ = ๐‘ซ๐‘ฐ๐‘ญ๐‘ญ๐‘ฌ๐‘น๐‘ฌ๐‘ต๐‘ช๐‘ฌ ๐Ÿ’.๐Ÿ—๐Ÿ•๐‘ฑโˆ’ ๐Ÿ‘.๐Ÿ•๐Ÿ๐‘ฑ = ๐Ÿ.๐Ÿ๐Ÿ”๐‘ฑ

Page 5: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALCULATIONS PAGE7

CALC5b. Difference between the two energies as a percentage in relation to GPE

๐Ÿ. ๐Ÿ๐Ÿ”

๐Ÿ’. ๐Ÿ—๐Ÿ• ๐ฑ ๐Ÿ๐ŸŽ๐ŸŽ = ๐Ÿ๐Ÿ“.๐Ÿ’%

REF6a. Comparison between CALC5b. and CALC1c.

๐Ÿ๐Ÿ“.๐Ÿ’% ๐’—๐’†๐’“๐’”๐’–๐’” ๐ŸŽ.๐Ÿ•๐Ÿ%

CALC7a. Area underneath a Force vs Extension graph should equal the work done.

Work done in respect to GRAPH B

2.58 x 0.251 = ๐ŸŽ.๐Ÿ”๐Ÿ’๐Ÿ–

9.81 โˆ’ 2.58 x0.251

2= ๐ŸŽ.๐Ÿ—๐ŸŽ๐Ÿ•

๐‘พ๐’๐’“๐’Œ ๐’…๐’๐’๐’† = ๐ŸŽ. ๐Ÿ”๐Ÿ’๐Ÿ– + ๐ŸŽ. ๐Ÿ—๐ŸŽ๐Ÿ• = ๐Ÿ.๐Ÿ“๐Ÿ”๐‘ฑ

CALC7b. The actual Relationship between Force applied and Extension. Refer to the

equation to the trend line in GRAPH B. F = kx + F0

๐’€ = ๐’Ž๐’™ + ๐’„ ๐’๐’“ ๐‘ญ = ๐’Œ๐’™ + ๐‘ญ๐ŸŽ

๐‘ญ = ๐Ÿ๐Ÿ–.๐Ÿ—๐’™ + ๐Ÿ. ๐Ÿ“๐Ÿ–

Page 6: Physics Lab Assessment 7 PARTB- The Conservation of Energy (Elastic Potential Energy) Calculations and Graphs

Mark Riley 3107631608

RESULTS/CALCULATIONS PAGE8

CALC9a. The actual relationship between F and x for this spring was found in the previous

calculation CALC7b. Express this relationship in terms of area and substitute into

the expression EPE = ยฝkx2 . Where x will be the best estimate of the maximum

extension of the falling 1kg mass.

๐‘ฌ๐‘ท๐‘ฌ = ๐Ÿ

๐Ÿ๐’Œ๐’™๐Ÿ + ๐‘ญ๐’๐’™ โˆด

๐Ÿ

๐Ÿ๐Ÿ๐Ÿ–.๐Ÿ—๐ฑ๐ŸŽ.๐Ÿ“๐ŸŽ๐Ÿ•๐Ÿ + ๐Ÿ.๐Ÿ“๐Ÿ–๐ฑ๐ŸŽ.๐Ÿ“๐ŸŽ๐Ÿ• = ๐Ÿ“.๐ŸŽ๐Ÿ๐‘ฑ

CAL9b. Compare this energy to the Energy calculated for the loss of GPE CALC4a.

๐‘ฌ๐‘ท๐‘ฌ ๐’—๐’” ๐‘ฎ๐‘ท๐‘ฌ ๐Ÿ“.๐ŸŽ๐Ÿ๐‘ฑ ๐’—๐’” ๐Ÿ’.๐Ÿ—๐Ÿ•๐‘ฑ

4.97J โ€“ 5.02J = -0.051

Difference between values = 0.051J

CALC9c. Express the difference found in the previous calculation as a percentage in respect

to GPE.

๐ŸŽ. ๐ŸŽ๐Ÿ“๐Ÿ

๐Ÿ’. ๐Ÿ—๐Ÿ• ๐’™ ๐Ÿ๐ŸŽ๐ŸŽ = ๐Ÿ. ๐ŸŽ๐Ÿ‘%

CALC9d. Compare this percentage difference to the percentage uncertainty in the

measurement of distance/extension value for x which is 0.71% CALC1c.

๐Ÿ. ๐ŸŽ๐Ÿ‘% ๐’—๐’” ๐ŸŽ.๐Ÿ•๐Ÿ%

This time the percentage uncertainty for measurement of the extension can pretty

much account for the error in calculation of EPE using the equation from CALC9c.