277
Physics and physical chemistry of micro- and nanotechnological systems Hans-Georg Braun Max Bergmann Center of Biomaterials

Physics and physical chemistry of micro- and nanotechnological€¦ · Physics and physical chemistry of micro- and nanotechnological systems Hans-Georg Braun Max Bergmann Center

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Physics and physical chemistry

of micro- and nanotechnological

systems

Hans-Georg Braun Max Bergmann Center of Biomaterials

Schedule WS 2010/2011

Topic A:Preparation and characterization of micro- and nanoscaledsystems

Topic B:Surface design

Topic C:Liquids on surfaces and in microfluidic systems

Topic E:Biomimetic inspired materials

Topic D:Physical and strcutural principles for self-assembly on Varioous scales

Micro- and Nanotechnology

Molecular Separation

Molecular RecognitionDiagnostics

Cell- / Micro-systems

BiomimeticChemistry

Bioanalytics

Bionano-technology

Nanoobjects

1-d 2-d 3-d

yy

xy

xz

< 100 nm

Layers Rods Particles

History of nanotechnology

Ultrathin gold layers ( 100 nm)

History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864Nanoparticle preparation

History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864Nanoparticle preparation

HAu(III)Cl4 Au0reduction

Citrate Ascobic acid ~5 nm

20 nm

History of nanotechnology

Analysis of nanoobjects

Zsigmondy Ultramicroscope – 1900Single particle observation

Scattered light

Nanoparticles

History of nanotechnology

Faraday’s „solutions“ are no real solutions(Tyndal Faraday effect)

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowski – 1905Diffusion of nanoparticles

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowki – 1905Diffusion of nanoparticles

Diffusion

Example: Cell free gene expression on a chip

Buxboim and Bar-Ziv

Small 3 (2007) 500 - 510

Micro- and nanostructures through self-assembly

Hui Zhang and Mary J. Wirth* Anal. Chem.2005, 77,1237-1242

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡

NANO LETTERS 2004 Vol. 4, No. 1 69-73

Example: Microfluidic devices for protein crystallization

Li and Ismagilov

Annual Review on Biophysics 39 (2010) 139-158

Example: Microfluidic devices for protein crystallization

Li and Ismagilov

Annual Review on Biophysics 39 (2010) 139-158

Example: Open microfluid systems

Franke and Wixforth

ChemPhysChem 9 (2008) 2140-2156

Example: In-situ encapsulation of cells in micrenvironement

Kaehr and Shear

Lab on a chip 9 (2009) 2632 - 2637

3d structures2d structuresLateral structures

D

D: lateral resolution D: lateral resolutionH: height

Aspect ratio α

α = H/D

D

D

Top down technologies for micro-/nanostructure preparation

1 µm10 µm100 µm 100 nm 10 nm 1 nm

Sub-micrometer

Optical Lithography

Ebeam Lithography

Softlithography

AFM based Lithography

Top down technologies for micro-/nanostructure preparation

2d,3d Electronbeam & Optical, X-ray Lithography,

2d,3d Soft-Lithography

2d AFM based Lithography (dip pen, SNOM,..)

Ebeam and optical lithography

Substrate

Resist layer

Resist layerPositive resist

(becomes soluble upon irradiation)Negative resist

(becomes insoluble upon irradiation)

Pattern transfer

Irradiation

Film formation by spin coating

Substrate

Resist layer

Inhomogeneous thickness of resist layer and time evolution of layer thickness

Film formation by spin coating

Process and materials parameter influencing film thickness

• Solution viscosity • Solid content • Angular speed • Spin Time

Wetting of (polymer) solutions on solid substrates

ω ~ 0 deg. Spreading

0 < ω < 90 deg. Wetting

ω > 90 deg. Non-wetting

Wetting and dewetting of thin polymer (liquid films) on solidsubstrates

Stability of thin films on surfaces

1) Stable film , 2) Unstable film 3) Metastable filmΦ effective interface potential

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

SiSiOPolymerfilm

dh

h: thickness of polymer filmd: Thickness of SiO layer

Stability of thin films on surfaces on variable SiO interface

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Wetting and partial wetting on surfaces

G. Reiter et. Al. Langmuir 15 (1999) 2551

Optical lithography

Thick layer resist technology : High aspect ratios

Optical lithography

Thick layer resist technology : Thick layer resist systems (SU-8)

Optical lithography

Thick layer resist technology : High aspect ratios

H

I(d)

I(d) = I * exp- ε * d

Inhomogeneous irradiation of polymer due to strong optical absorption (H > 100 µm)

Optical lithography

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Chemically amplified negative resist

Optical lithography

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Chemically amplified negative resist

Optical lithography

Light sources and structure resolution

Hg KrF ArF F2

365nm

248nm

193nm

157nm

Optical lithography

Lenses for KrF laser sources (248 nm)

Structure resolution <180 nm

Lense Material Calziumfluorid

Optical Transmission highabove 170 nm

No birefringence

Ebeam lithography Penetration depth of electrons with different energies in different materials

Ebeam lithography Penetration depth of electrons with different energies

Ebeam lithography Resolution down to 8 nm (A. Tilke LMU München) – Resist: Calixarene

Optical lithography

Two-photon lithography for complex 3d structures

Optical lithography

Two-photon lithography for complex 3d structures

Optical lithography

Two-photon lithography for complex 3d structures

Optical lithographyTwo-photon lithography for complex 3d structures

Optical lithographyQuantum dots as 2 photon initiators

CdS

o

o

o o

( )

2 hν

N.C. Strandwitz JACS 2008, 130(26), 8280-8288

Optical lithographyin aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff.

Maskless optical lithography - A simple setup

Musgraves et. al. Am. J. Phys. 2005, 73 (10), 980 ff.

100 µm lines 500 µm pitch

Maskless optical lithography – 3d stereolithography

Sun et. al. Sensors and Actuators A 121, 2005, 113 ff.

Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff.

Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff.

Kidney scaffold

DMD chip element

Monk et. al. Microelectronic Eng., 27, 1995, 489 ff.

Optical lithography in microfluidic systems

Lee et. al. Lab Chip 9, 2009, 1670 ff.

Optical lithography in microfluidic systems

Chung et. al. Nature Materials 7, 2008, 581 ff.

Optical lithography in µ-fluidic systems – Particle assembly

Chung et. al. Nature Materials 7, 2008, 581 ff.

Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff.

Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff.

Local stimulation of nerve cells

Synchroton lithography / SynchrotonX-rays

Synchroton lithography X-rays

Synchroton lithography / LIGA X-rays

Synchroton lithography / Mask productionX-rays

Polymer embossing

Embossing machine(Jenoptik)

Process stepsCycle time ~ 7 minutes

Heating of substrate and tools above Tg

Application of pressure (~ kN)

Cooling of substrate and embossingtool below Tg

Removal of tool

Polymer embossing

Silicon master embossing tool Polymer replica made by embossing

Polymer microysystems

Lensarrays Beam splitter

Microdropdeposition

Polydimethylsiloxane (PDMS) - The material

Linear flexible polymer (liquid @RT)

Pt

Curing

CrosslinkingFlexible crosslinkedRubber ( @RT)

- Me : - CH3

Polydimethylsiloxane (PDMS) - The material

Chemical crosslinking by hydrosilylation

Schmid,H. Macromolecules 33, 3042 (2000)

Polydimethylsiloxane (PDMS) - The material

Chemical modification by hydrosilylation

(-O-CH2-CH2)- EO

Hydrophilic

Polydimethylsiloxane (PDMS) - The material

Jessamine Ng Lee, Cheolmin Park,† and George M. Whitesides*

Anal. Chem.2003, 75,6544-6554

Polydimethylsiloxane (PDMS) - The materialT.R.E. Simpsona, Z. Tabatabaianb, C. Jeynesb, B. Parbhooc, and J.L. Keddiea*

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Liquid filling of a capillary by Surface interactions

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

M. Meincken, T.A. Berhane, P.E. Mallon, Polymer 46 (2005) 203–208

Hydrophobic recovery measured by surcface force AFM

Polydimethylsiloxane (PDMS) - The material

Compression mold 2 N/mm2

Compression mold 9.7 N/mm2

Schmid,H. Macromolecules 33, 3042 (2000)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

PDMS based complex microfluidic systems

S. Quake,Science 298, 580 (2002)

Multilayer µ-fluidic systems

a) Fluidic transport layer

b) Control layer

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

Unconventional lithographic techniques

Unconventional lithographic techniques

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

UV induced radical polymerisation of polyurethaneacrylates

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Complex shaped 3d nanoparticles

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18

Complex shaped 3d nanoparticles

Complex shaped 3d nanoparticles

Jason P. Rolland,† Benjamin W. Maynor,† Larken E. Euliss,† Ansley E. Exner,†Ginger M. Denison,† and Joseph M. DeSimoneJ. AM. CHEM. SOC. 9 VOL. 127, NO. 28, 2005 10099

Polymers in micro- and nanotechnology

3d structures2d structuresLateral structures

DNA Chip Microfluidic channel

„Surface Engineering“

Tailored Surface Chemistry

SiO2 X3Si-O-R

Al2O3 (OH)3-P-O-R

Au, Cu, Ag HS-R

Micro-contact printing

Siliconmicrostructure

or PMMA resist

Polymer stamp

(PDMS)

Micro-contact printing

Polymer stamp

(PDMS)

„Ink“

Micro-contact printing

Polymer stamp

(PDMS)

„Ink“

„Surface Engineering“

Surface Polymerized Polypeptides

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solventResulting change in layer thickness

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solventResulting change in layer thickness

„Surface Engineering“

Surface Patterning

Surface patterning

Microcontact Printing(Whitesides)

Electron Beam Lithography of Self-Assembled Monolayers(Craighead)

Dip-Pen Lithography of Self-Assembled Monolayers(C.A. Mirkin)

1 µm

1 nm

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000)

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000)

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Optical tweezers Dip pen lithography

Affecting Physicochemical

and Physical Properties

of Surfaces

by

Surface Patterning

Wetting on patterned surfaces

Peltierelement

T > Tdew

Peltierelement

T < Tdew

wettableNon-wettable

Wetting

Liquids on homogeneous surfaces

g

γSV - (γSL + γL cos(Θ))

Θ

Youngs Equation

Laplace pressure

Pinside – Poutside = 2 γ /RR

Liquid morphologies on striped surfaces

Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9, 105 - 115 (2001)

Liquid morphologies on patterned surfaces

Capillary bridges as structural motifs

Capillary bridges as complex shaped liquid / liquid interfaces

Dewetting

Water assisted dewetting

H.-G. Braun, E. Meyer, Thin Solid Films 345, 222 (1999)

Film rupture during dewetting on homogeneous surfaces

Film formation by controlled dewetting on micropatterned surfaces

E. Meyer, H.-G. Braun, Macromol. Mater. Eng. 276/277, 44 (2000)

Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Lipid bilayers and their transitions

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Topochemical Polymerisation of polydiacetylenes

G. Wegner

Polymerisable diacetylenes in vesicles / liposomes / layers

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Stress induced transformations of polydiacetylene molecules ( AFM , SNOM)

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679

Planar conformation of polyconjugated polymer backbone in blue polydiacetylenes

J.M. Kim et. Al. , Adv. Mat. 15, 2003, 1118

Change in colour due to interaction of polyacrylic acid with blue ( B) vesicles

R. Jelinek, JACS 123, 2001, 417

Polydiacetylenes as molecular stress sensors

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks by electroporation, tether formation and ‚extrusion‘

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

O. Orwar, Langmuir 99, 2002, 11573

Formation of multi component vesicle networks

O. Orwar, Langmuir 20, 2004, 5637

3-d Liposome networks attached to SU-8 Resist

O. Orwar, Langmuir 99, 2002, 11573

Formation of vesicle networks

O. Orwar, PNAS 101, 2004, 7949

Knots in nanofluidic vesicle networks

Brochard-Wyart, Langmuir 19, 2003, 575

Brochard-Wyart, Langmuir 19, 2003, 575

Seifert et. Al. PRL, 2004, 208101

Maeda, BBA 1564, 2002, 165

O. Orwar, Anal. Chem. 75, 2003, 2529

O. Orwar, Langmuir 100, 2003, 3904

Formation of vesicle networks on microstructured surfaces

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

Generating flow between vesicle networks by changing their shape

O. Orwar, Anal. Chem. 75, 2003, 2529

Diffusion through nanochannels

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613

The concept of vesicle nanofluidic networks

SG Boxer , Biophysical Journal , 2002, 83, 3372

Formation of lipid double layer from vesicles

SG Boxer , Langmuir , 2001, 17, 3400

Mobile microstructured membranes

SG Boxer , Accounts Chemical Research , 2002, 35, 149

Field induced diffusion of lipids

SG Boxer , Current Opinion Chemical Biology , 2000, 704

Mobile microstructured membranes

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

SG Boxer , Langmuir , 2003, 19, 1624

Membrane Microfluidics

Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002)

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002)

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002)

Dynamics of nanoobjects Motion in ratchets

Gorre-Talini, Spatz, Silberzan Chaos, Vol. 8, No. 3, 1998

Dielectric force patterning

Fudouzi, Journal of Nanoparticle Research 3: 193–200, 2001.

Dielectric force patterning

Fudouzi, Journal of Nanoparticle Research 3: 193–200, 2001.

Optical tweezers

Optical multitweezers

Optical tweezers for multiple particlemanipulation

Flow behaviour on different scales

Flow on a very large scale

Turbulent flow

Small scale

Flow behaviour on different scales

Laminar flow

Physical effects of small volumesFrom turbulent to laminar flow

Re = vs L / ν = Inertia forces / Viscous forcesRe : Reynolds number vs : mean fluid velocity [m s-1 ]

Typical Reynolds numbers (Relaminar < 2000 –3000 < Returbulent)

Spermatozoa ~ 1 x 10-2

Blood flow in brain ~ 1 x 102

Blood flow in aorta ~ 1 x 103

Microchannels < 1Person swimming ~ 4 x 106

L : width of channel (pipe) [m] ν : kinematic fluid viscosity [m2 s-1]

Physical effects of small volumes

Laminar and turbulent flow

Parabolic flow profile

Physical effects of small volumesFrom turbulent to laminar flow

L

100 nm < L < 100 µm

Aqueous solutionc0, c1

Stationary flow boundary between flowing miscible liquids (water)Concentration gradient c0, c1 causes Mixing through diffusion

across the boundary

Microfluidics

Application

Generation Understandig

of microsized liquid phases

The cell as a highly functionalized microdroplet

Going smaller and smaller

10 µm1 picoliter

100 µm1 nanoliter

1 µm1 femtoliter

100 nm1 attoliter

1 cm1 milliliter

1 mm 1 microliter

10 nm1 nm

Physical effects of small volumesIncrease in specific surface area with decreasing volume

R V = 4/3 π R3

S = 4 π R2

Sspecific = S/V = 3 / R

Surface interactions and forces become dominating in small dimensions

Geometrical features of microfluidic systems

Flow induced generation of microemulsion droplets

Flow induced generation of microemulsion droplets

Rayleigh instability of cylindrical shaped liquid structures

Flow induced generation of microemulsion droplets

Monodisperse Emulsion Generation via Drop Break Off ina Coflowing StreamP. B. Umbanhowar, V. Prasad, D. A. WeitzLangmuir 16 , 347 (2000)

Flow induced encapsulation of cells

Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu

Anal. Chem. 2005, 77, 1539-1544

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device

S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. WeitzScience 308 , 537 (2005)

Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡Anal. Chem.2005, 77,2795-2801

Cell encapsulatioon in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, andDaniel T. Chiu*Anal. Chem.2005, 77,1539-1544

Biomimetics – learning from Biosystems

1. Pearls and Mussels

1. Magnetosomes

1. Silk

1. Diatomes

1. Lotus effect

1. Gecko

Structural properties

Functional properties

Biomimetic calcificationNacre and pearls

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295

Biomimetic calcification

J. Aizenberg et. Al., Science 299 (2003) 1205

Biomimetic calcification

Silk

Tensile strength : 25.000 kg/cm² ( 5 times steel)

Silk

Glcyin 37 % , Alanin 18 % , Polar Aminoacids 26 %

Silk

Silk

J.D. van Beek, S. Hess, F. Vollrath & B.H. MeierPNAS 99 (2002) 10266

--------QGAGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGGQG___ --AGQGAGAAAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQ-AGAAAAAA-GGAGQGGYGGLGGQG-------------------AGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAAGGAGQ--- GGLGGQG------AGQGAGASAAAA-GGAGQGGYGGLGSQGAGR---GGEGAGAAAAAA-GGAGQGGYGGLGGQG------------- _----AGQGGYGGLGSQGAGRGGLGGQGAGAAAA---GGAGQ---GGLGGQG------AGQGAGAAAAAA-GGAGQGGYGGLGSQGAGRGGLGGQGAGAVAAAAAGGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-GGAGQRGYGGLGNQGAGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQGAGR---GGQ--GAAAAA--GGAGQGGYGGLGSQGAGR---GGQGAGAAAAAA-VGAGQEGIR--- GQG

M. Xu, RV Lewis, PNAS, 87 (1990) 7120

Silk

Molecular nanosprings in spider capture-silk threadsNATHAN BECKER1, EMIN OROUDJEV1, STEPHANIE MUTZ1, JASON P. CLEVELAND2,PAUL K. HANSMA1, CHERYL Y. HAYASHI3, DMITRII E. MAKAROV4 AND HELEN G. HANSMANature Materials 2 (2003) 278

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Magnetic Particles

Crystallographic structure of Magnetite (Fe3O4)

Magnetic Particles

Electron spin configuration in Magnetite

Magnetic Order in Solid State

Ferromagnetic: Parallel spin order

Antiferromagnetic: Antiparallel spin order

Paramagnetic: No spin order

Superparamagnetic: Temporary spin orientation In external magnetic field – nanosized effect

Magnetization in ferro- andSuperparamagnetic systems

Neutron Scattering

Neutron Scattering Powder Diffractometer

Neutron Scattering

Magnetosome Formation

Bazylinski, D., Frankel, R., 2000. Magnetic iron oxide and iron sulfide minerals within microorganisms.In: Baeuerlein, E. (Ed.), Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, Germany, pp. 25–46.

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006)Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK

Magnetosome Formation

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Dirk SchülerJ. Molec. Microbiol. Biotechnol. (1999) 1(1): 79-86.

Magnetosome Formation

Arakaki, A., Webb, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003).

Magnetite formation in presence of the protein mms6 results in similar size distribution as in the cell

Magnetosome Application

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999Formation of magnetite by bacteria and its application

Magnetosome Stabilisation

aa) With MM protein coatingMM – Magnetosome Membrane

b) Without MM protein coating

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Magnetosome Functionalization

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, S ilvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187–192Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

Biomimetic approachesThe gecko – spiderman

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – structural entities

Autumn, K. MRS Bulletin 32, 473 (2007)

C: SetaeD: Single Setae - individual keratin fibrills (Spatula)

Biomimetic approachesThe gecko – structural entities on various sizes

Gao,H. Mechanics of Materials 37, 275 (2005)

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

F = 2/3 π R γ Van der Waals interaction

Biomimetic approachesThe gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003)

Biomimetic approachesThe gecko – adhesion properties of materials

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – scaling of stresses

Autumn, K. MRS Bulletin 32, 473 (2007)

Biomimetic approachesThe gecko – theoretical approaches

Reibung

Saugnäpfe

Kapillarkräfte

Mikroverzahnung

Elektrostatik

Van der Waals

Biomimetic approachesVan der Waals Kräfte

Tritt zwischen allen Materialien auf

Bewirkt durch Elektronenfluktuation

Kurzreichweitig ~ 1/ D3

Stark abhängig von der Kontaktfläche

Biomimetic approachesVan der Waals Forces

Hamaker constant:

Add up all the interactions Between the ‚red‘ atoms

Interaction free energy between two cubes of edge length L And separation distance l

l<< L (-A/12 π l2) L2 (per pair)

l

L

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 496 (2007)

F‘ = n1/2 F

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Biomimetic approachesThe gecko – biomimetic materials

Geim, AK Nature Materials 2, 461 (2003)

Biomimetic approachesThe gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007)

Biomimetic approachesThe gecko - some structural aspects of reversible

Creton, C. & Gorb, S. MRS Bulletin 32, 466 (2007)

Biomimetic approachesThe gecko – capillary effects (secondary)

Huber G., PNAS 102, 16293 (2005)

Biomimetic approachesThe gecko – technological applications

Daltorio, KA. MRS Bulletin 32, 504 (2007)

Hydrophobic surface of collemboles (Springschwanz)

Hydrophobic surface of collemboles (Springschwanz)

Biomimetic approachesUltrahydrophobic surfaces

Quere, D. , Nature 1, 14 (2002)

Influence of surface textureby roughness a,cWenzel case

Influence of surface textureby air entrapment b

Cassie – Baxter case

Biomimetic approachesUltrahydrophobic surfaces

Wenzel casecos (θr) = r cos(θs)

Contact angle on rough surface

Contact angle on smooth surface

r = A / A‘

A = true surface areaA‘= apparent surface area

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic approachesUltrahydrophobic surfaces

Cassie-Baxter cos (θr) = f1 cos(θs) – f2

f1 = surface fraction mat.f2 = surface fraction air

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic approachesUltrahydrophobic surfaces

Shibuichi, S. , J. Phys. Chem. 100, 19512 (1996)

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Aluminiumoxide surface hydrophobization by topography

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Surface hydrophobization by chemistry

Biomimetic approachesUltrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007)

Biomimetic ultrahydrophobic surface of Indium oxide

Y. Li j. Coll. Int. Sci. 314, 615-620 (2007)

Self organization of µ-/ mesocaled objectsSelf-assembling machines

S. Griffith Nature 237, 636 (2005)

Self organization of µ-/ mesocaled objectsSelf-assembling machines

R. Gross IEEE Transactions on robotics 237, 1115-1130 (2006)

Self organization of µ-/ mesocaled objectsSelf-assembling microparts

W. Zheng and H.O. Jacobs Adv. Mater. 2006, 18, 1387–1392

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

J. Fang , KF Böhringer J. Micromech. Microeng. (2006) 721–730

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521

PolyStyreneparticles

Goldparticles

Ultrahydrophobic honeycomb films

W. Dong Langmuir 2009, 25, 173-178

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Self organization of µ-/ mesocaled objectsDepletion induced assembly

Hernadez , Mason TG , J.Phys. Chem. C (2007) 4477

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Self organization of µ-/ mesocaled objectsFlotation of (micro)objects - water strider

Pan ACS Appl. Mat. & Interfaces 2010, 2, 2025

Self organization of µ-/ mesocaled objectsFlotation of (micro)objects - water strider

Pan ACS Appl. Mat. & Interfaces 2010, 2, 2025

Self organization of µ-/ mesocaled objectsFlotation of (micro)objects - water strider

Chang Appl. Phys. Letters 95 (2009) 204107

Self organization of µ-/ mesocaled objects“Cheerios” effect

Vella American Journal of Physics 73 (2005) 817

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsPrinciples of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)

Self organization of µ-/ mesocaled objectsInterfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)