15
Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Physics 2D Lecture SlidesMar 10

Vivek SharmaUCSD Physics

Page 2: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

• Learn to extend S. Eq and its solutions from “toy” examples in 1-Dimension (x) → three orthogonal dimensions (r ≡x,y,z)

• Then transform the systems – Particle in 1D rigid box 3D

rigid box– 1D Harmonic Oscillator 3D

Harmonic Oscillator • Keep an eye on the number

of different integers needed to specify system 1 3 (corresponding to 3 available degrees of freedom x,y,z)

QM in 3 Dimensions

y

z

x

ˆˆ ˆr ix jy kz= + +

Page 3: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Quantum Mechanics In 3D: Particle in 3D BoxExtension of a Particle In a Box with rigid walls

1D → 3D⇒ Box with Rigid Walls (U=∞) in

X,Y,Z dimensions

yy=0

y=L

z=L

z

x

Ask same questions:• Location of particle in 3d Box• Momentum • Kinetic Energy, Total Energy• Expectation values in 3D

To find the Wavefunction and various expectation values, we must first set up the appropriate TDSE & TISE

U(r)=0 for (0<x,y,z,<L)

Page 4: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

2 2 22

2 2

2 2 2 2 2

22

2

22

2

2 2

Time Dependent Schrodinger Eqn:( , , , )( , , , ) ( , , ) ( , ) .....In 3D

2

2 22

2

x y z tx y

x y

z t U x y z x t im t

m x m y m

z

mSo

∂ ∂ ∂∇

∂Ψ− ∇ Ψ + Ψ =

− ∇ = + ∂ ∂ ∂

− − + − ∂ ∂ ∂

+∂

= +∂ ∂

x

2

y z [K ] + [K ] + [K ]

[ ] ( , ) [ ] ( , ) is still the Energy Conservation Eq

Stationary states are those for which all proba

[ ]

=

bilities

so H x t E

K

x t

z

=

Ψ

=

Ψ

-i t

are and are given by the solution of the TDSE in seperable form: = (r)eThis statement is simply an ext

constant in time

(ension of what we

, derive

, , ) ( , )d in case of

x y z t r t ωψΨ = Ψ1D

time-independent potential

y

z

x

Page 5: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables

1 2 3

1

2

2 3

2

in 3D:

x,y,z independent of each ( , , ) ( ) ( ) ( )and substitute in the master TISE, after dividing thruout by = ( ) ( ) (

- ( , , ) ( ,

other , wr

, ) ( , ,

)and

) ( ,

ite

, )

n

2mx y z

TISE x y z U x y z x y z E x y

x y zx y

z

zψ ψ ψ ψ

ψ ψ ψ

ψ

ψ

ψ ψ∇

=

+ =

221

21

22222

232

3

21

2

2

( )12 ( )

This can only be true if each term is c

oting that U(r)=0 fo

onstant for all x,y,z

( )12 ( )

(2

r (0<x,y,z,<L)

( )12 (

)

z E Constm z z

ym

xm x x

xm

y yψ

ψψ

ψ

ψ

ψψ ∂

− + ∂

+ − =

∂− ∂ ∂

=

223

3 32

222

2 21 12 2

1 2 3

) ( ) ;

(Total Energy of 3D system)

Each term looks like

( ) ( ) ;2

With E

particle in

E E E=Constan

1D box (just a different dimension)

( ) ( )2

So wavefunctions

t

z E zm z

yy

E x Ex

ym

ψ ψ ψ ψ ψ∂− =

∂−

=

==∂

+ +

3 31 2 21must be like ,( ) sin x ,( ) s ) s nin ( iyy kx k z k zψψ ψ∝ ∝∝

Page 6: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Particle in 3D Rigid Box : Separation of Orthogonal Variables

1 1 2 2 3 3

i

Wavefunctions are like , ( ) sin

Continuity Conditions for and its fi

( ) sin y

Leads to usual Quantization of Linear Momentum p= k .....in 3D

rst spatial derivative

( )

s

sin x ,

x

i i

z k z

n k

x

L

yk

p

k ψ

ψ π

ψ

π

ψ∝ ∝

=

=

1 2 3

2

2

1 3 1

2 2 22

2

2 3 ; ;

Note: by usual Uncertainty Principle argumen

(n ,n ,n 1,2,3,.. )

t neither of n , n , n 0! ( ?)

1Particle Energy E = K+U = K +0 = )2

(m 2

(

zy

x y z

n

why

p nL

nmL

p nL L

p p p

π

π

π = = ∞ =

=

+ + = 2 2 21 2 3

2

1 2 3

2

1

Ei

3

-

3

1

)

Energy is again quantized and brought to you by integers (independent)and (r)=A sin (A = Overall Normalization Cosin y

(r)

nstant)

(r,t)= e [ si

n , n , nsin x

sin x ysn in ]t

k

n n

k

A k k

k

k

z

z

ψ

ψ

+ +

=ΨE-i

et

Page 7: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Particle in 3D Box :Wave function Normalization Condition

3

*

1

1

21

x,y,

E E-i -i

2

E Ei i*2

2 22

2

3

*3

z

2

(r) e [ sin y e

(r) e [ s

(r,t)= sin ]

(r,t)= sin ]

(r,t)

sin x

sin x

sin x

in y e

[ si

Normalization Co

(r,t)= sin ]

ndition : 1 = P(r)dx

n y

dyd

1

z

t t

t t

k z

k

k

k

A k

A k

A k zk k

A

z

ψ

ψ

Ψ

Ψ

Ψ

Ψ

=

=

=

∫∫∫L L L

2

3 3E

2 2 21 2 3

x=0 y=

2 2 -

1

z

3

i

0

2

=0

sin x dx

s

sin y dy sin z dz =

(

2 2 2

2 2 an r,t)=d [ s sinii ex yn ] nt

L

k

L LA

A kL

k k k

k zL

⇒ = Ψ

∫ ∫ ∫

Page 8: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Particle in 3D Box : Energy Spectrum & Degeneracy

1 2 3

2 22 2 2

n ,n ,n 1 2 3 i

2 2

111 2

2 2

211 121 112 2

2

3Ground State Energy E2

6Next level 3 Ex

E ( ); n 1, 2, 3... , 02

s

cited states E = E E2

configurations of (r)= (x,y,z) have Different ame energy d

i

mL

mL

n n n nmL

π

π

ψ ψ

π= + + = ∞ ≠

=

⇒ = =

⇒ egeneracy

yy=L

z=Lz

xx=L

Page 9: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

2 2

211 121 112 2

Degenerate States6E

= E E2mLπ

= =

x

y

z

E211 E121 E112ψ

E111

x

y

z

ψ

Ground State

Page 10: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Probability Density Functions for Particle in 3D Box

Same Energy Degenerate StatesCant tell by measuring energy if particle is in

211, 121, 112 quantum State

Page 11: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Source of Degeneracy: How to “Lift” Degeneracy • Degeneracy came from the

threefold symmetry of a CUBICAL Box (Lx= Ly= Lz=L)

• To Lift (remove) degeneracy change each dimension such that CUBICAL box Rectangular Box

• (Lx≠ Ly ≠ Lz)• Then

2 2 22 2 2 2 2 231 2

2 2 22 2 2x y z

nn nEmL mL mL

ππ π = + +

Ener

gy

Page 12: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

The Hydrogen Atom In Its Full Quantum Mechanical Glory

2

( ) kZeU rr

=

2 2 2

By example of particle in 3D box, need to use seperation of variables(x,y,z) to derive 3 in

1 1

This approach willdependent d

( ) M

iffer

ore compli

ential. eq

cated form of U than bo

get

x

ns.

U rr x y z

∝ = ⇒+ +

2 22

2

To simplify the situation, use appropriate variablesIndependent Cartesian (x,y,z) Inde. Spherical Polar (r, ,

very ugly since we have a "conjoined triplet"

Instead of writing Laplacian

)

x y

θ φ

∂ ∂∇ = +

∂ ∂

2

2

2 2

2

2 2 2

2

2

2

22

2 2 2

22

2

, write

1sin

TISE for (x,y,z)= (r, , ) become

1r

1 (r, , ) (r, , )r

s

1 2m+

1= s

(E-U(r))

insi

si

n

1 sins

(r, , )n

in

r

r

rr

z

r

r

rr r

r θθ

θ θ θ

θθ θ

φ

ψ ψ

θψ θ φ ψ θ φ

ψ θ φ

θ φ

θ φ

∂ ∂ ∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂+

∂∂

∂∂

∇ + + ∂ ∂

∂ ∂ + + ∂ ∂ !!!! fun!!!

(r, , ) =0 ψ θ φ

r

Page 13: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Spherical Polar Coordinate System

2

( sin )Vol

( )( ) = r si

ume Element dV

ndV r d rd dr

drd dθ φ θ

θ θ φ

=

Page 14: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

Don

’t P

anic

: Its

sim

pler

than

you

thin

k ! 2

2

2 2 22

2

2 2

2 2

2

1 2m+ (E-U (r))sin

T ry to free up las

1 (r, , ) =0 r

all except

T his requires m ulti

t term fro

plying thruout by sin

si

1 sinsi

si si

m

n

n

n

rr

r r

r

r

rr r

ψ ψ ψ ψ θ φ

φ

θ

ψ

θθ θ θ

θθ

θ

θ

φ∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂ + + ∂ ∂

∂+

∂∂

2

2

2 2 2

2

2m ke+ (E+ )r

(r, , )=R (r). ( ). ( ) P lug it in to the T ISE above & divide thruout by (r, , )=R (r). ( ).

sin =0

For Seperation of V ariables, W rite

( , , )r

N ote tha

(

t :

)

n r

r

φψ θ φ θ φ

ψ ψ θ ψ

ψ θ φ

φ

θ

θ

θ

φ

θ∂ + ∂

∂∂

Θ

Ψ

Θ ΦΦ

2 2 22 2

2 22

( ). ( )

( , , ) ( ) ( )

( , , ) ( ) ( )

s

R (r) r

( ) w hen substitu ted in T I

in sin =0

R earrange by ta

sin

king the

sin

SE

( )

1 2m ke+ (E+

)r

r R r

r R r

R rrR r r

θ φ

θ φ φθθ φ θ

θ

θ

θφ

φ

θ θφ

θθ θ

θ

= Θ Φ

∂Ψ= Φ

∂∂Ψ

= Θ∂

∂ ∂ ∂ ∂Θ + + Θ

∂ ∂∂ ∂

∂∂

∂Θ⇒

∂∂Φ

∂∂ Φ

Φ

2 2

2

2 2 2

22

2

2m ke 1+ (E+ )r

LH S is fn . of r, & R H S is fn of only , for equality to be true for all r, ,

LH S= constant = R H

term on R H S

sin s

S =

sin sin

m

in =-

l

R rrR r r φ

θ φ θ φ

θ θ

φ

θθ θ

θ∂ ∂

∂ ΦΦ ∂

∂ ∂Θ + Θ ∂ ∂ ∂ ∂

Page 15: Physics 2D Lecture Slides Mar 10hepweb.ucsd.edu/~modphys/2df03/slides/mar10.pdf · Physics 2D Lecture Slides Mar 10 Vivek Sharma UCSD Physics • Learn to extend S. Eq and its

2 2 22 2

2

2

2

2

sin sin =m

Divide Thruout by sin and arrange all terms with r aw

Now go break up LHS to seperate the terms...r .. 2m keLHS: + (E+ )

a

& sin si

y fromr

1

n lR r

r

rr

r

R r

R

θ θ

θ

θ θθ θ

θ

θ

∂ ∂Θ + Θ ∂ ∂ ∂ ∂

∂∂

∂ ∂ ⇒

2

2

2 2

2

m 1 sinsin sin

Same argument : LHS is fn of r, RHS is fn of , for them to be equal for a

LHS = const =

2m ke(E+ )=r

What do we have after shuffl

ll r,

= ( in1) g RHS

l

l l

R rr

θθ θ θ θ

θ θ

∂ ∂Θ − +

Θ ∂ ∂

⇒ +

22

2

2

2

2 22

2 2 2

!

m1 sin ( 1) ( ) 0.....(2)sin sin

...............

d ..(1)

1 2m ke ( 1)(E+ )- ( ) 0....(

m 0.

3

.

)r

T

l

l

d R r l lr R rr dr

d d ld

d

r

ld

r

θ

φ

θθ θ θ θ

Θ + + − Θ

∂ + + = ∂

=

Φ+ Φ =

hese 3 "simple" diff. eqn describe the physics of the Hydrogen atom.All we need to do now is guess the solutions of the diff. equationsEach of them, clearly, has a different functional form