32
Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin Chapter 6

Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Physics 214 UCSD/225a UCSB

Lecture 12

• Halzen & Martin Chapter 6

Page 2: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Spinless vs Spin 1/2

!

" t,x( ) = Ne#ipµ x

µ

!

" t,x( ) = u(p)e#ipµ x

µ

!

Jµ = "ie #$(%µ# ) " (%µ#$)#( )

Tfi = "i J fiµAµd

4x +O(e2)&

!

Jµ = "e#$ µ#

Tfi = "i J fiµAµd

4x% +O(e2)

We basically make a substitution:

!

pf + pi( )µ" u f #µui

And all else in calculating |M|2 remains the same.

Page 3: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Example: e- e- scattering

!

M = "e2(pA + pC )

µ(pB + pD )µ

pA " pC( )2

+(pA + pD )

µ(pB + pC )µ

pA " pD( )2

#

$ % %

&

' ( (

For Spinless (i.e. bosons) we showed:

!

M = "e2(u c#

µuA )(u D#µuB )

pA " pC( )2

"(u D#

µuA )(u C#µuB )

pA " pD( )2

$

% & &

'

( ) )

For Spin 1/2 we thus get:

Minus sign comes from fermion exchange !!!

Page 4: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Spin Averaging

• The M from previous page includes spinors ininitial and final state.

• In many experimental situations, in particularin hadron collissions, you neither fix initial norfinal state spins.

• We thus need to form a spin averagedamplitude squared before we can comparewith experiment:

!

M2

=1

2sA +1( ) 2sB +1( )M

2

spin

" =1

4M

2

spin

"A

B

C

D

Page 5: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Spin Averaging in non-relativistic limit

• Incoming e- :

• Outgoing e- :

!

" 0 =I 0

0 #I

$

% &

'

( )

" j=1,2,3=

0 * j=1,2,3

#* j=1,2,3 0

$

% &

'

( )

!

u f "µui =2m if (µ = 0)# si = sf

0 otherwise

$

% &

' &

!

us= +1/ 2( ) = 2m

1

0

0

0

"

#

$ $ $ $

%

&

' ' ' '

u s=(1/ 2( ) = 2m 0 1 0 0( )

Reminder:

Page 6: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Invariant variables s,t,uExample: e- e- -> e- e-

• s = ( pA + pB )2

• = 4 (k2 + m2)

• t = ( pA - pC )2

• = -2 k2 (1 - cosθ)

• u = ( pA - pD )2

• = -2 k2 (1 + cosθ)

k = |ki|= |kf| m = me θ = scattering angle, all in com frame.

A

B

C

D

Page 7: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

M for Different spin combos

!

M = "e2(u

c# µ

uA)(u

D#µu

B)

t"(u

D# µ

uA)(u

C#µu

B)

u

$

% &

'

( )

(u c# µ

uA)(u

D#µu

B)[ ]*+,*+

= 4m2

(u D# µ

uA)(u

C#µu

B)[ ]+*,*+

= 4m2

(u c# µ

uA)(u

D#µu

B)[ ]+*,*+

= 0

etc.

!

M2

=1

44m

2e2( )2

21

t"1

u

#

$ %

&

' ( 2

+1

t2

+1

u2

)

* +

,

- .

Page 8: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Let’s do one relativistically

• Pick the easiest one: e- mu- -> e- mu-– Easiest because it has only one diagram !!!

!

M = "e2

u c ( # k )$ µuA (k)[ ] u D ( # p )$µuB (p)[ ]

t

M2

=e4

t2"k"[ ]

µ" p"[ ]

µ"k"[ ]

%" p"[ ]

%( )&

=e4

t2"k"[ ]

µ%" p"[ ]

µ%

This is a sensible way to proceed because it groupselectron and muon parts together into one tensor each.We then worry only about spin averaging those tensors.After all, only same flavor spinors appear at the same vertex,and all reductions of spin averages happen at a vertex.

Page 9: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

M = "e2

u c ( # k )$ µuA (k)[ ] u D ( # p )$µuB (p)[ ]

t

M2

=e4

t2

Lelectron

µ%L

muonµ%

Lelectron

µ%=1

2u c ( # k )$ µ

uA (k)[ ] u c ( # k )$% uA (k)[ ]*

e"spins

&

Lmuon

µ%=1

2u D ( # p )$ µ

uB (p)[ ] u D ( # p )$% uB (p)[ ]*

muon"spins

&

We will now look at the electron tensor only, and try to simplify!

Page 10: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

u D ( " p )#$ uB (p)[ ]*

= ( ) 4x4( )

%

&

' ' ' '

(

)

* * * *

+

,

- - - -

.

/

0 0 0 0

$

= 1x1( )$

Note the structure of this expression:

The complex conjugate of this object is thus identical to the hermitian conjugate of this !!!

We can use the latter in order to rearrange terms,while ignoring the lorentz index for the moment.

Page 11: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

u c"# u

A[ ]T *

= uC

T *" 0"# uA[ ]

T *

= uA

T *"#T *" 0uC[ ] = u

A(k)"# u

C( $ k )[ ]

Where in the last step , we used the commutation properties.

At this point we get the electron tensor:

!

Lelectron

µ"=1

2u

c( # k )$ µ

uA(k)[ ] u

A(k)$" u

C( # k )[ ]

s, # s

%

Next, we are going to make all summations explicit, by writing out the gamma-matrices and spinor-vectors as components.

Page 12: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

Lelectron

µ"=1

2u c ( # k )$ µ

uA (k)[ ] u A (k)$"uC ( # k )[ ]

s, # s

%

=1

2u i

# s ( # k C )$ ij

µu j

s(kA )[ ]

ijlm

%s, # s

% u ls(kA )$ lm

"um

# s ( # k C )[ ]

=1

2$ ij

µ$ lm

"

ijlm

% u i# s ( # k C )um

# s ( # k C )[ ]

# s

% u ls(kA )u j

s(kA )[ ]

s

%

Here we now apply the completeness relations:

!

us(p)u

s(p)

s

" = pµ#µ + m = 4x4( )

See H&M exercise 5.9 for more detail on completeness relation.

Page 13: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Mathematical aside:

Let A,B,C,D be 4 matrices.

!

AijB jlClmDmi " Tr A # B #C #D( )ijlm

$

This weird sum is thus nothing more than the trace of the product of matrices !!!

I won’t prove this here, but please feel free to convince yourself.

Page 14: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

Lelectron

µ"=1

2Tr # k $%

$ + m( )% µk&%

& + m( )%"[ ]

Lmuon

µ"=1

2Tr # p $%

$ + m( )% µp&%

& + m( )%"[ ]

kA

pB

k’C

p’D

electron

muon muon

electron

!

M2

=e4

t2Lelectron

µ"Lmuon

µ"

“All” that’s left to do is apply trace theorems.(There’s a whole bunch of them in H&M p.123)

Page 15: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

Lelectron

µ"=1

2Tr # k $%

$ + m( )% µk&%

& + m( )%"[ ]

=1

2Tr # k $%

$% µk&%

&%" + # k $%$% µ%" m + m% µ

k&%&%" + m

2% µ%"[ ]

Trace of product of any 3 gamma matrices is zero!

!

Lelectron

µ"=1

2Tr # k $%

$% µk&%

&%"[ ] +m2

2Tr % µ%"[ ]

Next, define unit vectors a,b for µ and ν coordinate:

!

a"#" $ # µ

b%#% $ #&

This will allow us to use trace theorems to evaluate the remaining traces.

Page 16: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

Tr ( " k #$#)(a%$

%)(k&$

&)(b'$

')[ ] =

= 4 ( " k ( a)(k ( b) ) ( " k ( k)(a ( b) + ( " k ( b)(k ( a)[ ]

= 4 " k µk* ) ( " k ( k)gµ* + k

µ " k *[ ]

Tr (a%$%)(b'$

')[ ] = 4a ( b = 4g

µ*

2 Trace Theorems to use:

(1) (2) (3) (4)

(1x2) (3x4) - (1x3) (2x4) + (1x4) (2x3)

Now put it all together …

Page 17: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

M2

=e4

t2

Lelectron

µ"L

muonµ"

=8e

4

t2

# k # p ( ) kp( ) + # k p( ) k # p ( ) $m2p # p $ M

2k # k + 2M

2m2[ ]

Electron - Muon scattering

!

Lelectron

µ" = 2 # k µk" + (m2

$ # k % k)gµ" + k

µ # k "[ ]

Lµ"muon = 2 # p µ p" + (M 2

$ # p % p)gµ" + pµ# p "[ ]

This is the “exact” form. Next look at relativistic approx.

Page 18: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

M2

=8e

4

t2

" k " p ( ) kp( ) + " k p( ) k " p ( )[ ]

Relativistic approx. for e-mu scattering:

Let’s use the invariant variables:s = (k+p)2 ~ 2kp ~ 2k’p’u = (k - p’)2 ~ -2kp’ ~ -2k’p

!

M2

= 2e4s2 + u2( )t2

Next look at ee -> mumu, and get it via crossing.

Page 19: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

kA

pB

k’C

p’D

electron

muon muon

electronkA pB

k’Cp’D

electron muon

muonelectron

emu -> emu => ee -> mumu via crossing

k’C - pB

s = (k+p)2

t = (k’ - k)2 t = (k+p)2

s = (k’ - k)2 s t

Page 20: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

e-mu- -> e-mu- => e+e- -> mu+mu-

!

M2

= 2e4s2 + u2( )t2

!

M2

= 2e4t2 + u2( )s2

!

d"

d# cm

=M

2

64$ 2s

pf

pi

Recall exercise 4.2 from H&M:

We will now use this for relativistic e+e- -> mu+mu- scattering.

Page 21: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

pf ~ pi =>

t = -2 k2 (1 - cosθ)u = -2 k2 (1 + cosθ)s ~ 4k2

α = e2 /4π

!

d"

d#cm

$M

2

64% 2s

!

M2

= 2e48k

41+ cos2"( )16k

4=>

!

d"

d#cm

$% 2

4s1+ cos2&( )

"(e+e'( µ+µ'

) $4)% 2

3s

Relativisticlimit

Page 22: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Result worthy of discussion

1. σ ∝ 1/s must be so on dimensional grounds

2. σ ∝ α2 two vertices!

3. At higher energies, Z-propagator alsocontributes:

Page 23: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

More discussion

4. Calculation of e+e- -> q qbar is identical aslong as sqrt(s) >> Mass of quark.

!

"(e+e# $ qq ) = 3 % eq

2"(e+e# $ µ+µ#

)q# flavor

&

# of flavorsCharge of quark

Sum over quark flavors

Measurement of this cross section was very important !!!

Page 24: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Measurement of R

!

R ="(e+

e# $ qq )

"(e+e# $ µ+µ#

)= 3 % eq

2

q# flavor

&

Below charm threshold: R = 3 [ (2/3)2 + (1/3)2 + (1/3)2 ] =2

Between charm and bottom: R = 2 + 3(4/9) = 10/3

Above bottom: R = 10/3 + 3(1/9) = 11/3

Measurement of R was crucial for:a. Confirm that quarks have 3 colorsb. Search for additional quarksc. Search for additional leptons

Page 25: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Experimental Result

Page 26: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Ever more discussion

5. dσ/dΩ ∝ (1 + cos2θ)5.1 θ is defined as the angle between e+ andmu+ in com. cos2θ means that the outgoingmuons have no memory of the direction ofincoming particle vs antiparticle.Probably as expected as the e+e- annihilatebefore the mu+mu- is created.

5.2 Recall, phase space is flat in cosθ. cos2θdependence thus implies that the initial stateaxis matters to the outgoing particles. Why?

Page 27: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Helicity Conservation in relativistic limit

• You showed as homework that uL and uR arehelicity eigenstates in the relativistic limit, andthus:

• We’ll now show that the cross terms are zero,and helicity is thus conserved at each vertex.

• We then show how angular momentumconservation leads to the cross section wecalculated.

!

u " µu = u

L+ u

R( )" µu

L+ u

R( )

Page 28: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

!

u " µu = u

L+ u

R( )" µu

L+ u

R( )

u L

= uL

T *" 0 = uT * 1

21# " 5( )" 0 = u

1

21+ " 5( )

uR

=1

21+ " 5( )u

u L" µ

uR

= u 1

41+ " 5( )" µ

1+ " 5( )u = u " µ 1

41# " 5( ) 1+ " 5( )u = 0

Let’ do one cross product explicitly:

!

" 5" µ = #" µ" 5

" 5 = " 5T *

" 5" 5 =1

Here we have used:

Helicity conservation holds for allvector and axialvector currents as E>>m.

Page 29: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

• eL- eR

+ -> muL- muR

+ Jz +1 -> +1

• eL- eR

+ -> muR- muL

+ Jz +1 -> -1

• eR- eL

+ -> muL- muR

+ Jz -1 -> +1

• eR- eL

+ -> muR- muL

+ Jz -1 -> -1

• Next look at the rotation matrices:

!

d11

1(") =

1

21+ cos"( ) #

$u

s

d$1$11(") =

1

21+ cos"( ) #

$u

s

d$111(") =

1

21$ cos"( ) #

$t

s

d1$1

1(") =

1

21$ cos"( ) #

$t

s

Cross products cancel inSpin average:

!

M2

" 1+ cos2#( )

dJ1-1

initial final Jz

Page 30: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have

Conclusion on relativistic limit

• Dependence on scattering angle is givenentirely by angular momentum conservation !!!

• This is a generic feature for any vector oraxialvector current.

• We will thus see the exact same thing also forV-A coupling of Electroweak interactions.

Page 31: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have
Page 32: Physics 214 UCSD/225a UCSB Lecture 12 • Halzen & Martin ... › 2007 › Fall › physics... · • Halzen & Martin Chapter 6. Spinless vs Spin 1/2! ... a.Confirm that quarks have