14
Answer: Answer: a = a = v/ v/ t t a = (112 m/s)/(2.5 sec) = a = (112 m/s)/(2.5 sec) = 44.8 m/s 44.8 m/s 2 Thrust = force Thrust = force F = ma = (1800. kg)(44.8 m/s F = ma = (1800. kg)(44.8 m/s 2 2 ) ~ 81 kN ) ~ 81 kN Physics 1710 Physics 1710 Chapter 6—Circular Motion Chapter 6—Circular Motion

Physics 1710 Chapter 6—Circular Motion

Embed Size (px)

DESCRIPTION

0. Physics 1710 Chapter 6—Circular Motion. Answer: a = ∆v/∆ t a = (112 m/s)/(2.5 sec) = 44.8 m/s 2 Thrust = force F = ma = (1800. kg)(44.8 m/s 2 ) ~ 81 kN. 0. Physics 1710 Chapter 6—Circular Motion. 1 ′ Lecture: - PowerPoint PPT Presentation

Citation preview

Page 1: Physics  1710  Chapter 6—Circular Motion

Answer:Answer:

a = a = ∆v/∆∆v/∆t t a = (112 m/s)/(2.5 sec) = a = (112 m/s)/(2.5 sec) = 44.8 m/s44.8 m/s22

Thrust = forceThrust = forceF = ma = (1800. kg)(44.8 m/s F = ma = (1800. kg)(44.8 m/s 2 2 ) ~ 81 kN) ~ 81 kN

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Page 2: Physics  1710  Chapter 6—Circular Motion

11′ Lecture:′ Lecture: • The net force on a body executing circular motion The net force on a body executing circular motion is equal to the mass times the centripetal is equal to the mass times the centripetal acceleration of the body. acceleration of the body. FFcentripetalcentripetal = = m m aaccentripetalentripetal

•aacentripetalcentripetal = = v v 22/ R/ R [toward the center]; [toward the center]; aa = - = -ωω22 rr

• In non-inertial frames of reference one may sense In non-inertial frames of reference one may sense fictitious forces.fictitious forces.

• At At terminal velocityterminal velocity the velocity-dependent the velocity-dependent resistive forces balance the accelerating forces so resistive forces balance the accelerating forces so that no further acceleration occurs.that no further acceleration occurs.

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Page 3: Physics  1710  Chapter 6—Circular Motion

Centripetal Acceleration:Centripetal Acceleration:

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

x = r cos x = r cos θθyy = r sin = r sin θθ

vvxx = (dr/dt) cos = (dr/dt) cos θθ- r sin - r sin θθ(d (d θ/dt)θ/dt) vvyy = (dr/dt) sin = (dr/dt) sin θθ+r cos +r cos θθ(d (d θ/dt)θ/dt) Let (dr/dt) = 0Let (dr/dt) = 0 vvxx = - r = - r ω ω sin sin θθ

vvyy = +r = +r ω ω cos cos θθ

aaxx = dv= dvxx /dt= d(- r /dt= d(- r ω ω sin sin θ)/dt θ)/dt = = r r ωω22cos cos θ- θ- r r ω ω sin sin θ(d ω/dt)θ(d ω/dt)

aayy = dv= dvyy /dt= d(r /dt= d(r ω ω cos cos θ)/dt θ)/dt = -= -r r ωω22sin sin θ+ θ+ r r ω cosω cos θ(d ω/dt)θ(d ω/dt)

a a = = - ω- ω22 r + r + r r (d (d vvtangentialtangential /dt) /dt)

θθvvxx

vvyy

Page 4: Physics  1710  Chapter 6—Circular Motion

Centripetal Acceleration:Centripetal Acceleration:

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

a a centripetalcentripetal = = - v - v 22 / r / r

aa tangentialtangential = = r r (d v(d vtangentialtangential /dt)/dt)

F F = m = m a a

F F centripetalcentripetal = m a = m a centripetalcentripetal = = - mv - mv 22 / r / r

θθvvxx

vvyy

Page 5: Physics  1710  Chapter 6—Circular Motion

Demonstration: Ball on a StringDemonstration: Ball on a String

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

FFcentripetalcentripetal

rr

mm

vv

FFcentripetal centripetal = m v = m v 22/r /r

Page 6: Physics  1710  Chapter 6—Circular Motion

An athlete swings a 8 kg “hammer” around An athlete swings a 8 kg “hammer” around on a 1.2 m long cable at an angular on a 1.2 m long cable at an angular frequency of 1.0 revolution per second. How frequency of 1.0 revolution per second. How much force must he exert on the hammer much force must he exert on the hammer throw handle?throw handle?

Physics 1710 — Physics 1710 — e-Quize-Quiz

Answer Now !

1 2 3 4

7%

57%

22%

15%

1.1. About 12. NAbout 12. N

2.2. About 30. NAbout 30. N

3.3. About 78. NAbout 78. N

4.4. About 380. NAbout 380. N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Page 7: Physics  1710  Chapter 6—Circular Motion

Demonstration: Ball on a StringDemonstration: Ball on a String

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

FFcentripetalcentripetal

rr

mm

vv

v = 2v = 2π r/T = 2(3.14) (1.2 m)/(1.0 sec) = 7.5 π r/T = 2(3.14) (1.2 m)/(1.0 sec) = 7.5 m/sm/s

FFcentripetal centripetal = m v = m v 22/r = (8.0 kg)(7.5 m/s)/r = (8.0 kg)(7.5 m/s)22/(1.2 /(1.2 m) m)

= 378 N ~ 380 N= 378 N ~ 380 N

Page 8: Physics  1710  Chapter 6—Circular Motion

Demonstration: Demonstration: Marble in a bottleMarble in a bottle

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Why does the marble stay up on Why does the marble stay up on the side?the side?

Page 9: Physics  1710  Chapter 6—Circular Motion

No Talking!No Talking!Think!Think!

Confer!Confer!

Peer Instruction Peer Instruction TimeTime

Why does the marble stay up on the Why does the marble stay up on the side?side?

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Page 10: Physics  1710  Chapter 6—Circular Motion

Satellites in OrbitSatellites in Orbit

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Which orbit is most like that of the Space Which orbit is most like that of the Space Shuttle?Shuttle?

Page 11: Physics  1710  Chapter 6—Circular Motion

No Talking!No Talking!Think!Think! Confer!Confer!

Peer Instruction Peer Instruction TimeTime

Physics 1710Physics 1710 Unit 1—Review Unit 1—Review

11223344

Page 12: Physics  1710  Chapter 6—Circular Motion

Satellite Motion:Satellite Motion:• h ~ 100 km , h ~ 100 km , RR⊕ ⊕ ~ 6300 km~ 6300 km

•FFgg= G Mm/ r = G Mm/ r 22 GravitGravityy

• FFgg = F = Frr = mv = mv 22/r /r

• v = v = √[GM/r] = √[GM/(R√[GM/r] = √[GM/(R⊕ ⊕ + h)]~ √[GM/R+ h)]~ √[GM/R⊕ ⊕ ]]

= √[gR= √[gR⊕ ⊕ ]= √[(9.8 m/s]= √[(9.8 m/s22)(6.3 x10)(6.3 x1066m)m) ]= ]=

7.9x107.9x1033 m/s m/s

~17,600 mph~17,600 mph

• Why do the shuttle astronauts appear Why do the shuttle astronauts appear

“weightless?”“weightless?”

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Page 13: Physics  1710  Chapter 6—Circular Motion

Satellites in OrbitSatellites in Orbit

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion

Orbiting satellites are in free fall but Orbiting satellites are in free fall but miss the earth because it curves.miss the earth because it curves.

Page 14: Physics  1710  Chapter 6—Circular Motion

Summary Summary • The net force on a body executing circular The net force on a body executing circular motion is equal to the mass times the centripetal motion is equal to the mass times the centripetal acceleration of the body.acceleration of the body.

•aacentripedalcentripedal = = v v 22/ R/ R [toward the center] [toward the center]

• The “centrifugal” force is a fictitious force due to The “centrifugal” force is a fictitious force due to a non-inertial frame of reference.a non-inertial frame of reference.

Physics 1710Physics 1710 Chapter 6—Circular Chapter 6—Circular Motion Motion