34
www.iap.uni-jena.de Physical Optics Lecture 8: Laser 2018-05-30 Michael Kempe

Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

www.iap.uni-jena.de

Physical Optics

Lecture 8: Laser

2018-05-30

Michael Kempe

Page 2: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Physical Optics: Content

2

No Date Subject Ref Detailed Content

1 11.04. Wave optics GComplex fields, wave equation, k-vectors, interference, light propagation,

interferometry

2 18.04. Diffraction GSlit, grating, diffraction integral, diffraction in optical systems, point spread

function, aberrations

3 25.04. Fourier optics GPlane wave expansion, resolution, image formation, transfer function,

phase imaging

4 02.05.Quality criteria and

resolutionG

Rayleigh and Marechal criteria, Strehl ratio, coherence effects, two-point

resolution, criteria, contrast, axial resolution, CTF

5 09.05. Photon optics KEnergy, momentum, time-energy uncertainty, photon statistics,

fluorescence, Jablonski diagram, lifetime, quantum yield, FRET

6 16.05. Coherence KTemporal and spatial coherence, Young setup, propagation of coherence,

speckle, OCT-principle

7 23.05. Polarization GIntroduction, Jones formalism, Fresnel formulas, birefringence,

components

8 30.05. Laser KAtomic transitions, principle, resonators, modes, laser types, Q-switch,

pulses, power

9 06.06. Nonlinear optics KBasics of nonlinear optics, optical susceptibility, 2nd and 3rd order effects,

CARS microscopy, 2 photon imaging

10 13.06. PSF engineering GApodization, superresolution, extended depth of focus, particle trapping,

confocal PSF

11 20.06. Scattering LIntroduction, surface scattering in systems, volume scattering models,

calculation schemes, tissue models, Mie Scattering

12 27.06. Gaussian beams G Basic description, propagation through optical systems, aberrations

13 04.07. Generalized beams GLaguerre-Gaussian beams, phase singularities, Bessel beams, Airy

beams, applications in superresolution microscopy

14 11.07. Miscellaneous G Coatings, diffractive optics, fibers

K = Kempe G = Gross L = Lu

Page 3: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

3

energy conservation:

spontaneous emission stimulated emissionabsorption

atomic energy level differences typically lie in the optical region

Photon-Matter Interactions

𝑃𝑠𝑝 =𝑐

𝑉𝜎 𝜈𝑃𝑎𝑏𝑠 = 𝑛

𝑐

𝑉𝜎(𝜈) 𝑃𝑠𝑡 = 𝑛

𝑐

𝑉𝜎(𝜈)

Probability densities:

𝜎(𝜈): transition cross section

absorbing one photon

from a mode with n photons

emitting one photon

into a mode

emitting one photon

in a mode with n photons

𝑛𝑐

𝑉= 𝜙(𝜈) for monochromatic wave

Page 4: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

4

spontaneous emission stimulated emissionabsorption

Photon Flux Changes

∆𝜙 = 𝑃𝑠𝑡𝑁2 − 𝑃𝑎𝑏𝑠𝑁1 ∆𝑧Change of flux density

∆𝜙 = 𝜙𝜎𝑁2 − 𝜙𝜎𝑁1 ∆𝑧

∆𝜙 = 𝜙𝜎 𝑁2 − 𝑁1 ∆𝑧

𝜙(𝑧) = 𝜙0𝑒𝜎 𝑁2−𝑁1 ∆𝑧 𝑁2 < 𝑁1 loss of photons

𝑁2 > 𝑁1 gain of photonsI(𝑧) = 𝐼0𝑒𝜎 𝑁2−𝑁1 ∆𝑧

𝑃 ∙ 𝑁 =1

𝑠∙1

𝑚3

Page 5: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

5

Population of Energy Levels

Page 6: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

6

3-level syste

m4-level syste

m

Ref. M. Kaschke

Population inversion

Page 7: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

7

Laser = Light Amplification by Stimulated Emission of Radiation

• Typically spectrally narrow beam of light

• Spatially coherent

• First demonstrated in microwave regime – Maser (Townes, 1954)

• Laser in VIS shown in Ruby at 694 nm (Maiman, 1960)

Requirements:

1. Gain medium (inversion), G

2. Feedback by resonator, G ≥ L (losses in resonator)

Laser Sources

G

R=100% R<100%

L ≤ G

Page 8: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

8

Stationary Laser Oscillator

Setup

Intensity inside the resonator

Ref.: M. Kaschke

)()( zz

HV

Pump

source

Laser Material

mirror

(R = 100%)

coupling mirror

(R < 100%)

Laser beamL

Z = 0 Z = L

Page 9: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

9

𝐿 = 𝑞𝜆

2

Standing wave (stationary):

• Intensity is reproduced after roundtrip

• Knots at the mirror surface

Resonator Modes

𝜆 =2𝐿

𝑞=𝑐

𝜈𝜈 = 𝑞

𝑐

2𝐿

𝑞 = 1,2…𝑛

q=1

q=2

Page 10: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

10

Laser Resonator Types

Ref: B. Böhme

Page 11: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Principle:

- feedback of the radiation field

- reproduction of the wave for one

round trip

- loss compensated by gain

- eigenmode solutions of the field

Description:

- length L

- radii of curvature R1 , R2

Definition of stability parameter

g1, g2

Internal ABCD matrix for

one round trip

w2w

RR

L

1

1

0w

2

gL

Rg

L

R1

1

2

2

1 1 ,

12422

212

2212121

22

gggggggL

Lgg

DC

BAM

oo

oo

o

Stable Gaussian Resonators

Page 12: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Stability of a Gaussian Resonator

Page 13: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

13

Laser Emission

𝛾 𝜈 =𝛾0 𝜈

1 +𝜙𝜙𝑠

= Nσ(𝜈)

• Laser condition: gain = losses

• The initial small-signal gain 𝛾0is reduced due to saturation

and fixed (“clamped”) at a

value 𝛾 = 𝛼𝑟

per round-trip

• The emitted flux is therefore

𝜙 = 𝜙𝑠𝛾0(𝜈)

𝛼𝑟− 1

𝜙 = 𝜙0𝑒𝛾 𝜈 2𝐿

Source: Saleh/Teich

𝛾0 = 𝑁0𝜎(𝜈) ∝ 𝑃𝑖𝑛

2ln( ) 2 0i thT R N L 𝛾 = 𝑁𝜎(𝜈)

Ti internal transmission

Ri reflectivity of the mirrors R = R1R2

Nth threshold inversion

L length of the gain medium

Pin: pump power

Page 14: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

14

Laser Output Power

Laser intensity inside the resonator

If the laser reaches the threshold, the inversion is constant

The additional power above threshold increases the intensity in the resonator

The output intensity grows linear with the slope efficiency hslope

Ref.: M. Kaschke

Pth pump power Pin

I, N

Nth

N

I

1

th

inS

P

P thinslopeCW PPP hfor 𝑃𝑖𝑛 > 𝑃𝑡ℎ laser power:

Page 15: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

15

Laser Output Power Optimization

Optimization of the reflectivity

according to gain/loss

Rigrod diagram

Curve of optimal reflectivities

for different pump powers

Ref.: M. Kaschke

laser power PCW

0,5 0,6 0,7 0,8 0,9 1,0

100

80

60

40

20

optimal

outcoupling

casedifferent pump

power levels

Page 16: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

16

Laser Emission: Homogenous Broadening

• In a homogenously broadened

medium all modes interact with

the same transition

The gain clamping leads to an

emission of a single mode, if the

modes don’t occupy different

spatial regions of the gain medium

Source: Saleh/Teich

Page 17: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

17

Laser Emission: Inhomogenous Broadening

• In an inhomogenously broadened medium the gain comes from different

transitions

• The gain clamping leads to spectral hole burning all modes within the

spectrum for which 𝛾0 > 𝛼𝑟 can oscillate

Source: Saleh/Teich

Page 18: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

18

Types of Lasers

Continuous wave (cw)

Dt = 0.05 ...1 s

Pulsed (pw)

Dt = 10-6 s = 1 ms

Q-switched pulse

Dt = 10-9 s = 1 ns

Mode locked pulses

Dt = 10-10 s = 1 fs

Quasi cw, pulsed with high frequency

(kHz-MHz)

Ref.: M. Kaschke

time

power

timeDt

powerarea corresponds

to pulse energy

power

time

average

power

Page 19: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

19

Q-Switch

Time dependencies for cw and pulsed pumping

a) continuous wave b) pulsed mode

pump

intensity

loss

inversion

laser

pulse

Ref.: M. Kaschke

Page 20: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

20

Mode Coupling

Axial mode frequencies given by round

trip time in resonator of length L

All modes inside the gain profile are coupled/synchronized:

mode locking

Fabry-Perot resonator:

typical Dn = 100 Mhz...2 GHz

Ref.: M. Kaschke

axial modes

resonator

gain

gain

profile

threshold

frequency n

Dn

laser

lines

n0

L

cqq

D

21,n

Page 21: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

21

Laser with Mode Coupling

Fixed phase relation between modes

Full interference of amplitudes

qq 1

field E

power P

average power P

1st wave Eq

3rd wave Eq+2

2nd wave Eq+1

4th wave Eq+3

coherent

superposition

Ref.: M. Kaschke

Page 22: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Laser Source Data

Laser type

Typical

power /

energy

Operation

mode

Pulse

length

Beam

diameter

in mm

Divergence

2

in mrad

efficiency

h in %

Excimer, ArF 193 nm 30 W / 1 J pulse 20 ns6x20 –

20x302 – 6 0.2

Nitrogen-gas

laser337 nm

0.5 W / 10

mJpulse 10 ns

2x3 –-

6x301–3x7 0.1

Argon-ion

laser

455 –

529 nm0.5 – 20 W cw 0.7 –- 2 0.4–1.5 0.1

HeNe-gas laser 632.8 nm0.1 – 50

mWcw 0.5 – 2 0.5 – 1.7 0.1

HF-chemical

Laser

2.6 – 3.3

mm5 kW / 4 kJ cw or pulse 20 ns 2 – 40 1 – 15 10

CO2 – gas laser 10.6 mm 1 kW / 1kJ cw or pulse50 –

150 ns3 – 4 1 – 2 15 – 30

Ruby – solid

state laser694 nm 10 J pulse 0.5 ms 1.5 – 25 0.2 – 10 0.5

Nd:YAG-solid

state laser,

flash bulb

1.064 mm 1 kW pulse0.1 – 20

ns0.75 – 6 2 – 18 0.5

Nd:YAG-solid

state laser,

diode-pumped

1.064 mm 2 W cw 0.75 - 6 2 – 18 5

Semiconductor

laser

0.4 – 30

mm0.1-10 W cw or pulse

0.1 – 1

ms

0.001–

0.5200 x 600 30

Ga

s la

se

rS

olid

Sta

te la

se

rLD

Page 23: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Gas laser with flow tube

Brewster windows suppress reflected light

Outcoupled radiation linear polarized

Gas Laser with Brewster Window

Brewsterangle

no reflected light

no reflected light

p

p

linearpolarised

Brewsterangle

4.00|| rr

Page 24: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

24

Flashlamp Pumped Solid State Laser

Typical setup of a flash lamp pumped solid state Nd:YAG laser resonator

Ref.: M. Kaschke

Laser rod Flow tube

flash lamppump chamber flash lamp

HR mirroroutcoupling

mirror

Laser beam water cooling

Page 25: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

25

Diode Pumped Solid State Lasers

Longitudinal pumping geometry

Usually good mode quality due to coaxial gain distribution

Ref.: M. Kaschke

pump diode

laserNd:YAG rod

laser

beam

resonator mirrorpump

optical

system

AR @ 809 nm

HR @ 1064 nm

Page 26: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

26

Diode Pumped Solid State Lasers

good mode quality due to coaxial gain distribution enables efficient intra-cavity frequency

conversion

Second harmonic generation (SHG) in nonlinear crystals with phase matching

pump diode

laserNd:YAG rod

laser

beam

resonator mirrorpump

optical

system

AR @ 809 nm

HR @ 1064 nm / 532nmHR @ 1064 nm

SHG

Page 27: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

27

Disc Laser

Extrem aspect ratio of the laser rod:

- very thin disc (< 1mm)

- large diameter

Advantage:

- no thermal lensing high power laser e.g. for material

- effective cooling from front side processing applications

Complicated pump geometry, skew incident beams

Ref.: M. Kaschke

Page 28: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

28

Fiber Laser

Ref: B. Böhme

outer cladding

inner cladding

core Double clad structure for efficient pumping

Page 29: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Typical structure of edge-emitting

semiconductor laser

Astigmatic beam radiation:

1. fast axis perpendicular to junction

2. slow axis parallel to junction

Semiconductor Laser

metal contact

metal contact

insulatorp-region

heterojunction

n-region

substrate

light

x

y

x

y

x

y

z

Q

perpendicular

parallel

Model of beam profiles:

- Gaussian in fast axis

- Gaussian with Lorentzian envelope

in slow axis

oyoy R

yi

w

y

yo eEyE

22

)(

oxR

xi

x

xxo e

xw

wExE

2

22

0

2

0|| )(

Page 30: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Semiconductor Laser Materials

Material Color Wavelength in nm Spectral Fwhm in nm Luminence in cd/m2

InGaAsP NIR 1300 50-150

GaAs:Si NIR 940

GaAs:Zn NIR 900 40

GaAlAs NIR 880 30-60

GaP:Zn,N dark red 700

GaP red 690 90

GaAlAs red 660

GaAs6P4 red 660 40 2570

GaAs0.35P0.65:N orange 630

InGaAlP orange 618 20 2 107

GaAsP0.4 amber 610

SiC yellow 590 120 137

GaP green 560 40 1030

InGaAlN green 520 35 107

GaN blue 490

InGaN blue 450-460 25 3 106

InGaN blue 400-430 20 3 104

SiC deep blue 470

Page 31: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Semiconductor Laser

Typical laser with housing

Continuous transition from

incoherent LED below threshold

to coherent laser above threshold

Ref: M. Kaschke

monitoring PIN photodiode

Window

Heat sinkLaser chip

Case

Laser beam

1

0I threshold

LED Regime

Laser Regime

P(W)

I(A)

V = 2-3 Volt

Page 32: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

Usual semiconductor lasers:

edge emitter, small elliptical emitter surface

astigmatic beam form

VCSEL-Laser:

Emission perpendicular to pn-junction

area typical D < 10 mm

Good beam quality, monomode

Power scaling by area size possible

VCSEL-Laser

n-layer

p-layer

LED

VCSEL

semiconductor

laser

edge emitter

Page 33: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

33

Optically pumped VCSEL-Laser

• Optically pumped semiconductor laser (OPSL) combine high beam quality with

wavelength flexibility at low to high cw power

• Wavelengths: 700-1200 nm and 350-600 nm with intracavity frequency

doubling

Optional: SHG

Source: Coherent Inc.

Page 34: Physical Optics - Friedrich-Schiller-Universität Jena...Physical Optics: Content 2 No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

34

Tunable Semiconductor Lasers

• Semiconductor laser with external cavity (Littrow configuration: grating with

MEMS scanner; semiconductor optical amplifier - SOA)

• Wavelengths: several bands with 1500-1620 nm, 1250-1400 nm and 1000-

1100 nm most common)

• Tuning speed: 1 kHz-150 kHz

Source: Exalos AG