50
Physical and Biological Processes that Controls Wt V E h bt V t ti Water Vapor Exchange between Vegetation and the Atmosphere Dennis Baldocchi Department of Environmental Science, Policy and Management University of California, Berkeley Contributions from the Biometeorology Lab Youngryel Ryu J h Fi h Josh Fisher Siyan Ma Xingyuan Chen Gretchen Miller M tthi F lk Matthias Falk Kevin Tu

Physical and Biological Processes that Controls Wt V E h bt V …nature.berkeley.edu/biometlab/Lectures/Baldocchi Paris... · 2008. 2. 27. · Wt V E h bt V ttiWater Vapor Exchange

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Physical and Biological Processes that Controls W t V E h b t V t tiWater Vapor Exchange between Vegetation

    and the Atmosphere

    Dennis BaldocchiDepartment of Environmental Science, Policy and Management

    University of California, Berkeley

    Contributions from the Biometeorology Lab

    Youngryel RyuJ h Fi hJosh FisherSiyan Ma

    Xingyuan ChenGretchen MillerM tthi F lkMatthias Falk

    Kevin Tu

  • Outline

    • Processes, Supply vs Demand, Short and Long Time scalesShort– Short

    • Energy• Meteorology

    – Long• Leaf area indexLeaf area index• Nutrition• Plant Functional type

    – Short to Long• Surface Conductance• Soil Moisture

    • Time– Day/Night– Seasonal– Interannual

    • Space– Land Use– PBL/Landscape– Globe

  • Water and the Environment: Bi h i l E h d l i l ViBiogeophysical-Ecohydrological View

    PBL ht

    Transpiration/Evaporation

    AvailableEnergy

    LAI Sensible Heat

    Water

    SurfaceConductance

    p

    Photosynthesis/RespirationRespiration

    Carbon

    NutrientsLitterSoil Moisture

  • Processes and Linkages:R l f Ti d S S lRoles of Time and Space Scales

    continent

    Weather modelEcosystemDynamics

    Biogeo-chemistry

    landscape

    region/biomeWeather model Dynamics

    λE HR

    Species,Functional

    Type

    ppt, Ta, P, ea,u,Rg,L Ac Gc

    canopy

    landscape

    Biophyscial Model

    λE, HRn

    Leaf Area, N/C,Ps capacity

    Biophysical model

    , g, c, c

    secon

    day

    year

    centurnds

    ys rs ries

  • Penman Monteith Equationq

    λρ

    γ γE

    s R S C G D

    s Gn p H

    H=

    − + ⋅ ⋅ ⋅

    + +

    ( )

    Function of:

    γ γsGs

    + +

    •Available Energy (Rn-S)•Vapor Pressure Deficit (D)•Aerodynamic Conductance (Gh)•Surface Conductance (Gs)Surface Conductance (Gs)

  • Eco-hydrology:y gyET, Functional Type, Physiological Capacity and Drought

    ?

    λEeq

    ?

    λE/λ

    ?

    θ?

  • Effects of Functional Types and Rsfc on Normalized Evaporation

    1.75

    2.00

    wheatcorn

    E eq

    1.25

    1.50jack pineoak-savanna

    λE/ λ

    E

    0.75

    1.00

    0 00

    0.25

    0.50

    Rcanopy (s m-1)

    10 100 1000 100000.00

    Rc is a f(LAI, N, soil moisture, Ps Pathway)

  • Stomatal Conductance Scales with N, via Photosynthesis

    Stomatal Conductance Scales with Photosynthesis

    80

    Photosynthetic Capacity Scales with Nitrogen

    Stomatal Conductance scales with Nitrogen

    mol

    m-2 s

    -1)

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    oak, varying lightCa: 360 ppmTa: 25 C

    mol

    m-2

    s-1

    )

    40

    60after Schulze et al (1994)

    al c

    ondu

    ctan

    ce (

    mm

    s-1)

    6

    8

    10

    12

    14

    A ( mol m-2 s-1)

    0 1 2 3 4 5 6 7 8

    g s (

    mm

    0.00

    0.02

    0.04

    0.06

    0.08

    V cm

    ax (µ

    m

    0

    20

    leaf nitrogen (mg g-`1)

    5 10 15 20 25 30 35 40

    max

    imum

    sto

    mat

    a

    0

    2

    4

    6

    A (µmol m s )

    Na (g m-2)

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Wilson et al. 2001, Tree PhysiologySchulze et al 1994. Annual Rev Ecology

  • Integrated Stomatal Conductance Scales with Photosynthetic Capacity and LAI

    0.018

    LAI =1

    0.012

    0.014

    0.016LAI =1LAI =2LAI =3LAI - 4LAI =5

    Gs (

    m s

    -1)

    0.006

    0.008

    0.010

    0 000

    0.002

    0.004

    Vcmax (µmol m-2 s-1)

    20 40 60 80 100 1200.000

    CANVEG Computations

  • Effects of Leaf Area and Photosynthetic Capacity on Normalized Evaporation:Well Watered ConditionsWell-Watered Conditions

    1.3 Priestley-Taylor= 1 26

    1.1

    1.2= 1.26

    QE/

    QE,

    eq

    0.9

    1.0

    0.7

    0.8

    Vcmax*LAI

    0 20 40 60 80 100 120 140 160 180 2000.6

    Vcmax LAI

    Canveg Model, Baldocchi and Meyers, 1998 AgForMet

  • Effects of Leaf Area and Photosynthetic Capacity on Normalized Evaporation:

    Watered Deficits

    Boreal Forest

    1 3

    Watered-Deficits

    1.2

    1.3

    k=8.0

    k=10

    k=7.0

    QE,

    eq 1.0

    1.1

    QE/

    Q

    0.8

    0.9

    0 6

    0.7

    Vcmax*LAI

    0 20 40 60 80 100 120 140 160 180 2000.6

  • LAI and Ps Capacity also affects Soil vs Total Evaporation

    0.30

    0.20

    0.25Q

    E,so

    il/QE

    0.15

    0.05

    0.10

    LAI * Vcmax

    0 20 40 60 80 100 120 140 160 180 2000.00

    cmax

  • Canopy Surface Conductance does not equal the Canopy Stomatal Conductance

    Crop: Rsoil = 1500 s m-1

    2.00crop Rsoil = 500 s m

    -1

    1 50

    1.75G

    can/

    int g

    s dl

    1.25

    1.50

    0.75

    1.00

    Vc max (µmol m-2 s-1)

    20 40 60 80 100 1200.50

    Be Careful about using Gcan to compute isotopic discrimination

  • Forest Biodiversity is Negatively Correlated with Normalized Evaporation

    Temperate/Boreal Broadleaved ForestsSummer Growing Season

    1.2

    1.0

    1.1

    λ E/λ

    Eeq

    0.8

    0.9

    0.6

    0.7

    Number of Dominant Tree Species (> 5% of area or biomass survey)

    0 1 2 3 4 5 6 7 80.5

    Baldocchi, 2005 In: Forest Diversity and Function: Temperate and Boreal Systems.

  • Use Appropriate and Root-Weighted Soil Moisture ( ) ( )

    ( )0

    z

    z

    z dP z

    dP z

    θθ =

    ∫ ( )0

    dP z∫

    Soil Moisture, arthimetic average

    Soil Moisture root weighted

    Chen, Baldocchi et al, in prep.

    Soil Moisture, root-weighted

  • ET and Soil Water Deficits:a d So ate e c tsRoot-Weighted Soil Moisture

    Grassland1.0

    eq

    1.00

    1.25

    summer rain

    Oak Savanna

    eq

    0.6

    0.8

    λ E/λ

    Ee

    0.25

    0.50

    0.75

    λE/λ

    Ee

    0.2

    0.4

    θ, weighted by roots (cm3 cm-3)

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.00

    θ weighted by roots (cm3 cm-3)

    0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

    Baldocchi et al., 2004 AgForMet

  • ET and Soil Water Deficits:W t P t ti lWater Potential

    p ( )

    1.25annual grassland

    0.8

    1.0

    predawn water potentialsoil water potential

    oak savanna

    λE/λ

    Eeq

    0.50

    0.75

    1.00

    λ E/λ

    Eeq

    0.4

    0.6

    -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00.00

    0.25

    -5 -4 -3 -2 -1 00.0

    0.2

    soil water potential (MPa)soil water potential (MPa)

    5 3 0

    Root-Weighted Soil Moisture Matches Pre-Dawn Water Potential

    ET of Annual Grass responds to water deficits differently than

    Baldocchi et al., 2004 AgForMet

    Trees

  • Leaf Area Index scales with Water Balance Deficits

    10

    various functional types:Baldocchi and Meyers (1998)savanna:Eamus et al. 2001Oak Savanna, CA

    LAI

    1 b[0]: -0.68b[1]: 0.84r ² : 0.69

    [N]ppt/Eeq

    0.1 1 10 1000.1

  • Nocturnal Transpiration from Blue Oak

    Fisher et al. 2006, Tree Physiology

  • Seasonal and Annual Time Scales

    Annual Grassland, 2004

    14

    ) 10

    12

    14

    Actual LEPotential LE

    λE (M

    J m

    -2 d

    -1

    6

    8

    λ

    2

    4

    Day

    0 50 100 150 200 250 300 3500

    Potential and Actual Evaporation are Decoupled in Semi-Arid System

  • Interannual Variation ET

    Vaira 2004

    5

    2001: 301 mm

    Oak Savanna

    5

    2002: 389 mm

    mm

    d-1

    ) 3

    42002: 292 mm

    2003: 353 mm 2004 : 284 mm

    mm

    d-1

    ) 3

    42003: 422 mm2004: 340 mm2005: 484 mm

    E (m

    1

    2 ET

    (m

    1

    2

    Day

    0 50 100 150 200 250 300 3500

    Day

    0 50 100 150 200 250 300 3500

  • Annual ET of Annual Grassland varies with Hydrological Growing Seasonyd o og ca G o g Seaso

    Ryu, Baldocchi, Ma and Hehn, JGR-Atmos, submitted

  • Growing Season Length and ET, Temperate Forest

    5

    6

    1996 St t d121

    Oak Ridge, TN

    4

    5

    Are

    a In

    dex

    3

    4

    5 1996, Starts d1211997, Starts d108

    (mm

    d-1

    ) 3

    4

    1996: 492 mm 1997: 519 mm

    Leaf

    A

    1

    2

    E

    1

    2

    Day

    0 50 100 150 200 250 300 3500

    Day

    0 50 100 150 200 250 300 3500

    Year with Longer Growing Season (13 days)Year with Longer Growing Season (13 days) Evaporated More (27 mm).

    Other Climate Factors could have confounded results, b t R (5 43 5 41 GJ 2) d T (14 5 14 9 C)but Rg (5.43 vs 5.41 GJ m-2) and Tair (14.5 vs 14.9 C)

    were similar and rainfall was ample (1682 vs 1435 mm)

    Wilson and Baldocchi, 2000, AgForMet

  • Year to Year differences in ET is partly due to differences in Growing Season Length

    CANOAK

    690

    700

    Slope: -1.68 mm/day

    Temperate Deciduous ForestOak Ridge, TN

    7

    Leaf out: D90

    ET

    (mm

    y-1

    )

    650

    660

    670

    680p y

    (mm

    d-1

    )

    3

    4

    5

    6 D100D110D120D130

    E

    620

    630

    640

    650

    ET

    0

    1

    2

    3

    Date of Leaf-Out

    80 90 100 110 120 130 140620

    Day

    0 50 100 150 200 250 300 3500

    Field data show that ET decreases by 2.07 mm for each day the start of the growing season is delayed

  • ET: Spatial ScaleET: Spatial Scale

  • Landscape DifferencesOn Short Time Scales, Grass ET > Forest ET

    1.0

    Monthly Averages

    O S o t e Sca es, G ass o est

    0.8

    LE/L

    Eeq

    0.6

    L

    0.2

    0.4

    Savanna Woodland

    0 2 4 6 8 10 12 14 160.0

    Savanna WoodlandAnnual Grassland

    Gs (mm s-1)

    Ryu, Baldocchi, Ma and Hehn, JGR-Atmos, submitted

  • Role of Land Use on ET:On Annual Time Scale Forest ET > Grass ET

    California Savanna

    440

    On Annual Time Scale, Forest ET > Grass ET

    ) 380

    400

    420

    440or

    atio

    n (m

    m y

    -1

    320

    340

    360

    380

    Eva

    po

    260

    280

    300

    320

    Oak WoodlandAnnual Grassland

    Hydrological Year

    02_03 03_04 04_05 05_06 06_07240

    260

    Ryu, Baldocchi et al, JGR-Atmos, submitted

  • •Savanna Uses More Water than Grassland•Savanna Soil holds about 78 mm more Water•Annual ET Decreases with Rg•Rg is negatively correlated with Rain and Clouds•System is Water not Radiation Limited

    Different Land Use

    440

    460

    (mm

    y-1

    )

    360

    380

    400

    420

    Eva

    pora

    tion

    300

    320

    340

    360

    17.4 17.6 17.8 18.0 18.2 18.4240

    260

    280 Oak Savanna WoodlandAnnual Grassland

    (MJ m-2 d-1)

    Ryu, Baldocchi, Ma, Hehn, JGR-Atmos, submitted

  • Stand Age also affects differences between ET of forest vs grassland

    Plynlimon, Wales

    o o est s g ass a d

    ) 700

    800

    900

    grassland conifer forest

    ratio

    n (m

    m y

    -1)

    500

    600

    700

    Evap

    or

    300

    400

    500

    Year

    1970 1975 1980 1985 1990 1995 2000 2005 2010200

    Marc and Robinson, 2007 HESS

  • Assessing Spatial g pAverages with Subgrid

    Variabilityy

    E Es A s A C Dg D gp a a[ ]

    ' ' ( ' ')( ( / '))

    λρ

    =+ + +

    + + +

    A C D( )

    s g g g ra s a s( ( / '))γ γ+ + +

    E EsA r C Dg r

    s g g rAs s A p a Dga D ga

    a s gr ga rs

    [ ]( )

    ( ( / ))λ

    σ σ ρ σ σγ γ σ σ

    =+ + +

    + + +

  • Sub-Grid Variability:MODIS d IKONOSMODIS and IKONOS

    0.1

    Oak/grass savannagrassland

    σ2N

    DVI

    0.01

    1 10 100 10000.001

    ∆x

    Use Power Law scaling to Estimate small scale Variance

    Baldocchi et al 2005 TellusE f x f x f x

    xx[ ( )] ( ) ( ) ( )= + ∂

    ∂12

    2

    22σ

  • Errors in ET ScalingErrors in ET Scaling

    E f x f x f xx

    x[ ( )] ( ) ( ) ( )= + ∂∂

    12

    2

    22σ

    x∂2

    Baldocchi et al 2005 Tellus

  • Linking Water and Carbon:Potential to assess Gc with Remote Sensing

    0.8

    (mol

    m-2

    s-1 )

    0.4

    0.6

    Annual Grassland

    -2 -1

    0.00 0.01 0.02 0.03 0.04 0.05 0.06

    Gc

    0.0

    0.2Regr. Coef:b[0]: 0.117b[1]: 9.908r ²: 0.793

    Ac rh/Ca (mol m2s

    1)

    s-1 ) 0.20

    0.25

    0.30

    oak savanna

    Gc (

    mol

    m-2

    s

    0.05

    0.10

    0.15

    b[0]: 8.53e-3b[1]: 8.97b[2]: 736.0r ²: 0.812

    Xu + DDB, 2003 AgForMetAc rh/Ca (mol m

    -2 s-1)

    0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.0140.00

  • Gc Exhibits Scale ‘Invariance’

    30

    40FLUXNET Data

    y"

    0

    10

    20

    30"B

    all-B

    erry

    40Stomatal Conductance SurveyDennis Baldocchi; UC Berkeleyy

    BV98

    BV99

    BV97

    BV00

    WBW

    96LW

    98W

    BW97

    HV99

    DU99

    BL98

    WR9

    9AB

    97LW

    97CP

    97NO

    97SO

    98SO

    98BO

    97GU

    97NW

    00W

    BW95

    PF99

    NB96

    0

    10

    20

    30 Dennis Baldocchi; UC Berkeley

    Ball-

    Berr

    y

    P. ba

    nksia

    na

    P. m

    arian

    a

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Andro

    pogo

    n gera

    rdii

    P. ab

    iesP.

    abies

    Acer

    rubrum

    P. ba

    nksia

    na

    Tritic

    um ae

    stivu

    m

    Bothr

    iocho

    loa ca

    ucas

    ia

    Trips

    acum

    dacty

    loide

    s

    Pinus

    flexil

    is

    Zea m

    ays

    Goss

    ypium

    hirsu

    tum

    Querc

    us ile

    x

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Euca

    lyptus

    gran

    dis

    Acer

    sacc

    harum

    Acer

    sacc

    harum

    Fagu

    s

    Pistac

    ia len

    tiscu

    sBe

    tula

    Picea

    Dacty

    lis.gl

    omera

    ta

    Polyg

    onum

    vivip

    arum

    Rhina

    nthus

    . Alec

    torolo

    ph

    P. vi

    viparu

    m

    Vacc

    inium

    mytr

    tillus

    Planta

    nus o

    rienta

    lisPr

    unus

    0

    R

    Processed by M. Falk

  • Fisher et al Global ET Model

    Total Latent heat flux ics LELELE ++

    fwet 10RHflux

    Canopy Transpiration ( ) ncTgwet Rfff γα +∆

    ∆−1

    fgfAPARf

    IPAR

    APAR

    ff

    11 bSAVIm +

    Soil Evaporation( ) ( )GRfff ns −+∆

    ∆−+

    γα)1( wetSMwet

    fIPARfcfT

    22 bNDVIm +

    IPARf

    ⎟⎟

    ⎜⎜

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −−

    2

    expλ

    opta TT

    Intercepted Evaporation ncRf γα +∆

    ∆wet

    T

    fSMTopt

    ⎠⎝

    VPDRH

    { }VPDaAPARa RHTfT maxat

  • VPDRH A measure for downscaling ETRH A measure for downscaling ET with Drought???

    Fisher, Tu and Baldocchi, RSE in press

  • Global ET, 1989, ISLSCP

    ET (mm/y) reference

    613 Fisher et al

    286 Mu et al. 2007

    467 Van den Hurk et al 2003

    649 Boslilovich 2006

    560 Jackson et al 2003

    Fisher et al, in press

  • Global ET pdf, 1989, ISLSCP

    Fisher et al.

  • ConclusionsConclusions• Biophysical data and theory help explain powerful ideas p y y p p p

    of Budyko and Monteith that provide framework for upscaling and global synthesis of ET– ET scales with canopy conductance, which scales with LAI and py ,

    Ps capacity, which scales with precipitation and N

  • Be CarefulBe Careful

    • Short-Term Differences in Potential and Actual ET may not hold at Annual Time ScalesET may not hold at Annual Time Scales– Grass has greater potential for ET than Savanna

    • Sub-Grid Variability in surface properties can produce huge errors in upscaled ET at the 1 km Modis Pixel Scale

  • Present and Past Biometeorology ET Team

    Funding: US DOE/TCP; NASA; WESTGEC; Kearney; Ca Ag Expt Station

  • FluxNET WUEFluxNET WUE6000

    FLUXNET 20075000

    P (g

    C m

    -2 y

    -1)

    3000

    4000

    GP

    P

    1000

    2000

    LE (mm y-1)

    0 200 400 600 800 1000 1200 14000

    LE (mm y )

  • Global ET JulyJuly

    Fisher et al, in press

  • Budyko Curve, Fluxnet data

    1.4

    1.0

    1.2

    Ea/

    ppt

    0.6

    0.8

    0.2

    0.4

    Rn/(λ ppt)

    0 1 2 3 40.0

  • Photosynthesis > 200yRespiration

    CO2

    Limited Lear Area andSparse Canopy Reduce ET,

    too60

    80

    100

    120

    140

    160

    180

    140

    Quercus alba (Wilson et al)Quercus douglasii (Xu and Baldocchi)

    20 40 60 80 100 120 140 160 180

    20

    40

    Sh t i

    Vcm

    ax

    20

    40

    60

    80

    100

    120

    Ps Capacity must be Great,For Short Periodθ v

    (%)

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.05 m0.50 m

    Short growing season with available moisture

    DOY100 150 200 250 300 350

    0

    Broadleaved, Deciduous Trees

    250

    300

    0.0

    Savanna, 2005

    600

    700

    StomatalClosure so

    Evaporation >Precipitation

    Leaf N and Leaf Thicknessmust support Ps

    Machinery

    60 80 100 120 140 160 180 200

    Am

    ass

    (nm

    ol g

    -1 s

    -1)

    0

    50

    100

    150

    200

    Quercus douglasii

    0 50 100 150 200 250 300 350

    Wat

    er F

    lux

    0

    100

    200

    300

    400

    500

    ET ppt

    Specific Leaf Area (m2 g-1)

    60 80 100 120 140 160 180 200

    data of Reich et al and Xu and Baldocchi

    Day

  • Interannual Variation ET:Grassland

    Vaira 2004

    5

    4

    2001: 301 mm 2002: 292 mm 2003: 353 mm 2004 : 284 mm

    mm

    d-1

    ) 3

    E (m

    1

    2

    0 50 100 150 200 250 300 3500

    1

    Day

    0 50 100 150 200 250 300 350

  • Inter annual Water BalanceOak Savanna

    5

    2002 389

    4

    2002: 389 mm2003: 422 mm2004: 340 mm2005: 484 mm

    ET

    (mm

    d-1

    )

    2

    3

    E

    1

    Day

    0 50 100 150 200 250 300 3500

    Day

  • Savanna, 20041.0

    RH

    vpd

    0 4

    0.6

    0.8

    0.0

    0.2

    0.4VPDRH

    Day

    0 50 100 150 200 250 300 350

    0 4

    0.5

    A measure for downscaling ET

    met

    ric S

    oil M

    oist

    ure

    0.2

    0.3

    0.4

    with Drought???

    0 50 100 150 200 250 300 350

    Vol

    um

    0.0

    0.1 surface0.20 m0.50 m

    Day

    Fisher et al. Remote Sensing Environment, in press