56
PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION OF THE POINT KINETICS EQUATIONS POINT REACTOR MODEL SOLUTION OF THE POINT KINETICS EQUATIONS FOR A REACTIVITY STEP APPROXIMATED SOLUTIONS FOR A TIME-DEPENDENT INSERTED REACTIVITY PROBLEM STATEMENT PROMPT JUMP APPROXIMATION PROMPT APPROXIMATION TRANSFER FUNCTION OF THE REACTOR TRANSFER FUNCTION WITHOUT FEEDBACK TRANSFER FUNCTION WITH FEEDBACK

PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

Embed Size (px)

Citation preview

Page 1: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

1

CH.V: POINT NUCLEAR REACTOR KINETICS

POINT KINETICS EQUATIONS

• INTRODUCTION• INTUITIVE DEDUCTION OF THE POINT KINETICS EQUATIONS• POINT REACTOR MODEL • SOLUTION OF THE POINT KINETICS EQUATIONS FOR A

REACTIVITY STEP

APPROXIMATED SOLUTIONS FOR A TIME-DEPENDENT INSERTED REACTIVITY

• PROBLEM STATEMENT• PROMPT JUMP APPROXIMATION• PROMPT APPROXIMATION

TRANSFER FUNCTION OF THE REACTOR• TRANSFER FUNCTION WITHOUT FEEDBACK• TRANSFER FUNCTION WITH FEEDBACK

Page 2: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

2

REACTOR DYNAMICS OF POWER TRIPS – FAST TRANSIENTS

• SYSTEM OF EQUATIONS• SOLUTION OF THE EQUATIONS OF THE DYNAMICS

APPENDIX: CORRECT DEDUCTION OF THE POINT KINETICS EQUATIONS

Page 3: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

3

V.1 POINT KINETICS EQUATIONS

INTRODUCTIONNumerical solution of the time-dependent Boltzmann eq.

complex simplification if flux factorization possible:

Flux shape unchanged and

amplitude factor T alone accounts for time-dependent variations

Problem separable?

Possible only in steady-state regime and with operators J, K constant unrealistic

But acceptable for perturbations little affecting the flux shape around criticality

),,,().(),,,( tvrtTtvr

),,().(),,,( vrtTtvr

T : amplitude factor, fasttime-dependent variations

: shape factor, spatial and slow time-dependent variations

Page 4: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

4

Reasoning

First Use of the following partial factorization

(+ normalization condition on the factors)in the Boltzmann equation with delayed n (see Appendix)

Secondly Impact of the hypothesis of exact factorization of the time-

dependent part

Deduction of a time-dependent model for the reactor evolution (seen as one point point kinetics) subject to perturbations w.r.t. the critical steady-state regime

Exact and approximated solutions depending on the perturbation type

),,().(),,,( vrtTtvr

),,,().(),,,( tvrtTtvr

Page 5: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

5

INTUITIVE DEDUCTION OF THE POINT KINETICS EQUATIONS

Evolution of the n population without delayed n and sources (see chap.I):

where : expected lifetime of a n absorbed in the fuel / cycle Considering the amplitude function (TN), delayed n and an

independent source:

where ci(t): concentration of precursors of group i

NB: factorization of in T. to be made dimensionally consistent with ci

)(1)(

tNk

dt

tdN eff

)()()(1)1()( 6

1

tqtctTk

dt

tdTii

i

eff

Page 6: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

6

Introduce s.t.

and : reactivity, relative distance to criticality

Then:

CommentsPrompt-critical threshold? Criticality obtained only with prompt nkeff = (1 - )-1

= Expressed in % or in pcm, or in $ (1$ if = )

Interpretation of the characteristic times in the one speed case?

Proba of an absorption/u.t.: v.a : destruction time

Close to criticality in an media : keff = J/K = f/a

: production time of the n criticality iff

eff

eff

k

k 1

av1

)()()()( 6

1

tqtctTdt

tdTii

i

effk.

fv1

Page 7: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

7

POINT REACTOR MODEL

Amplitude function:

Precursor concentration in group i:

Criticality?Steady-state situation with = 0 and q(t) = 0

Comment

Variations of T(t) variation of , hence of the power, hence of temperature

= f(to) point kinetics eq. linear system usually

Neglecting this feedback, (t) = problem data = external reactivity inserted in the reactor

Exact deduction of the point kinetics equation: see appendix

)()()()( 6

1

tqtctTdt

tdTii

i

)()()(

tctTdt

tdcii

ii

(t)

Page 8: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

8

SOLUTION OF THE POINT KINETICS EQUATIONS FOR A REACTIVITY STEP

Problem

Prompt move of the control rods in an initially steady and critical reactor without source

0,)(

0,0)(

tt

tt

i

ii p

cpTpc

i

)0()()(

i

i

i

ii

pp

i

pc

i

p

TpT

))0(()(

)0(

)0()0( TcCI i

ii

)](1[

1

)0(

)(

pGpT

pT

i

i

i pppG

11)]([ 1

Laplace

>0

<0

/ G(p)

Page 9: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

9

Inversion of T(p)

Identification of the poles, hence of the roots of

Rem: p = 0 : not a pole (without source)!

See figure on previous slide: 7 real poles

< 0 : 7 poles > 0 : 6 negative poles, 1 positive po > 0 > p1 > … > p6

Asymptotic period of the reactor:

Period – reactivity relation:

)( pG

tpo

ttpk

k

ok eTeTtT

6

0

)(

))(')((1

1

)](1[lim

)0( kkk

k

pp

k

pGppGpGp

pp

T

Tk

2)(1

1

11

ik

ii

i

ik

i

i

p

p

with

)/1(

G

||/1 op

(inhour equation )

(measurement of measurement of )

Page 10: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

10

Limit cases – inhour equation:

1. Large reactivity: > i << 1

Growth of independent of the delayed n above the prompt-critical threshold, i.e. keff(1 - ) = 1

2. Small reactivity: 0 < << i >> 1

mean lifetime of the delayed n weighted by their relative fraction

Growth of governed by the emission of the delayed n

3. Reactivity < 0

Decrease of governed by the lifetime of the delayed n

)(1

1

11 1

i

i

i

i i

i

i /

1/1

(indep. of )

0

(prompt-criticalthreshold)

1

1

11 i

i

i

i

i

i

i

1

11

with

Page 11: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

11

Point model with one group of delayed n

Poles ? Solution of

p

p1

1

)()()()(

tctTt

dt

tdT

)()()(

tctTdt

tdc

2

4)( 2

2

1

2

1

ttT

tT

expexp

)0()(

and

Transient quicklydamped

Asymptoticbehaviour

Page 12: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

12

Possible transients and definition of the unique equivalent group

2 << i slow transients case < beforeCharacteristics of the unique group?

= harmonic mean of the i’s (see above):

2 >> i (but still < ) Inhour equation for p 2:

Characteristics of the unique group?

= arithmetic mean of the i’s:

2 >>> i asymptotic trend of the inhour eq. with > and inversion of the two terms of T(t) (previous slide)

Term increasing with period Tp s.t.

Tp = inverse prompt-critical period

i

i

i pp

11 )1()1(2~

pp

pp i

ii

p i

i

i

i

/1

i

ii

p

p1

1et

1

1

pT

Page 13: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

13

V.2 APPROXIMATED SOLUTIONS FOR A TIME-DEPENDENT INSERTED REACTIVITY

PROBLEM STATEMENT

Exact solution of the point reactor model equations? Possible only for a reactivity step inhour equation

Other cases? Numerical calculation or possible approximations:

Transients developing on characteristic times long compared to the generation time of the prompt n

governed by the delayed n prompt jump approximation

Very fast transients, beyond the prompt-critical threshold

effect of the prompt n only prompt approximation

Page 14: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

14

PROMPT JUMP APPROXIMATION

Limit case for 0 Characteristic time of the transient >> Transient governed by the delayed n

Dvp of T(t) in series w.r.t. :

Elimination of c(t) in the point reactor model with 1 group of delayed n:

Replacement of T(t) by its dvp and order 0 in :

Rem: if transient governed by delayed n, what is the consequence on the upper limit of ?

)()(0

tTtT kk

k

0))()(())((2

2

Tttdt

dTt

dt

Td

)(

)0(.'

)'(

)'(exp)(

tdt

t

ttT

t

oo

)()(

))()(()(tT

t

tt

dt

tdTo

o

Page 15: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

15

Ex: reactivity step with : step function

Discontinuity of T(t) at the originAlternative to integrating the Dirac peak:

If steady-state regime before inserting the step:

As c(t) continuous in t = 0:

Prompt jump approximation in the 1-group result

)(.)( tt

)0()0( cT

)0()0(0 cT

)0()0(

TT

t

t

oeTdtTtT )0('exp).0()(

)(t

and

Page 16: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

16

Ex2: reactivity ramp

Ex3: sawtooth

For t > t1:

aa at

t

atto

o e

T

tT

211 )1()1(

1

)0(

)()1()2(

att )(

)1()1()0(

)(aat

t

o

o e

T

tT

Page 17: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

17

Order 1

with previously found

Let

Steady-state progressively reached we set

Moreover if , we have

iff

Validity condition for the prompt jump approximation

0)()( 11

T

dt

dTT

dt

dT

dt

do

o

)()(

))()(()(tT

t

tt

dt

tdTo

o

)()()())(()()( 11 tTttTttTtdt

do

)())((

)()(

)( 1 tTt

tTt

tF o

')'()'()()( 1 dttTtFtFt

0)()( 1 TTo

oTT 1 oo TtTtT

)()(

)()(

21

||

Page 18: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

18

Inverse of the instantaneous period

By definition:

Prompt jump approximation:

T

c

dt

tTdt ii

i

)(ln

)(

)()(

iii

iii

i cc

ct

)(tPJ

Page 19: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

19

PROMPT APPROXIMATION

Transients beyond the prompt-critical threshold ( superprompt)Delayed n neglected (once (t) > !!)

with To s.t. (To) , to be determined from T(0)

Step

To ? Obtained from the model with 1 group of delayed n for very fast transients

')'(

exp.)( dtt

TtTt

oo

)()()(

tTt

dt

tdT

)(.)( tt ,

)0(TTo

tTtT o

exp.)(and

Page 20: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

20

RampTo ? Fast transient accounting for the delayed n while

neglecting their variation in time:

with and s.t.

Prompt-critical threshold: tp = /a = p

We also have

and

Prompt approximation:

Rem: which paradoxical result does one get when using the prompt approximation on a non-superprompt transient?

att )(

)0()()()(

TtTt

dt

tdT

)0()0( Tcii

i

'"

exp)0(

''

exp)0()('

dtatT

dtat

TtTt

t

t

o

t

o

'2)0(

222 )'()( deeeT ppp

op

ta

2

a

p 2

a

tat

p

22)(

222

))()(()0()(22)(

ppp erferfeeTtT pp

)()0()()(2

ppoppc erfeTbeforeTtTT p

with

''

exp.)( dtat

TtTt

tpcp

Page 21: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

21

Page 22: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

22

V.3 TRANSFER FUNCTION OF THE REACTOR

TRANSFER FUNCTION WITHOUT FEEDBACK

Point reactor kinetics model:

if (t) = 0 t 0

Hence

)()(

'))0()'(.(

))0()(()(

)'(6

1

tTt

dtTtTe

TtTdt

tdT

ttt

o

ii

i

i

)()()()( 6

1

tctTt

dt

tdTii

i

)()()(

tctTdt

tdcii

ii

pp

T

p

TpT

i

ii

i

1

)(1

)0()(

)()(

TpG

L

L

Page 23: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

23

We thus have

with

G(p) rational fct with Bj, Sj = f() known

For limited relative variations

we have

Transfer function of the reactor

Periodic variations of (t) :

Output of the reactor :

tSj

j

jeBtg )(

')'()'(

)'()0()( dttTt

ttgTtTt

o

))(()(1

pGtg

L

1)0(

)0()(

T

TtT

)()0()()0(

)()( pTpG

p

TpTpT

)(

).0(

)()(

pT

pTpW )( pG

i

i

i Sp

B

tjet .Re)(

.).(Re

)0(

)0()( tjejWT

TtT

Page 24: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

24

Amplitude and phase of W?

Model with 1 group of delayed n

based on the figures giving |W()| and W() for :

The smaller , the better the reactor responds to high-frequency variations of

Negligible influence of as soon as becomes low

])([

)()(

pp

ppW

][

)(

pp

p

p << << / W(p) / p (/).exp(-j/2)

<< p << / W(p) 1 1

/ << p W(p) /(p) /().exp(-j/2)

comme

Page 25: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

25

Bode diagram of the transfer function

ln|W()|

W()

/

Page 26: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

26

Validity limits

Insertion of a sinusoidal reactivity:(t) = /100.sin(t)

Transfer fct with 1G and 6G

Point reactor kinetics equations

t

t

T(t)/T(o)

T(t)/T(o)

(differences?)

Page 27: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

27

Insertion of a sinusoidal reactivity:(t) = 5/100.sin(t)

Transfer fct with 1G and 6G

t

t

T(t)/T(o)

T(t)/T(o)

Point reactor kinetics equations

Page 28: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

28

Insertion of a sinusoidal reactivity:(t) = 15/100.sin(t)

t

t

T(t)/T(o)

T(t)/T(o)

Point reactor kinetics equations

Transfer fct with 1G and 6G

Page 29: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

29

Insertion of a sinusoidal reactivity:(t) = 70/100.sin(t)

t

t

T(t)/T(o)

T(t)/T(o)

Transfer fct with 1G and 6G

Point reactor kinetics equations

Page 30: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

30

Rem: transfer function: applicable only if (t).(T(t)-T(0)) is negligible

Verification: prompt jump approximation for (t) = o + .sin(t)

Then

Oscillating flux but both the expected and the maximum values exponentially increase with a period given by

This period tends to if

Negative constant reactivity to force in order to hinder the flux from drifting

')'(

)'()'(

)0(

)(ln dt

t

tt

T

tT t

o

')'sin(.

)'cos())'sin(.(dt

t

tt

o

ot

o

1

22

]1

)()1(

1.[1

o

0)(11 2

o

Page 31: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

31

If o = 0 and (/) << 1, then

Reminder: prompt jump approximation valid iff

TRANSFER FUNCTION WITH FEEDBACK

Reactivity: depends on parameters i (fuel to, moderator to, void rate…)

Steady-state: i = 0 : variations with respect to the steady-state values

i : solution of evolution equations linking these variables to the reactor power

After a possible linearization:

)()( tt iii

2

2

1

o

ii

)]0()(.[ TtTBAdt

d

Page 32: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

32

Therefore

reactivity :

Let ext(t) : external reactivity (i.e. controlled by the plant pilot: control rods, poisons…) total reactivity:

Yet

Effective transfer function associated to a feedback effect

dTTBet Att

o)]0()([)( )(

T

i

......1

,

dTTBe Att

o)]0()([, )(

)()(,)( 1 pTBApIp

)()( pTpR

)()()( ttt ext

)().(

)0(

)( ppW

T

pT

)(.)()()0(1

)(

)0(

)( p

pRpWT

pW

T

pT ext

avec

Page 33: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

33

Representation of the feedback in the case of a fuel temperature reactivity coefficient (see chapter 8) and a void rate reactivity coefficient

Schematic of the feedback

+ KineticsThermal model

of the fuel

Hydrodynamic model

Void ratecoefficient

Fuel temperaturecoefficient

power

W(p) Heatdelivered tothe coolant

ext

+ W(p) T / T(0)ext /

R(p)T(0)

Page 34: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

34

V.4 REACTOR DYNAMICS OF POWER TRIPS – FAST TRANSIENTS

Particular class of kinetics problems: accidental insertion of a > (prompt-critical threshold)

Delayed n have quasi no effect

Power very fast + fast apparition of a compensated that mitigates the transient

Need to characterize these transients to evaluate the damage induced

In these cases, modification of flux shape: limited in a 1st approximation point kinetics

Amplitude T(t) directly linked to the power P(t)

Page 35: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

35

SYSTEM OF EQUATIONS

with : reactor “power”

Thermal conduction negligible if transient fast E fct of temperature T only (adapted if compensated due to Doppler effect (see chap.VIII) and to dilatation/expulsion of moderator)

Compensated reactivity? Detailed core calculations with all thermal exchanges,

including possible ebullition

semi-empirical correlation:

with b, n > 0 and : delay (conduction effect or delay till boiling onset)

dt

tdEtP

)()(

)()(]))(()(

[)( 6

1

tctPtEt

dt

tdPii

i

ext

)()(

)(tctP

dt

tdcii

ii

)(.)( tEbE n

et

Page 36: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

36

Comments

Analytical solution: impossible, even without delayed n Numerical solution: feasible, but unobvious link with

experimental results to fit correlation parameters et : sometimes time-dependent Peak power: up to 106 x nominal power realistic

estimation instead of accuracy

Elimination of the precursors

with

First problem: n = 1 and = 0 Initial time at the prompt critical level = o(0) = 0

')'()()()( )'(

6

1

dttPetPtdt

tdP ttti

ii

i

)()(

)(tEbt

tn

ext )()( tbEt no

dt

tdEtP

)()( and

Page 37: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

37

SOLUTION OF THE DYNAMICS EQUATIONS

Without delayed n:

with

Hence

If the accidentally inserted reactivity writes as follows:

We have for t > 0 :

)()()(

tPtdt

tdP

)()()( tbPtt o

bP

tPt

d

tdP

o

)()()(

attHt oo )()(

)( bPaP

dPd

dt

PdPtPb

P

tPat o

oo

ln))((2

)(ln2)( 2

(switch from + to – at the maximum of P(t))

Page 38: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

38

Reactivity step: a = 0

Hence

Solving with respect to E:

Replacing in the expression of P(t):

.

))((2)( 22oo PtPbt

2))()(( tbEto

ooo Pdt

dEtEtE

bPtP )()(

2)( 2

Rt

o

o

Rto

eR

Re

b

RtE

1

1.)( oo bPR 22

2

2

1

..2

)(

Rt

o

o

Rt

o

o

eR

R

e

R

R

b

RtP

2

)(cosh.

22

2mttR

b

R

2

2ln.

1

RR

R

Rt o

o

om

with

Page 39: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

39

If then

Hence with

and

Max of P(t) ? (t) = 0

bP oo 2

2

o

oo

bPR

2

2

)1(

)(Rt

Rt

o ze

ez

P

tP

o

o

bPz

22

)(0)( mom tbEt

bPtP o

m 2)(

2

max

bEtE o

m

max)(

bE o2

maxmax ETP

o

T2

Rt

Rt

o

o

ze

ez

P

tE

1

)1()(

Equivalent half line widthof the power trip : T s.t.

ze mRt with

Page 40: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

40

Page 41: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

41

Case n 1

We obtain:

with

Energy

ntn

ntn

o

o

ne

nePtP

/11

/11

max )1(

)1(.)(

n

no

o bn

nPP

/1

/11

max 1

n

no

bE

/1

/1

max

max/1)1( EnE n

asymmetric impulsionfor n 1

Page 42: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

42

Compensated with a delay and n 1

If >> 0 : feedback due to values of E corresponding to a time interval where the feedback does not yet apply

if o >> 1

P max at t = T t.q.

o

t

ott

oo

t

o

o

oe

PdtePdttPtE

1

'')'()( '

ntno

no

ooe

bP

dt

tPd]1[

)(ln )(

)(

tn

no

no

ooe

bP

o

ntn

no

no

oo n

eebPt

P

tP oo

][)(ln

)(

)(

Tn

no

no

ooe

bP

]1

)(exp[.)( )(/1

1

Ttnon

o o

nn

en

Ttb

tP

]1

exp[./1max

1

nbP on

onn

and

Page 43: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

43

Reactivity ramp: o = 0

Max of P(t) ? (t) = 0

Energy:

Impulsion of P keeps symmetric :

Let t = ½ -line width of the transient at half peak:

)1)(

(2)(

ln2)(ln

o

oo P

tPbP

P

tPa

dt

tPd

)(0)( mmm tbEatt

)( mm tEa

bt

Ea

btm 2

a

bP

PP

PPqttPP o

o

om

1/

)/ln(..)(

max

maxmax

oo

o

o

P

P

PP

PPPP

PP

P

dP

at

max

max

2/

ln1/1/

ln2

1 max

max

Equivalent to astep o = atm

Page 44: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

44

It is shown that t/2tm varies from 0.125 to 0.027 for Pmax/Po ranging from 103 to 1014

Power trip width: very small compared to the time necessary to reach Pmax

compensated does almost not play before all external is applied

Thus

Yet the reactor instantaneous period is minimum at tM s.t.

Then

It can also be shown that b.Ef .t = Cst

compensated x power peak width = Cst

o

m

P

Pat max2

ln2

oo

M

o bP

a

P

tP

P

Pln

)(lnln max

)(0)( MM tbPat

b

aP max

(boils down to setting b0 in the dynamics)

Page 45: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

45

Comparison with experiments on test reactors

Different n on the rising and descending sides of the peak

Page 46: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

46

Page 47: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

47

Influence of the delayed n

Point kinetics equation expressed in energy:

Time origin at max power

1st approx. of E without delayed n

''

)'()()]()([

)( )'(6

12

2

dtdt

tdEe

dt

tdEtbEt

dt

tEd ttti

ii

oi

')'(')0(')]0()0([0 '06

1

dttEeEbE tii

io

i

2cosh)0('

2cosh

2)(' 22

2 RtE

Rt

b

RtE

'2

'cosh)0(')0(')]0()0([ 2'06

1

dtRt

eEEbE tii

io

i

'2

'cosh)0(

2cosh)0(' 2'06

1

20dt

Rtedt

RtbE ti

ii

oi

Page 48: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

48

As and :

we get:

Effect of delayed n? P does not go down to the initial power level

1o

ii

R

1cosh 2

uduo

)2(2

1)0(' 2

max ii

iob

EP

uduR

EEEo

m2cosh

2)0(')0(

)2(1 2

ii

iobR

Page 49: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

49

APPENDIX: CORRECT DEDUCTION OF THE POINT KINETICS EQUATIONS

Reminder: Transport equation with delayed n

Let

),,,(),(4

)(),,,(])1[(

),,,(1 6

1

tvrQtrCv

tvrKJt

tvr

v iii

io

t

trCi ),( ),( trCii

dvdtvrvrfo),,,(),(

4

i

po JJ )1(

ifoii Jdvdvrv

),(4

)(

4

),,,(),(4

)(),,,()]()([

),,,(1 6

1

tvrQtrCv

tvrtKtJt

tvr

v iii

ip

t

trCv ii ),(

4

)(

),,,()(4

)(),( tvrtJ

vtrC i

iii

iip JJJ

Page 50: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

50

Deducing the kinetics equationsNormalization of the flux factorization:

After replacing by T, dividing by T, multiplying by * and integrating on all variables but t:

dvdrdtvrv

vro

),,,(1.),,(*

4

1),,,(1,),,(* tvrv

vr

),()(

1)

4

)(,(

)(

1))]()([,(

)(

)(

1 **6

1

* QtT

Cv

tTtKtJ

dt

tdT

tT iii

ip

))(,()4

)(,(

)(

1)

4

)(,(

)(

1 ***

tJv

CtT

Cv

dt

d

tT ii

iiii

Page 51: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

51

Let

Definitions

Generation time:

One-speed case:

Inverse of the expected nb of fission n produced /u.t., induced by 1 n of velocity v

Effective fractions of delayed n

)4

)(,()( *

ii

i Cv

tc

),()( * Qtq

)]()([)( tKtJtA p )()()())(,(

)( 6

1

* tqtctTtAdt

tdTii

i

)()())(,()( * tctTtJ

dt

tdciii

i

),,,()(),,,(

),,,(1,),,(

)(*

*

tvrtJvr

tvrv

vrt

)(

1)(

tvt

f

),,,()(),,,(

),,,()(,),,()(

*

*

tvrtJvr

tvrtJvrt i

i

),,,()(,),,()( * tvrtJvrt i

)()( tt ii

(PWR : ~ 10-5s)

Page 52: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

52

Reactivity

Dynamic reactivity:

Since

we have

Static reactivity:

with keff = eigenvalue of the stationary problem:

= relative distance to criticalityExpressed in % or in pcm, or in $ (1$ = : prompt-critical

state)

),,,()(),,,(

),,,())()((,),,()(

*

*

tvrtJvr

tvrtKtJvrt

)(),,,()(,),,()( * ttvrtAvrt ii

),,,()(),,,(

),,,()(,),,()(

*

*

tvrtKvr

tvrtJvrtkeff

)(

1)()(

tk

tkt

eff

eff

eff

eff

k

k 1

),,(),,(1

vrvrJkeff

),,(),,( vrvrK

Page 53: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

53

Equations for the amplitude factor

Choice of normalization ?

s.t. time-dependent fluctuations ofminimal

Weight fct = sol. of the adjoint syst. of the problem stationary

Towards the point reactor model

Up to now, NO approximationIf time-dependent variations in the shape factor neglected:( exact flux factorization in its time-dependent and spatio-energetic parts)

)()()()(

)()()( 6

1

tqtctTt

tt

dt

tdTii

i

)()()(

)()(tctT

t

t

dt

tdcii

ii

),,(* vr ),,,( tvr

)()()()()( 6

1

tqtctTt

dt

tdTii

i

)()(

)(tctT

dt

tdcii

ii

and

(interpretation?)

Page 54: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

54

Alternative expression of the point kinetics model

Let

One-speed case:

: destruction time of the n

)(

1)(

tvt

a

)()()(1)1)(()( 6

1

tqtctTtk

dt

tdTii

i

eff

)()()(

tctTkdt

tdcii

eff

ii

),,,()(),,,(

),,,(1,),,(

)(*

*

tvrtKvr

tvrv

vrt

)().( tkt eff

Inverse of the expected nb ofn absorbed /u.t. per emitted n

)(t

Criticality iff

Page 55: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

55

CH.V: POINT NUCLEAR REACTOR KINETICS

POINT KINETICS EQUATIONS

• INTRODUCTION• INTUITIVE DEDUCTION OF THE POINT KINETICS EQUATIONS• POINT REACTOR MODEL • SOLUTION OF THE POINT KINETICS EQUATIONS FOR A

REACTIVITY STEP

APPROXIMATED SOLUTIONS FOR A TIME-DEPENDENT INSERTED REACTIVITY

• PROBLEM STATEMENT• PROMPT JUMP APPROXIMATION• PROMPT APPROXIMATION

TRANSFER FUNCTION OF THE REACTOR• TRANSFER FUNCTION WITHOUT FEEDBACK• TRANSFER FUNCTION WITH FEEDBACK

Page 56: PHYS-H406 – Nuclear Reactor Physics – Academic year 2014-2015 1 CH.V: POINT NUCLEAR REACTOR KINETICS POINT KINETICS EQUATIONS INTRODUCTION INTUITIVE DEDUCTION

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

4-2

01

5

56

REACTOR DYNAMICS OF POWER TRIPS – FAST TRANSIENTS

• SYSTEM OF EQUATIONS• SOLUTION OF THE EQUATIONS OF THE DYNAMICS

APPENDIX: CORRECT DEDUCTION OF THE POINT KINETICS EQUATIONS