16
PHYS 2300 and 2305: General Physics I and II Formulas Chapter 1 Chapter 2 Trig Formulas sin = Opposite Hypotenuse = sin βˆ’1 ( Opposite Hypotenuse ) cos = Adjacent Hypotenuse = cos βˆ’1 ( Adjacent Hypotenuse ) tan = Oppostie Adjacent = tan βˆ’1 ( Oppostie Adjacent ) 2 = 2 + 2 Velocity Average Velocity = = βˆ†Μ… βˆ† = βˆ† Μ… βˆ† 2.2 Average Speed = 2.1 Instantaneous Velocity = lim βˆ†β†’0 βˆ† βˆ† 2.3 Vectors Vector Addition by Components + = Where = + = + Then to find use 2 = 2 + 2 Acceleration Average Acceleration = βˆ† βˆ† 2.4 Instantaneous Acceleration = lim βˆ†β†’0 βˆ† βˆ† 2.5 Motion of a particle with constant acceleration = 0 + 2.4 = 1 2 ( 0 + ) or = 1 2 ( 0 + ) 2.7 = 0 + 1 2 2 Or = 0 + 1 2 2 2.8 2 = 0 2 + 2 or 2 = 0 2 + 2 2.9

PHYS 2300 and 2305: General Physics I and II Formulas

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

PHYS 2300 and 2305: General Physics I and II Formulas

Chapter 1

Chapter 2

Trig Formulas

sin πœƒ =Opposite

Hypotenuse πœƒ = sinβˆ’1 (

Opposite

Hypotenuse )

cos πœƒ =Adjacent

Hypotenuse πœƒ = cosβˆ’1 (

Adjacent

Hypotenuse )

tan πœƒ =Oppostie

Adjacent πœƒ = tanβˆ’1 (

Oppostie

Adjacent)

π‘Ž2 = 𝑏2 + 𝑐2

Velocity

Average Velocity 𝑣 =π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘

π‘‘π‘–π‘šπ‘’=

βˆ†οΏ½οΏ½

βˆ†π‘‘ π‘œπ‘Ÿ 𝑣 =

βˆ†οΏ½οΏ½

βˆ†π‘‘ 2.2

Average Speed π‘Žπ‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ 𝑠𝑝𝑒𝑒𝑑 =π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

π‘‘π‘–π‘šπ‘’ 2.1

Instantaneous Velocity 𝑣 = limβˆ†π‘‘β†’0

βˆ†οΏ½οΏ½

βˆ†π‘‘ 2.3

Vectors

Vector Addition by Components

𝐴 + �� = 𝐢 Where

𝐢π‘₯ = 𝐴π‘₯

+ 𝐡π‘₯

𝐢𝑦 = 𝐴𝑦

+ 𝐡𝑦

Then to find 𝐢 use 𝑐2 = π‘Ž2 + 𝑏2

Acceleration

Average Acceleration οΏ½οΏ½ =βˆ†π‘£

βˆ†π‘‘ 2.4

Instantaneous Acceleration π‘Ž = lim

βˆ†π‘‘β†’0

βˆ†οΏ½οΏ½

βˆ†π‘‘ 2.5

Motion of a particle with constant acceleration

𝑣 = 𝑣0 + π‘Žπ‘‘ 2.4

π‘₯ =1

2(𝑣0 + 𝑣)𝑑 or 𝑑 =

1

2(𝑣0 + 𝑣)𝑑 2.7

π‘₯ = 𝑣0𝑑 +1

2π‘Žπ‘‘2 Or 𝑑 = 𝑣0𝑑 +

1

2π‘Žπ‘‘2 2.8

𝑣2 = 𝑣02 + 2π‘Žπ‘₯ or 𝑣2 = 𝑣0

2 + 2π‘Žπ‘‘ 2.9

Chapter 3

Chapter 4

Average Velocity/Acceleration

Average Velocity 𝑣 =βˆ†οΏ½οΏ½

βˆ†π‘‘ π‘œπ‘Ÿ 𝑣 =

βˆ†οΏ½οΏ½

βˆ†π‘‘ 2.2

Average Acceleration οΏ½οΏ½ =βˆ†π‘£

βˆ†π‘‘ 2.4

Projectile Motion

X direction Y direction

𝑣π‘₯ = 𝑣0π‘₯ + π‘Žπ‘₯𝑑 𝑣𝑦 = 𝑣0𝑦 + π‘Žπ‘¦π‘‘

π‘œπ‘Ÿ 𝑣𝑦 = 𝑣0𝑦 + 𝑔𝑑

3.3

π‘₯ =1

2(𝑣0π‘₯ + 𝑣π‘₯)𝑑

or 𝑑 =1

2(𝑣0π‘₯ + 𝑣π‘₯)𝑑

𝑦 =1

2(𝑣0𝑦 + 𝑣𝑦)𝑑

or β„Ž =1

2(𝑣0𝑦 + 𝑣𝑦)𝑑

3.4

π‘₯ = 𝑣0π‘₯𝑑 +1

2π‘Žπ‘₯𝑑2

or 𝑑 = 𝑣0π‘₯𝑑 +1

2π‘Žπ‘₯𝑑2

𝑦 = 𝑣0𝑦𝑑 +1

2π‘Žπ‘¦π‘‘2

or β„Ž = 𝑣0𝑦𝑑 +1

2𝑔𝑑2

3.5

𝑣π‘₯2 = π‘£π‘œπ‘₯

2 + 2π‘Žπ‘₯π‘₯ or 𝑣π‘₯

2 = π‘£π‘œπ‘₯2 + 2π‘Žπ‘₯𝑑

𝑣𝑦2 = π‘£π‘œπ‘¦

2 + 2π‘Žπ‘¦π‘¦

or 𝑣𝑦2 = π‘£π‘œπ‘¦

2 + 2π‘”β„Ž

3.6

Relative Motion

𝑣𝐴𝐢 = 𝑣𝐴𝐡 + 𝑣𝐡𝐢 𝑣𝐴𝐡 = βˆ’π‘£π΅π΄

Newton’s Second Law

General Ξ£οΏ½οΏ½ = π‘šοΏ½οΏ½

4.1

Component form Σ𝐹π‘₯ = π‘šπ‘Žπ‘₯ Σ𝐹𝑦 = π‘šπ‘Žπ‘¦

4.2

Gravitational Force

Gravitational Force

𝐹 = πΊπ‘š1π‘š2

π‘Ÿ2

4.3

Weight

W=mg

Where 𝑔 = πΊπ‘š1

π‘Ÿ2

G=Universal Gravitational Constant =6.67π‘₯10βˆ’11 π‘π‘š2/π‘˜π‘”2

Friction Static Friction (maximum)

π‘“π‘ π‘šπ‘Žπ‘₯ = πœ‡π‘ πΉπ‘ 4.7

Kinetic Frictional π‘“π‘˜ = πœ‡π‘˜πΉπ‘ 4.8

Chapter 5

Chapter 6

Speed 𝑣 =2πœ‹π‘Ÿ

𝑇 5.1

Centripetal Acceleration π‘Žπ‘ =

𝑣2

π‘Ÿ 5.2

Centripetal Force 𝐹𝑐 =π‘šπ‘£2

π‘Ÿ 5.3

Banked Curve π‘‘π‘Žπ‘›πœƒ =𝑣2

π‘Ÿπ‘” 5.4

Satellites in circular orbits

𝑣 = βˆšπΊπ‘€πΈ

π‘Ÿ

𝑇 =2πœ‹π‘Ÿ3/2

βˆšπΊπ‘€πΈ

5.5 5.6

NOTE:

ME mass of earth = 5.98x1024kg rE radius of earth 6.38x106m G=6.67x10-11 NΒ·m2/kg2

Vertical Circular Motion

1) 𝐹𝑐 = 𝐹𝑁 βˆ’ π‘šπ‘” =π‘šπ‘£2

π‘Ÿ

2) 𝐹𝑐 = 𝐹𝑁 =π‘šπ‘£2

π‘Ÿ

3) 𝐹𝑐 = 𝐹𝑁 + π‘šπ‘” =π‘šπ‘£2

π‘Ÿ

4) 𝐹𝑐 = 𝐹𝑁 =π‘šπ‘£2

π‘Ÿ

Fig. 5.20

Work done by constant Force

π‘Š = (πΉπ‘π‘œπ‘ πœƒ)𝑠 π‘œπ‘Ÿ

π‘Š = (πΉπ‘π‘œπ‘ πœƒ)𝑑 6.1

Kinetic Energy 𝐾𝐸 =1

2π‘šπ‘£2 6.2

Work-Energy Theorem

π‘Š = 𝐾𝐸𝑓 βˆ’ 𝐾𝐸0

=1

2π‘šπ‘£π‘“

2 βˆ’1

2π‘šπ‘£0

2

=1

2π‘š(𝑣𝑓

2 βˆ’ 𝑣02)

6.3

Work done by gravity π‘Šπ‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘¦ = π‘šπ‘”(β„Ž0 βˆ’ β„Žπ‘“) 6.4

Gravitational Potential Energy

𝑃𝐸 = π‘šπ‘”β„Ž 6.5

Alternative Work-Energy Theorem

π‘Šπ‘›π‘ = 𝐸𝑓 βˆ’ 𝐸0

= (𝐾𝐸𝑓 + 𝑃𝐸𝑓) βˆ’ (𝐾𝐸0 + 𝑃𝐸0) 6.8

When π‘Šπ‘›π‘ = 0 𝐸𝑓 = 𝐸0 or

(𝐾𝐸𝑓 + 𝑃𝐸𝑓) = (𝐾𝐸0 + 𝑃𝐸0)

Power 𝑃 =π‘Š

𝑑=

βˆ†πΈ

𝑑= 𝐹𝑣

6.10 6.11

Work done by a variable Force

Area under the curve of a πΉπ‘π‘œπ‘ πœƒ vs. s graph

Conservative Forces: force of gravity, spring force

Non-conservative forces: friction, air resistance

Chapter 7

Chapter 8

Impulse and Momentum

Impulse 𝐽 = οΏ½οΏ½βˆ†π‘‘ 7.1

Linear Momentum, p p=mv 7.2

Impulse-Momentum Theorem

(βˆ‘ οΏ½οΏ½) βˆ†π‘‘ = π‘šπ‘£π‘“ βˆ’ π‘šπ‘£0 = π‘šβˆ†π‘£

Or J=Ξ”p 7.4

Collision

Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest

𝑣𝑓1 = (π‘š1 βˆ’ π‘š2

π‘š1 + π‘š2) 𝑣01

𝑣𝑓2 = (2π‘š1

π‘š1 + π‘š2) 𝑣01

7.8

Conservation of Linear Momentum (in 1D)

οΏ½οΏ½0 = ��𝑓

οΏ½οΏ½0 = ��𝑓 βˆ’ οΏ½οΏ½0 = 0 7.7

Elastic Collision π‘š1𝑣01 + π‘š2𝑣02 = π‘š1𝑣𝑓1 + π‘š2𝑣𝑓2 7.7b

Inelastic Collision π‘š1𝑣01 + π‘š2𝑣02 = (π‘š1 + π‘š2)𝑣𝑓

Conservation of Linear Momentum (in 2D)

π‘š1𝑣01π‘₯ + π‘š2𝑣02π‘₯ = π‘š1𝑣𝑓1π‘₯ + π‘š2𝑣𝑓2π‘₯

π‘š1𝑣01𝑦 + π‘š2𝑣02𝑦 = π‘š1𝑣𝑓1𝑦 + π‘š2𝑣𝑓2𝑦 7.9

Center of Mass

Center of mass location

π‘₯π‘π‘š =π‘š1π‘₯1 + π‘š2π‘₯2

π‘š1 + π‘š2 7.10

Center of mass velocity

π‘£π‘π‘š =π‘š1𝑣1 + π‘š2𝑣2

π‘š1 + π‘š2 7.11

Angular displacement

Ξ”πœƒ = πœƒ βˆ’ πœƒ0

πœƒ =𝑠

π‘Ÿ

8.1

Average angular velocity οΏ½οΏ½ =

βˆ†πœƒ

βˆ†π‘‘ 8.2

Average angular acceleration οΏ½οΏ½ =

βˆ†πœ”

βˆ†π‘‘ 8.4

Motion of a particle with constant acceleration

πœ” = πœ”0 + 𝛼𝑑 8.4

πœƒ =1

2(πœ” + πœ”0)𝑑 8.6

πœƒ = πœ”0𝑑 +1

2𝛼𝑑2 8.7

πœ”2 = πœ”02 + 2π›Όπœƒ 8.8

Relationship between angular variables and tangential variables (t subscript)

𝑣𝑇 = π‘Ÿπœ” π‘Žπ‘‡ = π‘Ÿπ›Ό

8.9 8.10

When no slipping 𝑣 = 𝑣𝑇 = π‘Ÿπœ” π‘Ž = π‘Žπ‘‡ = π‘Ÿπ›Ό

8.12 8.13

Centripetal acceleration π‘Žπ‘ = π‘Ÿπœ”2 8.11

Chapter 9

Moments of Inertia I for various rigid objects of Mass M

Torque and Inertia

Torque 𝝉

𝜏 = 𝐹ℓ 9.1

When at Equilibrium βˆ‘ 𝜏 = 0 9.2

Moment of Inertia

𝐼 = βˆ‘ π‘šπ‘Ÿ2 9.6

Newton’s Second Law for a rigid body rotating about a Fixed axis

βˆ‘ 𝜏 = 𝐼𝛼

9.7

Work, Energy

Rotational work π‘Šπ‘… = πœπœƒ 9.8

Rotational Kinetic Energy 𝐾𝐸𝑅 =

1

2πΌπœ”2 9.9

Angular Momentum 𝐿 = πΌπœ” 9.1

Center of Gravity π‘₯𝑐𝑔 =π‘Š1π‘₯1 + π‘Š1π‘₯1 + β‹―

π‘Š1 + π‘Š2 + β‹― 9.2

See reverse side for moments of Inertia I for various rigid objects of Mass M

Thin walled hollow cylinder or hoop

𝐼 = 𝑀𝑅2

Solid cylinder or disk

𝐼 =1

2𝑀𝑅2

Thin rod, axis perpendicular to rod and passing though center

𝐼 =1

12𝑀𝐿2

Thin rod, axis perpendicular to rod and passing though end

𝐼 =1

3𝑀𝐿2

Solid Sphere, axis through center

𝐼 =2

5𝑀𝑅2

Solid Sphere, axis tangent to surface

𝐼 =7

5𝑀𝑅2

Thin Walled spherical shell, axis through center

𝐼 =2

3𝑀𝑅2

Thin Rectangular sheet, axis along one edge

𝐼 =1

3𝑀𝐿2

Thin Rectangular sheet, axis parallel to sheet and passing though center of the other edge

𝐼 =1

12𝑀𝐿2

Chapter 10

Force Applied 𝐹π‘₯π‘Žπ‘π‘π‘™π‘–π‘’π‘‘

= π‘˜π‘₯ 10.1

Hooke’s Law 𝐹π‘₯ = βˆ’π‘˜π‘₯ 10.2

Frequency cycles per time 𝑓 =

1

𝑇 10.5

Angular frequency

πœ” = 2πœ‹π‘“ = 2πœ‹π‘‡β„ 10.6

Maximum Velocity Simple Harmonic Motion

π‘£π‘šπ‘Žπ‘₯ = π΄πœ” 10.8

Maximum Acceleration Simple Harmonic Motion

π‘Žπ‘šπ‘Žπ‘₯ = π΄πœ”2 10.11

Angular frequency of simple harmonic motion

πœ” = βˆšπ‘˜π‘šβ„ 10.11

Elastic potential energy

π‘ƒπΈπ‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ =1

2π‘˜π‘₯2 10.13

Simple Pendulum (10.16)

Angular Frequency

πœ” = βˆšπ‘”

𝐿

Time Period

𝑇 = 2πœ‹βˆšπΏ

𝑔

Length

𝐿 =𝑇2𝑔

4πœ‹2

Physical pendulum (10.15)

Angular Frequency

πœ” = βˆšπ‘šπ‘”πΏ

𝐼

Time Period

𝑇 = 2πœ‹βˆšπΌ

π‘šπ‘”πΏ

Elastic deformation -stretch and compression (10.17) Perpendicular to Area (A)

Y = constant called Young’s modulus

Force

𝐹 = π‘Œ (Δ𝐿

𝐿0) 𝐴

Change in Length

Δ𝐿 =𝐹𝐿0

π‘Œπ΄

Shear Deformation (change in shape)

Parallel to Area (A) S = constant called the shear modulus

Force

𝐹 = 𝑆 (Δ𝑋

𝐿0) 𝐴

Change in Length

Ξ”X =𝐹𝐿0

𝑆𝐴

Pressure (related to Volume deformation)

𝑃 =𝐹

𝐴 10.19

change in pressure needed to change the volume

B = constant known as the bulk modulus When the volume decreases, βˆ†π‘‰ is negative

βˆ†π‘ƒ = βˆ’π΅ (βˆ†π‘‰

π‘‰π‘œ) 10.20

Chapter 11

Chapter 12

Density 𝜌 =π‘š

𝑉 11.1

Pressure

𝑃 =𝐹

𝐴 11.3

Specific Gravity =𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘ π‘’π‘π‘ π‘‘π‘Žπ‘›π‘π‘’

1.000 Γ— 103 π‘˜π‘”/π‘š3 11.2

Pressure and depth

in a static Fluid

P1 is higher than P2 𝑃2 = 𝑃1 + πœŒπ‘”β„Ž 10.4

Gauge Pressure πœŒπ‘”β„Ž

Archimedes’

principle 𝐹𝐡 = π‘Šπ‘“π‘™π‘’π‘–π‘‘ 11.6

Mass Flow Rate π‘€π‘Žπ‘ π‘  π‘“π‘™π‘œπ‘€ π‘Ÿπ‘Žπ‘‘π‘’ = πœŒπ΄π‘£ 11.7

Volume flow rate 𝑄 = 𝐴𝑣 =𝑉

𝑑

Bernoulli’s Equation 𝑃1 +1

2πœŒπ‘£1

2 + πœŒπ‘”π‘¦1 = 𝑃2 +1

2πœŒπ‘£2

2 + πœŒπ‘”π‘¦2 11.11

Equation of

continuity 𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑣2 11.8

equation of

continuity ( ) 𝐴1𝑣1 = 𝐴2𝑣2

Force to move

Viscous Layer with

constant velocity

𝐹 =πœ‚π΄π‘£

𝑦 11.13

Poiseuille’s law 𝑄 =πœ‹π‘…4(𝑃2 βˆ’ 𝑃1)

8πœ‚πΏ 11.14

Force and Area if

Pressure same 𝐹1/𝐴1 = 𝐹2/𝐴2 π‘œπ‘Ÿ 𝐹2 = 𝐹1 (

𝐴2

𝐴1)

Temperature Scales

Fahrenheit to Celsius

𝐢 =

5

9(𝐹 βˆ’ 32)

Celsius to Fahrenheit

𝐹 =

9

5𝐢 + 32

Celsius to Kelvin K=C+273.15 or 𝑇 =

𝑇𝑐 + 273.15 12.1

Thermal Expansion

Linear Thermal Expansion

βˆ†πΏ = π›ΌπΏπ‘œβˆ†π‘‡ 12.2

Volume Thermal Expansion

βˆ†π‘‰ = 𝛽𝑉0βˆ†π‘‡ 12.3

Heat and Power

Heat and temperature change

βˆ†π‘„ = π‘π‘šβˆ†π‘‡ 12.4

Heat and phase change 𝑄 = π‘šπΏ 12.5

% Relative Humidity π‘ƒπ‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘ƒπ‘€π‘Žπ‘‘π‘’π‘Ÿ π‘£π‘Žπ‘π‘œπ‘‘

πΈπ‘žπ‘’π‘–π‘™π‘–π‘π‘Ÿπ‘’π‘š π‘ƒπ‘€π‘Žπ‘‘π‘’π‘Ÿ π‘£π‘Žπ‘π‘œπ‘‘ @ π‘‘π‘’π‘šπ‘ 12.6

Chapter 13

Heat and Power

Power P=Q/t

Heat Conducted 𝑄 =(π‘˜π΄βˆ†π‘‡)𝑑

𝐿 13.1

Radiant energy

e emissivity 𝜎 = 5.67x10-8 J/(s*m2*K4) T temp in Kelvins A surface area

𝑄 = π‘’πœŽπ‘‡4𝐴𝑑

Net radiant Power

T object Temp in kelvins To environment temp in Kelvins

𝑃𝑛𝑒𝑑 = π‘’πœŽπ΄(𝑇4 βˆ’ 𝑇04) 13.3

Chapter 14

Molecular Mass, Moles, and Avogadro’s Number

Atomic Mass Unit 1 𝑒 = 1.6605 Γ— 10βˆ’27 π‘˜π‘”

Avogadro’s Number 𝑁𝐴 = 6.022 Γ— 1023 π‘šπ‘œπ‘™βˆ’1

Number of Moles, n N number of particles (atoms or molecules)

𝑛 =𝑁

𝑁𝐴

Number of Moles, n m sample mass (g) mass per mole: g/mol

𝑛 =π‘š

π‘šπ‘Žπ‘ π‘  π‘π‘’π‘Ÿ π‘šπ‘œπ‘™π‘’

Mass of a particle π‘šπ‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’ =π‘šπ‘Žπ‘ π‘  π‘π‘’π‘Ÿ π‘šπ‘œπ‘™π‘’

𝑁𝐴

Density 𝜌 =𝑛 βˆ™ π‘šπ‘Žπ‘ π‘  π‘π‘’π‘Ÿ π‘šπ‘œπ‘™π‘’

𝑉

Ideal Gas Law

Ideal Gas law n number of moles R Universal gas constant =8.31 J/(mol *K) T temp kelvins

𝑃𝑉 = 𝑛𝑅𝑇 14.1

Ideal Gas Law (alternative form) N number of particles k Boltzmann’s constant (1.38x10-23 J K-1)

𝑃𝑉 = π‘π‘˜π‘‡ 14.2

Boyle’s and Charles’ Laws

Boyle’s law (when n and T are constant)

𝑃𝑖𝑉𝑖 = 𝑃𝑓𝑉𝑓 14.3

Charles’ law

(n and P are constant)

𝑉𝑖

𝑇𝑖=

𝑉𝑓

𝑇𝑓 14.4

Energy

Average Kinetic Energy for a molecule 𝐾𝐸 =

1

2π‘šπ‘£π‘Ÿπ‘šπ‘ 

2 =3

2π‘˜π‘‡ 14.6

Internal Energy π‘ˆ =3

2𝑛𝑅𝑇 14.7

Diffusion

Fick’s law of diffusion D Diffusion constant Ξ”C is the solute concentration difference between the ends of the channel (same as density)

π‘š =π·π΄βˆ†πΆπ‘‘

𝐿 14.8

Chapter 15

First Law of Thermodynamics

First Law Ξ”π‘ˆ = π‘ˆπ‘“ βˆ’ π‘ˆ0 = 𝑄 βˆ’ π‘Š 15.1

Note: βˆ†π‘ˆ Change in Internal Energy Q (heat) is positive when the system gains heat and negative when it loses heat. W (work) is positive when work is done by the system and negative when work is done on the system.

Monatomic Ideal Gas Internal Energy *R=8.31 J/(mol K)

π‘ˆ =3

2𝑛𝑅𝑇 12.5

Applications of First Law

Process Work Done First Law

Isobaric

(constant pressure)

π‘Š = 𝑃(𝑉𝑓 βˆ’ 𝑉𝑖)

(Eq 15.2) βˆ†π‘ˆ = 𝑄 βˆ’ 𝑃(𝑉𝑓 βˆ’ 𝑉𝑖)

(𝑄 =5

2π‘›π‘…βˆ†π‘‡)

Isochoric

(constant volume) W=0 J βˆ†π‘ˆ = 𝑄 βˆ’ 0𝐽

(𝑄 =3

2π‘›π‘…βˆ†π‘‡)

Isothermal (constant temp)

π‘Š = 𝑛𝑅𝑇𝑙𝑛(𝑉𝑓

𝑉𝑖)

(Eq. 15.3)

𝑂𝐽 = 𝑄 βˆ’ 𝑛𝑅𝑇𝑙𝑛(𝑉𝑓

𝑉𝑖)

Adiabatic (no heat flow)

π‘Š =3

2𝑛𝑅(𝑇𝑖 βˆ’ 𝑇𝑓)

(15.4)

βˆ†π‘ˆ = 0𝐽 βˆ’3

2𝑛𝑅(𝑇𝑖 βˆ’ 𝑇𝑓)

Adiabatic expansion/compression of an ideal gas

𝑃0𝑉0𝛾

= 𝑃𝑓𝑉𝑓𝛾 15.5

Heat with known number of moles

𝑄 = 𝐢𝑛Δ𝑇 15.6

molar specific heat 𝐢𝑝 =

5

2𝑅

𝐢𝑣 =3

2𝑅

15.7 15.8

Heat Engines

The efficiency e of a heat engine

𝑒 =π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’

𝐼𝑛𝑝𝑒𝑑 β„Žπ‘’π‘Žπ‘‘=

|π‘Š|

|𝑄𝐻|= 1 βˆ’

|𝑄𝑐|

|𝑄𝐻|

15.11 15.13

Conservation of energy requires

|𝑄𝐻| = |π‘Š| + |𝑄𝑐| 15.12

Carnot Engine

For a Carnot engine

|𝑄𝐢|

|𝑄𝐻|=

|𝑇𝐢|

|𝑇𝐻| 14.14

Efficiency e for a Carnot engine

π‘’π‘π‘Žπ‘Ÿπ‘›π‘œπ‘‘ = 1 βˆ’π‘‡πΆ

𝑇𝐻 15.15

Coefficient of Performance (COP)

COP of a refrigerator or an air conditioner

𝐢𝑂𝑃 =|𝑄𝑐|

|π‘Š|=

1

𝑇𝐻𝑇𝐢

βˆ’ 1

COP of a heat pump 𝐢𝑂𝑃 =|𝑄𝐻|

|π‘Š| 15.17

Entropy

change in entropy Δ𝑆 = (𝑄

𝑇)

𝑅 15.18

change in entropy βˆ†π‘Ίπ’–π’π’Šπ’—π’†π’“π’”π’‚π’

βˆ†π‘†π‘’π‘›π‘–π‘£π‘’π‘Ÿπ‘ π‘Žπ‘™ = βˆ†π‘†π‘ π‘¦π‘ π‘‘π‘’π‘š + βˆ†π‘†π‘ π‘’π‘Ÿπ‘Ÿπ‘œπ‘’π‘›π‘‘π‘–π‘›π‘”π‘ 

=βˆ†π‘†π‘π‘œπ‘™π‘‘ + βˆ†π‘†π»π‘œπ‘‘

Energy unavailable for doing work

π‘Šπ‘’π‘›π‘Žπ‘£π‘Žπ‘–π‘™π‘Žπ‘π‘™π‘’ = 𝑇0Ξ”π‘†π‘’π‘›π‘–π‘£π‘’π‘Ÿπ‘ π‘’ 15.19

Chapter 16

Waves

Speed of a Wavelength 𝑣 = π‘“πœ† =πœ†

𝑇 16.1

Speed of a wave on a

string 𝑣 = √

𝐹

π‘š/𝐿 16.2

description +x direction

𝑦 = 𝐴𝑠𝑖𝑛(2πœ‹π‘“π‘‘ βˆ’2πœ‹π‘₯

πœ†) 16.3

description -x direction

𝑦 = 𝐴𝑠𝑖𝑛(2πœ‹π‘“π‘‘ +2πœ‹π‘₯

πœ†) 16.4

Speed of Sound

Speed of Sound in a Gas k= 1.38x10-23

𝑣 = βˆšπ›Ύπ‘˜π‘‡

π‘š 16.5

Speed of sound in a liquid

𝑣 = βˆšπ΅π‘Žπ‘‘

𝜌 16.6

Speed of sound in solid bar

𝑣 = βˆšπ‘Œ

𝜌 16.7

Sound Intensity

Intensity 𝐼 =𝑃

𝐴 16.8

Intensity -uniform in all directions

𝐼 =𝑃

4πœ‹π‘Ÿ2 16.9

Intensity level in decibels I0 =1x10-12W/m2

𝛽 = (10𝑑𝐡) log (𝐼

πΌπ‘œ) 16.10

Doppler Effect

Source Moving toward stationary observer

π‘“π‘œ = 𝑓𝑠 (1

1 βˆ’π‘£π‘ π‘£

) 16.15

Source Moving away from stationary observer

π‘“π‘œ = 𝑓𝑠 (1

1 +𝑣𝑠𝑣

) 16.15

Observer moving toward stationary source

π‘“π‘œ = 𝑓𝑠 (1 +π‘£π‘œ

𝑣) 16.15

Observer moving away from stationary source

π‘“π‘œ = 𝑓𝑠 (1 βˆ’π‘£π‘œ

𝑣) 16.15

Chapter 17

Chapter 18

Constructive and Destructive Interference

Constructive 2 waves in Phase

Difference in path lengths is zero or an integer (0,1,2,3…)

Destructive 2 waves in Phase

Difference in path lengths is a half- integer (0.5,1.5,2.5,…)

Constructive 2 waves out of Phase

Difference in path lengths is a half- integer (0.5,1.5,2.5,…)

Destructive 2 waves out of Phase

Difference in path lengths is zero or an integer (0,1,2,3…)

Diffraction

Single Slit –first minimum π‘ π‘–π‘›πœƒ =πœ†

𝐷 17.1

Circular Opening –first minimum π‘ π‘–π‘›πœƒ = 1.22πœ†

𝐷 17.2

beats π‘“π‘π‘’π‘Žπ‘‘ = 𝑓1 βˆ’ 𝑓2 17.46

Standing Waves

Transverse Natural frequency Fixed at both ends

𝑓𝑛 = 𝑛 (𝑣

2𝐿) for n=1,2,… 17.3

Longitudinal Natural frequency open at both ends

𝑓𝑛 = 𝑛 (𝑣

2𝐿) for n=1,2,… 17.4

Longitudinal Natural frequency open at one end

𝑓𝑛 = 𝑛 (𝑣

4𝐿) for n=1,3,5,… 17.5

Formulas Number of

electrons/protons # =

π‘ž

𝑒

Coulombs law: F=force

Where one exerts on

two

𝐹 =π‘˜|π‘ž1||π‘ž2|

π‘Ÿ2 18.1

Electric Field οΏ½οΏ½ =οΏ½οΏ½

π‘ž0 18.2

Magnitude of Electric Field 𝐸 =

π‘˜|π‘ž|

π‘Ÿ2 18.3

Magnitude of Electric Field for a parallel plate capacitor

𝐸 =π‘ž

πœ–0𝐴=

𝜎

πœ–0 18.4

Electric Flux Φ𝐸 = βˆ‘(𝐸 cos πœ™)Δ𝐴 =𝑄

πœ–0 18.6,7

Important Numbers

π‘˜ = 8.99 Γ— 109 𝑁 βˆ™ π‘š2/𝐢2

Permittivity of free space

πœ–0 = 8.85 Γ— 10βˆ’12 𝐢2

𝑁 βˆ™ π‘š2

Magnitude of charge on electron (-e) or proton (+e) 𝑒 = 1.6 Γ— 10βˆ’19 C (a lot of time π‘ž0)

Mass of Electron 9.11 Γ— 10βˆ’31 π‘˜π‘”

Mass of Proton 1.673 Γ— 10βˆ’27 π‘˜π‘”

Mass of Neutron 1.675 Γ— 10βˆ’27 π‘˜π‘”

Chapter 19

Chapter 20

Work and Electric

Potential Energy π‘Šπ΄π΅ = 𝐸𝑃𝐸𝐴 βˆ’ 𝐸𝑃𝐸𝐡 19.1

Electric Potential 𝑉 =𝐸𝑃𝐸

π‘ž0=

π‘˜π‘ž

π‘Ÿ 19.3,6

Electric Potential Difference Charge moves from A to B

𝑉𝐴 βˆ’ 𝑉𝐡 =𝐸𝑃𝐸𝐡

π‘ž0βˆ’

𝐸𝑃𝐸𝐴

π‘ž0=

βˆ’π‘Šπ΄π΅

π‘ž0 19.4

Electric Potential Difference Charge moves from B to A

𝑉𝐡 βˆ’ 𝑉𝐴 =π‘Šπ΄π΅

π‘ž0

Total Energy 𝐸 =1

2π‘šπ‘£2 +

1

2πΌπœ”2 + π‘šπ‘”β„Ž +

1

2π‘˜π‘₯2

+ 𝐸𝑃𝐸

Electric field 𝐸 = βˆ’βˆ†π‘‰

βˆ†π‘  19.7a

Charge on each plate of a capacitor

π‘ž = 𝐢𝑉

Dielectric constant (E’s are electric fields without and with a dielectric)

πœ… =πΈπ‘œ

𝐸

Capacitance of a parallel plate capacitor 𝐢 =

πœ…πœ–0𝐴

𝑑

Electric Potential Energy Stored in a capacitor

πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ =1

2π‘žπ‘‰ =

1

2𝐢𝑉2 =

π‘ž2

2𝐢 19.11

Energy Density Energy Density =πΈπ‘›π‘’π‘Ÿπ‘”π‘¦

π‘‰π‘œπ‘™π‘’π‘šπ‘’=

1

2πœ…πœ–0𝐸2 19.12

Current (if electric

current is constant) 𝐼 =βˆ†π‘ž

βˆ†π‘‘ 20.1

Ohms Law 𝑉 = 𝐼𝑅 π‘œπ‘Ÿ 𝑅 =𝑉

𝐼 π‘œπ‘Ÿ 𝐼 =

𝑉

𝑅 20.2

Resistance with length L, cross-sectional area A

𝑅 = 𝜌𝐿

𝐴 20.3

Resistance and Resistivity (T temp)

𝜌 = 𝜌0[1 + 𝛼(𝑇 βˆ’ 𝑇0)] 𝑅 = 𝑅0[1 + 𝛼(𝑇 βˆ’ 𝑇0)]

20.4,5

Electric Power 𝑃 = 𝐼𝑉, 𝑃 = 𝐼2𝑅, 𝑃 =𝑉2

𝑅 20.6

AC Circuits 𝑉 = 𝑉0sin (2πœ‹π‘“π‘‘) 𝐼 = 𝐼0sin (2πœ‹π‘“π‘‘)

20.7,8

RMS Formulas with Current and Voltage

πΌπ‘Ÿπ‘šπ‘  =𝐼0

√2

π‘‰π‘Ÿπ‘šπ‘  =𝑉0

√2

20.12 20.13

Average Power

οΏ½οΏ½ = πΌπ‘Ÿπ‘šπ‘ π‘‰π‘Ÿπ‘šπ‘  οΏ½οΏ½ = πΌπ‘Ÿπ‘šπ‘ 

2 𝑅

οΏ½οΏ½ =π‘‰π‘Ÿπ‘šπ‘ 

2

𝑅

20.15

Series (I is the same)

𝑅𝑠 = 𝑅1 + 𝑅2 + 𝑅3 + β‹― 1

𝐢𝑠=

1

𝐢1+

1

𝐢2+

1

𝐢3+ β‹―

20.16 20.19

Parallel (V is the same)

1

𝑅𝑠=

1

𝑅1+

1

𝑅2+

1

𝑅3+ β‹―

𝐢𝑝 = 𝐢1 + 𝐢2 + 𝐢3 + β‹―

20.17 20.18

RC circuits π‘ž = π‘ž0[1 βˆ’ 𝑒

βˆ’π‘‘

𝑅𝐢] (charging) 𝜏 = 𝑅𝐢

π‘ž = π‘ž0π‘’βˆ’π‘‘

𝑅𝐢 (discharging)

20.20 20.21 20.22

Chapter 21

Chapter 22

Magnitude of magnetic

Field πœ‡0 = 4πœ‹ Γ— 10βˆ’7 𝑇 βˆ™ π‘š/𝐴

𝐡 =𝐹

|π‘ž0|𝑣 sin πœƒ

𝐡 =πœ‡0𝐼

2πœ‹π‘Ÿ

𝐡 = π‘πœ‡0𝐼

2𝑅

𝐡 = πœ‡0𝑛𝐼

21.1 21.5 21.6 21.7

Radius of circular path of particle caused by F

π‘Ÿ =π‘šπ‘£

|π‘ž|𝐡 21.2

Relationship between Mass and B π‘š = (

π‘’π‘Ÿ2

2𝑉)

2

𝐡2

Force on a current in a magnetic field

𝐹 = πΌπΏπ΅π‘ π‘–π‘›πœƒ 21.3

Torque on a current-carrying coil

𝜏 = π‘πΌπ΄π΅π‘ π‘–π‘›πœ™ πœ™ is the angle between direction of B and the normal plane

21.4

Ampere’s Law βˆ‘ 𝐡||βˆ†π‘™ = πœ‡0𝐼 21.8

RHR 1: Fingers point along the direction of οΏ½οΏ½ and the thumb points along the

velocity οΏ½οΏ½ The palm of the hand then faces in the direction of οΏ½οΏ½ that acts on a positive charge. RHR 2: Curl the fingers of the right hand into a half-circle. Point the thumb in the direction of the conventional current I, and the tips of the fingers will

point in the direction of οΏ½οΏ½

Motional emf β„° = 𝑣𝐡𝐿 22.1

Magnetic Flux Ξ¦ = π΅π΄π‘π‘œπ‘ πœ™ 22.2

Faraday’s Law β„° = βˆ’π‘βˆ†Ξ¦

βˆ†π‘‘ 22.3

Emf induced ion a

rotating planar coil

πœ” = 2πœ‹π‘“ β„° = π‘π΄π΅πœ” sin(πœ”π‘‘) = β„°0 sin(πœ”π‘‘) 22.4

Current 𝐼 =𝑉 βˆ’ β„°

𝑅 22.5

Mutual Inductance 𝑀 =𝑁𝑠Φ𝑠

𝐼𝑝 22.6

Emf due to mutual

inductance ℰ𝑠 = βˆ’π‘€Ξ”πΌπ‘

Δ𝑑 22.7

Self-Inductance 𝐿 =𝑁Φ

𝐼 22.8

Emf due to self-

inductance ℰ𝑠 = βˆ’πΏ

Δ𝐼

Δ𝑑 22.9

Energy stored in an

inductor πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ =

1

2𝐿𝐼2 22.10

Energy Density πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ 𝐷𝑒𝑛𝑠𝑖𝑑𝑦 =1

2πœ‡0𝐡2 22.11

Voltage and turns of

primary and secondary

coil

𝑉𝑠

𝑉𝑝=

𝑁𝑠

𝑁𝑝 22.12

Current and turns of

primary and secondary

coil

𝐼𝑠

𝐼𝑝=

𝑁𝑝

𝑁𝑠 22.13

Power Power=Energy*time

Chapter 23

Chapter 24

Rms Voltage across a

capacitor π‘‰π‘Ÿπ‘šπ‘  = πΌπ‘Ÿπ‘šπ‘ π‘‹π‘ 23.1

Capacitive Reactance 𝑋𝐢 =1

2πœ‹π‘“πΆ 23.2

Rms Voltage across an

inductor π‘‰π‘Ÿπ‘šπ‘  = πΌπ‘Ÿπ‘šπ‘ π‘‹πΏ 23.3

Inductive Reactance 𝑋𝐿 = 2πœ‹π‘“πΏ 23.4

Rms Voltage for

circuit containing

resistance, capacitance,

and inductance

π‘‰π‘Ÿπ‘šπ‘  = πΌπ‘Ÿπ‘šπ‘ π‘ 23.6

Impedance of a

resistor, capacitor and

inductor connected in a

series

𝑍 = βˆšπ‘…2 + (𝑋𝐿 βˆ’ 𝑋𝐢)2 23.7

Tangent of the phase

angle π‘‘π‘Žπ‘›πœ™ =

𝑋𝐿 βˆ’ 𝑋𝐢

𝑅 23.8

Average Power οΏ½οΏ½ = πΌπ‘Ÿπ‘šπ‘ π‘‰π‘Ÿπ‘šπ‘ π‘π‘œπ‘ πœ™ 23.9

Resonant frequency 𝑓0 =1

2πœ‹βˆšπΏπΆ 23.10

Power Factor π‘π‘œπ‘€π‘’π‘Ÿ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ =R

𝑍

Speed of Light 𝑐 = 3.00 Γ— 108 π‘š/𝑠

Speed of Light in a

vacuum 𝑐 =

1

βˆšπœ€0πœ‡0

24.1

Total energy density

𝑒 =1

2πœ€0𝐸2 +

1

2πœ‡0𝐡2

𝑒 = πœ€0𝐸2

𝑒 =1

πœ‡0𝐡2

24.2

Relationship between

magnitudes Electric

and magnetic field

waves

𝐸 = 𝑐𝐡 2.43

Rms for Electric Field πΈπ‘Ÿπ‘šπ‘  =1

√2𝐸0

Rms for Magnetic

Field π΅π‘Ÿπ‘šπ‘  =

1

√2𝐡0

Intensity 𝑆 = π‘π‘ˆ 24.4

Doppler Effect in

vacuum

+ come together

- move apart

π‘“π‘œ = 𝑓𝑠(1 Β±π‘£π‘Ÿπ‘’π‘™

𝑐) 24.6

Marlus’ Law 𝑆 = 𝑆0π‘π‘œπ‘ 2πœƒ 24.7

Chapter 25

Concave Mirror

Focal length Concave

mirror 𝑓 =

1

2𝑅 25.1

Focal length Convex Mirror

𝑓 = βˆ’1

2𝑅 25.2

Mirror Equation 1

π‘‘π‘œ+

1

𝑑𝑖=

1

𝑓 25.3

Magnification

Equation

π‘š = βˆ’π‘‘π‘–

π‘‘π‘œ

π‘š =β„Žπ‘–

β„Žπ‘œ

25.4

Plain Mirror

Forms an upright virtual image

Image located same distance behind the mirror as the object in front

Heights of object and virtual image the same

Information for Spherical mirrors

Focal Length + Concave mirror

- Convex mirror

Object distance + Object in front (real)

- Object behind (virtual)

Image Distance + Image in front (real)

- Image behind (virtual)

Magnification (sign) + Image is upright

- Image is inverted

Magnification (magnitude)

>1 larger

<1 smaller

Revised 5/30/18