12
Key Topics Electric Forces and General Electric Fields: Coulomb’s Law: General relationship describing the force between two charged particles Equation: Electric Field: The force exerted on a positive test charge by a charged particle Equation: Possible Scenarios How do we tackle the following? Array of discrete charges? Continuous, nonsymmetric charge distributions? Symmetric charge distributions: Gauss’s Law: Relates the Electric flux through a closed Gaussian surface to the electric field Equation: When can we use it? o Type of Charge Distribution Gaussian Surface (Draw them out!) Surface Area Integral (Useful for Gauss’s) Volume Integral (Useful if there is an insulator) N/A Electric Potential Related to the amount of work required to move a charged particle through an electric field o Relative value. You need a reference point to quantify the potential at a given point! Continuous function! Keep this in mind for problems where you move through different regions of Electric fields → Potential must be continuous from one region to another! o My advice: work from the outside inwards, constantly updating your reference point to the closest (in proximity) known value o Often use infinity as the first reference point, with an electric potential of 0. Equations:

PHYS 152 Fall 2015 Final Exam Review

Embed Size (px)

DESCRIPTION

review

Citation preview

Page 1: PHYS 152 Fall 2015 Final Exam Review

Key  Topics Electric  Forces  and  General  Electric  Fields: Coulomb’s  Law:

• General  relationship  describing  the  force  between  two  charged  particles    • Equation:  

Electric  Field:  

• The  force  exerted  on  a  positive  test  charge  by  a  charged  particle    • Equation:    

Possible  Scenarios  -­‐  How  do  we  tackle  the  following?

• Array  of  discrete  charges?  

• Continuous,  non-­‐symmetric  charge  distributions?  

• Symmetric  charge  distributions:   Gauss’s  Law:

• Relates  the  Electric  flux  through  a  closed  Gaussian  surface  to  the  electric  field  • Equation:    

• When  can  we  use  it?   o

Type  of  Charge  Distribution  

Gaussian  Surface  (Draw  them  out!)  

Surface  Area  Integral  (Useful  for  Gauss’s)  

Volume  Integral  (Useful  if  there  is  an  

insulator)    

     

   

N/A  

       

     

   

   

       

       

Electric  Potential

• Related  to  the  amount  of  work  required  to  move  a  charged  particle  through  an  electric  field  o Relative  value.  You  need  a  reference  point  to  quantify  the  potential  at  a  given  point!  

• Continuous  function!  Keep  this  in  mind  for  problems  where  you  move  through  different  regions  of  Electric  fields  →  Potential  must  be  continuous  from  one  region  to  another!  

o My  advice:  work  from  the  outside  inwards,  constantly  updating  your  reference  point  to  the  closest  (in  proximity)  known  value  

o Often  use  infinity  as  the  first  reference  point,  with  an  electric  potential  of  0.    • Equations:    

 

Page 2: PHYS 152 Fall 2015 Final Exam Review

Capacitance • General  Equation:  

• Capacitance  of  a  plate:    

   • Equivalent  Capacitance  

 o Series:  

§ Common  Element:  § Equation:  

 o Parallel:  

§ Common  Element:  § Equation:  

 • Dielectrics:  

o Electrically  polarizable  material  inserted  between  capacitor  plates  to  lower  the  electric  field  between  the  plates    

§ Results  in  greater  capacitance  of  the  system,  therefore  greater  ability  to  store  charge  at  a  given  voltage  difference  between  the  plates  

o How  do  we  account  for  it  mathematically?  §  

DC  Circuits General  Equations  and  Concepts

• Ohm’s  Law:    

• Kirchoff’s  Laws  o  

o        

• Equivalent  Resistance  o Series:  

 o Parallel:  

 • Power:  

   RC  and  RL  Circuits  

• Equations  for  voltage  and  current            

**  Review  how  to  derive  these  equations  for  RL  and  RC  circuits!    Transient  behavior  of  Capacitors  and  Inductors     T  =  0   T  =  infinity  C      L      

  Charging   Discharging  RC    

   

RL      

 

Page 3: PHYS 152 Fall 2015 Final Exam Review

 Problems:      

1. Find  the  Electric  Field  at  the  origin  for  the  following  diagram.  The  charge  density  of  the  rod  is  λ  .  

     

Page 4: PHYS 152 Fall 2015 Final Exam Review

2. Consider  a  system  of  two  cylinders  and  an  inclined  plane.  Both  cylinders  are  insulators  with  a  constant  charge  density  A,  mass  m,  length  l,  and  radius  R.  Cylinder  1’s  position  is  fixed  at  the  bottom  of  the  incline,  where  cylinder  2  is  free  to  roll  up  and  down  the  plane.  At  equilibrium,  they  are  a  distance  d  apart  from  one  another  (along  the  surface  of  the  plane).    

a. Find  the  electric  field  produced  by  Cylinder  1.    b. Determine  the  force  of  Cylinder  1  on  Cylinder  2.    c. Draw  the  force  diagram  for  Cylinder  2  and  write  down  Newton’s  laws  for  the  force  

interactions  on  Cylinder  2.    d. At  what  angle  of  the  incline  does  cylinder  2  remain  stationary?  e. What  happens  as  the  incline  angle  approaches  0  degrees?  90  degrees?  

   

Page 5: PHYS 152 Fall 2015 Final Exam Review

3. A  sphere  of  radius  R  has  a  total  charge  Q.  The  volume  charge  density  within  the  sphere  is  given  by  p(r)  =  Cr/R,  where  C  is  a  constant  to  be  determined.    

a. Find  C  in  terms  of  Q  and  R.    b. Find  the  electric  field  everywhere.    c. Find  the  potential  everywhere.      

   

Page 6: PHYS 152 Fall 2015 Final Exam Review

4. Two  concentric  metal  spheres  of  radii  R  and  2R  carry  equal  and  opposite  charges  Q  and  –Q.    

 a. What  is  the  electric  field  (magnitude  and  direction)  between  the  spheres?  b. Which  sphere  is  at  a  higher  electrostatic  potential?  c. What  is  the  potential  difference  between  the  spheres?  d. What  is  the  capacitance  of  the  device?  e. If  the  charges  on  the  sphere  remain  unchanged,  but  the  space  between  them  is  filled  

with  a  dielectric  (K  =  4),  what  is  the  new  potential  difference  between  the  spheres?    

     

Page 7: PHYS 152 Fall 2015 Final Exam Review

Key  Topics  Magnetic  Field  Biot-­‐Savart  Law  

• General  relationship  describing  magnetic  field  exerted  by  moving  charge  • Equation  for  moving  point  charge:  

 • Equation  for  a  wire  current:  

   Properties  of  Magnetic  Field  

• It’s  a  __________  product!  Get  your  right-­‐hand  rule  right  • Magnetic  monopoles  do  NOT  exist  • Charges  must  be  in  _____________  

 Ampere’s  Law  

• Relates  current  through  a  closed  Amperian  loop  to  the  magnetic  field  • Equation:  

 • How  to  use  

o Draw  closed  Amperian  loop  to  take  advantage  of  symmetry  § Parallel:  § Perpendicular:  

 Faraday’s  Law  and  Lenz’s  Law  Faraday’s  Law  

• Changing  magnetic  flux  induces  an  E-­‐field  (current)  • Magnetic  flux  changes  when:  

o Fixed  Area:  o Fixed  B-­‐field:  o Fixed  Area  and  B-­‐field:  

• Equation:    Lenz’s  Law  

• Determines  the  direction  of  the  induced  E-­‐field  (current)  • Definition:  the  direction  of  the  induced  current  is  such  that  the  induced  magnetic  field  

opposes  the  change  in  the  flux  • 4  steps  to  apply  Lenz’s  Law:  

1. Determine  direction  of  ___________________  2. Determine  the  sign  of  ___________  3. Determine  direction  of  ___________________  4. Determine  direction  of  ___________________  

 B-­‐field  up  and  steady            

B-­‐field  up  and  increasing   B-­‐field  up  and  decreasing  

B-­‐field  down  and  steady            

B-­‐field  down  and  increasing   B-­‐field  down  and  decreasing  

Page 8: PHYS 152 Fall 2015 Final Exam Review

Maxwell  Equations  Name   Mathematical  Expression   Meaning  

Gauss’s  Law      

 

Gauss’s  Law  for  Magnetism  

   

 

Faraday’s  Law      

 

Ampere-­‐Maxwell  Law  

   

 

 EM  Wave  Properties  of  EM  Waves  

• E-­‐field  and  B-­‐field  are  _____________  to  direction  of  propogation  • E-­‐field  and  B-­‐field  are  _____________  to  each  other  • Wave  speed  in  vacuum  is:  • At  any  point  on  the  wave:  

   Poynting  Vector  

• Points  in  direction  of  wave  propogation  • Magnitude  measures  energy  transfer  per  area  • Equation:  

 Intensity  

• Average  energy  transfer  • Equation:  

 AC  Circuits  Properties  of  AC  Circuits  

• Kirchoff’s  and  Ohm’s  Laws  still  apply!  • Source  voltage  will  be  _______________  as  opposed  to  being  ____________  in  DC  Circuits  

 Euler’s  Formula  

• Equation:    Complex  Impedance  

• Find  the  magnitude  by  treating  all  circuit  components  as  resistors  and  solve  them  using  resistor  methods  

o zR =  o zC =  o zL =  

• Find  phase  (angle)  by  trigonometry  o AC  current  of  resistor  ____________  resistor  voltage  by  _________  o AC  current  of  capacitor  ____________  capacitor  voltage  by  ________  o AC  current  of  inductor  ____________  inductor  voltage  by  ________  o Diagram:  

         

• Take  real  part  of  solution  at  the  end    

Page 9: PHYS 152 Fall 2015 Final Exam Review

Problems:    

1. Consider  a  ring  of  radius   R  lying  in  the  xy-­‐plane,  centered  on  the  origin  O ,  and  carrying  a  current   I  in  the  direction  shown.  Further  consider  an  infinitely  long  straight  wire  lying  in  the  xy-­‐plane,  which  has  a  minimum  distance  from  the  origin  D ,  carrying  an  equal  current  I  in  the  direction  shown.                              

a. What  is  the  magnetic  field  (magnitude  and  direction)  at  the    origin  arising  solely  from  the  straight  wire?                        

b. What  is  the  magnetic  field  (magnitude  and  direction)  at  the  origin  arising  solely  from  the  loop?                

c. What  is  the  total  magnetic  field  (magnitude  and  direction)  at  the  origin?    

   

Page 10: PHYS 152 Fall 2015 Final Exam Review

2. A  frictionless  conducting  bar  of  mass  m ,  length   L ,  and  resistance   R  falls  vertically  under  the  influence  of  gravity  on  a  slotted  track.  A  horizontal  magnetic  field  

!B  exists  all  along  the  

track  as  shown.    

 a. What  is  the  magnitude  of  the  emf  induced  in  the  bar  when  the  velocity  is   v ?  

               

b. What  is  the  direction  of  the  emf  in  the  bar?              

c. When  the  magnetic  force  balances  gravity,  the  bar  achieves  a  terminal  velocity   vt .  In  terms  of  the  quantities  given  and  the  acceleration  due  to  gravity   g ,  what  is  this  velocity?    

   

Page 11: PHYS 152 Fall 2015 Final Exam Review

3.                          

a. Find  the  direction  and  magnitude  of  the  electric  field  everywhere.  b. Find  the  direction  and  magnitude  of  the  magnetic  field  everywhere.  c. Calculate  the  Poynting  vector  in  the  cable.    

   

Page 12: PHYS 152 Fall 2015 Final Exam Review

4. Consider  the  following  parallel  RLC-­‐circuit  with  an  alternating  current.  

 Find  the  current  and  the  phase.