47
Photovoltaic Modelling Introduction University College of Engineering of Vitoria-Gasteiz Josean Ramos Hernanz ([email protected] ) J.A. Ramos-Hernanz

Photovoltaic Modelling Introduction

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Photovoltaic Modelling Introduction

PhotovoltaicModelling Introduction

University College of Engineering of Vitoria-Gasteiz

Josean Ramos Hernanz ([email protected] )

J.A. Ramos-Hernanz

Page 2: Photovoltaic Modelling Introduction

Index

The photovoltaic effect1

Photovoltaic Panel2

Photovoltaic System3

2Photovoltaic Modelling Introduction

Page 3: Photovoltaic Modelling Introduction

Photovoltaic effectSunlight striking a semiconductor andcausing electrons to be excited due toenergy in the sunlight (photons).

3Photovoltaic Modelling Introduction

Page 4: Photovoltaic Modelling Introduction

Photovoltaic effect

Irradiance

Temperature

Current

Voltage

4Photovoltaic Modelling Introduction

Several important magnitudes must be used:

Page 5: Photovoltaic Modelling Introduction

Photovoltaic effect

5

Ideal CellTotal current in the diode

The Current I0: appears withreverse polarity and relatively highnegative tensions.

10

CaKTqV

D eII (2)

+

-

Ideal Cell

V

IL ID

IG

T

I = IL – ID (1)

10

CaKTVq

L eIII (3)

Page 6: Photovoltaic Modelling Introduction

Photovoltaic effect

6Photovoltaic Modelling Introduction

Other characteristics or dataID: Diode current (A)I0: Saturation current of the diode (A)q: Electron charge, 1.6 10-19 (C)a: Diode ideality factor.K: Boltzmann’s Constant, 1.38 10-23 J/KTC: Cell Temperature (ºK)V: Voltage on the photovoltaic module (V)I: Current photovoltaic module (A)

10

CaKTVq

L eIII

Page 7: Photovoltaic Modelling Introduction

Equivalent circuit of a photovoltaic cellPhotovoltaic effect

ShaKT

IRVq

dLShDL IeIIIIIIs

1)(

P

N

IL

IShID

Eo

V

RS

RSh

I

sh

sTR I V

0L RR I V - 1 - e . I - I I

s

aK

q

7

Page 8: Photovoltaic Modelling Introduction

Photovoltaic effect

8Photovoltaic Modelling Introduction

Short circuit current (Isc) is the current through the solar cell when

the voltage across the solar cell is zero

Open circuit voltage (Voc) is the difference of electrical potential

between two terminals of a device when disconnected from any circuit. There

is no external load

Maximum current (Imax) current at the maximum power point

Maximum voltage (Vmax) current at the maximum power point

Maximum power (Pmax)

The fundamental electrical parameters:

Page 9: Photovoltaic Modelling Introduction

Characteristic curves (IV) and (PV)

Photovoltaic effect

9Photovoltaic Modelling Introduction

IV Curve

PV Curve

Page 10: Photovoltaic Modelling Introduction

Photovoltaic effect

Types of IV characteristic curves:

IV curve for constant G (Irradiance)1000 W/m2

IV curve for constant Tª 25ºC

10Photovoltaic Modelling Introduction

Page 11: Photovoltaic Modelling Introduction

Photovoltaic effect

11Photovoltaic Modelling Introduction

1000 w/m2

700 w/m2

Types of PV characteristic curves:

PV curve for constant G (Irradiance)1000 W/m2

PV curve for constant Tª 25ºC

Page 12: Photovoltaic Modelling Introduction

Photovoltaic effectSeries and shunt resitances:

12

Rs: A function of the impurities and contact resistance.

Rsh: Inversely proportional to the leakage current to earth.

Ideal photovoltaic cell: RS = 0 and Rsh = ∞.

Silicon cells: Rs = 0,05–0,1Ω and Rsh = 200–300 Ω ⇒ Ish ≈ 0.

The PV conversion efficiency is very sensitive to small

variations in Rs, but insensitive to variations in Rsh

PN

IL

IShID

EoV

RSRSH

I

Page 13: Photovoltaic Modelling Introduction

Photovoltaic effect

13

Influence of the RS and RSH on the curve caracteristics

Series and shunt resitances:

Page 14: Photovoltaic Modelling Introduction

Measurement conditions of a photovoltaic cell Standard Test Conditions, STC

• Solar irradiance : 1 kW/m2.

• Air mass : PM 1,5.

• Cell temperature : 25 ºC.

Condiciones de operación estándar, SOC • Solar irradiance : 0,8 kW/m2.

• Wind speed : 1 m/s.

• Environment temperature : 20º C.

Nominal operating temperature of cells, NOCT. (Open circuit).

14Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Photovoltaic effect

The air mass coefficient defines the direct optical path lengththrough the Earth's atmosphere, expressed as a ratio relativeto the path length vertically upwards, i.e. at the zenith.

Page 15: Photovoltaic Modelling Introduction

Photovoltaic effect

Data gathering for IV or PV curve building

15Photovoltaic Modelling Introduction

The current is similar to measure flow of a river

The voltage is similar to measure slope of a river

L

O

A

D

A

V

Variable

Page 16: Photovoltaic Modelling Introduction

Photovoltaic effect

16Photovoltaic Modelling Introduction

Sineax CAM

TV809

Irradiance sensor (Si-420TC-T-K)

Current clamps: Chauvin Arnoux PAC12: The PAC12

The elements used for measurements are:

Data gathering for IV or PV curve building

Page 17: Photovoltaic Modelling Introduction

Photovoltaic effect

17Photovoltaic Modelling Introduction

Variable Load

Page 18: Photovoltaic Modelling Introduction

Photovoltaic effect

Mathematical Models of the photovoltaic cell:

18Photovoltaic Modelling Introduction

PV Curve

IV Curve

0 1C

VqaKT

PV LI I I e

+

-

Ideal Cell

V

IL ID

IG

T

Page 19: Photovoltaic Modelling Introduction

Photovoltaic Panel

Basic Models

Complex Models

19Photovoltaic Modelling Introduction

Page 20: Photovoltaic Modelling Introduction

Cell

Module Array

Photovoltaic Panel

20Photovoltaic Modelling Introduction

Page 21: Photovoltaic Modelling Introduction

Key specifications of the PV Panel

21

Isc : Short Circuit CurrentVoc : Open Circuit VoltageNS: Number of cells in seriesPmax: Maximum powerImp: Maximum power currentVmp: Maximum power voltageNormal operating cell temperature (NOCT) Isc: Temperature coefficient of Isc

Voc: Temperature coefficient of Voc

Photovoltaic Panel

Page 22: Photovoltaic Modelling Introduction

Photovoltaic Panel

22Photovoltaic Modelling Introduction

Basic Models

Matlab ToolsBasic Model in SimulinkSimulink model with TagsPhysical component modelModel advanced component libraryModel with real data

Page 23: Photovoltaic Modelling Introduction

Photovoltaic Panel

23Photovoltaic Modelling Introduction

Matlab ToolsCurve Fitting Toolbox

>>cftool

>>cftool(V,I)

Page 24: Photovoltaic Modelling Introduction

Photovoltaic Panel

24Photovoltaic Modelling Introduction

Matlab Tools: Curve Fitting Toolbox

Data Tab

Fitting Tab

Page 25: Photovoltaic Modelling Introduction

Photovoltaic Panel

25Photovoltaic Modelling Introduction

Matlab Tools: Curve Fitting Toolbox

Page 26: Photovoltaic Modelling Introduction

Photovoltaic Panel

26Photovoltaic Modelling Introduction

Basic Model in Simulink

Page 27: Photovoltaic Modelling Introduction

Photovoltaic Panel

27Photovoltaic Modelling Introduction

Basic Model in Simulink

Iph-Id- Ish = I

Page 28: Photovoltaic Modelling Introduction

Photovoltaic Panel

28Photovoltaic Modelling Introduction

Basic Model in Simulink

200W/m2

400W/m2

600W/m2

800W/m2

1000W/m2Repeating sequence stair block

Page 29: Photovoltaic Modelling Introduction

Photovoltaic Panel

29Photovoltaic Modelling Introduction

Simulink model with TagsInitial conditions

Initialization

Page 30: Photovoltaic Modelling Introduction

Photovoltaic Panel

30Photovoltaic Modelling Introduction

Simulink model with Tags

Page 31: Photovoltaic Modelling Introduction

Photovoltaic Panel

31Photovoltaic Modelling Introduction

Page 32: Photovoltaic Modelling Introduction

Photovoltaic Panel

32Photovoltaic Modelling Introduction

PV characteristic curvesIV characteristic curves

Page 33: Photovoltaic Modelling Introduction

Photovoltaic Panel

sh

sTR I V

0L RR I V - 1 - e . I - I I cK

s

ak

q

General equation :

We always know three points : 1. Short Circuit Current: I = Isc, V = 0

2. Open Circuit Voltage: I = 0, V = Voc

3. The maximum power point: I = Imp, V = Vmp

1 2

3

33Photovoltaic Modelling Introduction

Page 34: Photovoltaic Modelling Introduction

Photovoltaic Panel

34Photovoltaic Modelling Introduction

Model of three parametersRs, (Rsh ), a, (IL = Isc ) e I0.

Model of four parametersRs, (Rsh ), a, IL e I0.

Model of three parametersRs, Rsh, a, IL e I0.

IL : Photocurrent,.I0 : Reverse saturation current of the diode, RS: Series resistance, RP : Shunt resistance, a: A parameter curve fit

Complex Mathematical Models

Page 35: Photovoltaic Modelling Introduction

Model of three parametersUnknowns : Rs, (Rsh ), a, (IL = Isc ) e I0.

General Equation:

T

oc

VVsc

e

II 0

mp

sc

mpscTmpoc

s II

IIVVV

R)ln(.

Panel Fotovoltaico

35Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Page 36: Photovoltaic Modelling Introduction

Model of four parameters

I = Isc y V= 0

I = 0 y V= Voc

I = Impp y V= Vmpp

According to Townsend

Incógnitas: Rs, (Rsh ), a, IL e I0

Panel Fotovoltaico

36Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

General Equation:

Page 37: Photovoltaic Modelling Introduction

Model of five parameters

sh

sTR I V

0L RR I V - 1 - e . I - I I cK

s

ak

q

• Short circuit current : I = Isc, V = 0

• Open circuit voltage : I = 0, V = Voc

• At the point of maximum power : I = Imp, V = Vmp

• At the point of maximum power : dP/dVmp = 0

• In short circuit: dIsc / dV = -1/Rsh

Panel Fotovoltaico

37Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Page 38: Photovoltaic Modelling Introduction

Panel Fotovoltaico

38Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Model of five parameters

sh

sTR I V

0L RR I V - 1 - e . I - I I cK

s

ak

q

(1)

(2)

(3)

P(0 ,Isc)

P(Voc ,0)

P(Vmp ,Imp)

Page 39: Photovoltaic Modelling Introduction

Panel Fotovoltaico

39Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Model of five parameters

(4)

(5)

dP/dVmp = 0dIsc / dV = -1/Rsh

dIsc / dV = -1/Rsh

Page 40: Photovoltaic Modelling Introduction

Panel Fotovoltaico

40Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Full model

sh

sTR I V

0L RR I V - 1 - e . I - I I cK

s

ak

q

Page 41: Photovoltaic Modelling Introduction

Panel Fotovoltaico

41Escuela Universitaria de Ingenieria de Vitoria-Gasteiz

Full model

Page 42: Photovoltaic Modelling Introduction

Photovoltaic System

42Photovoltaic Modelling Introduction

Inverter

ConverterPhotovoltaicGenerator

Page 43: Photovoltaic Modelling Introduction

Photovoltaic System

43Photovoltaic Modelling Introduction

Types of DC / DC converters basic

Boost converter: VLoad > VModule

Buck converter: VLoad < VModule

Buck-Boost converter: VLoad > VModule or VLoad < VModule

Page 44: Photovoltaic Modelling Introduction

Photovoltaic System

44Photovoltaic Modelling Introduction

Why do we need to put a converter, forexample between the photovoltaic moduleand battery? For example.

CONVERTER

Page 45: Photovoltaic Modelling Introduction

Photovoltaic System

45Photovoltaic Modelling Introduction

Why do we need to put a converter, for examplebetween the photovoltaic module and battery?

12 V

Our efficiency is poor. We need to work near the MPP

For G = 1000 W/m2

T = 25 ºc

Page 46: Photovoltaic Modelling Introduction

Photovoltaic System

46Photovoltaic Modelling Introduction

Types of DC / DC converters basic

Boost converter

In the case of a Boost converter in continuous driving operating mode, the relations between the input (VSand output (VO) variables are given by Equations

VLoad > VModule

-1V=V S

O

Page 47: Photovoltaic Modelling Introduction

Photovoltaic System

47Photovoltaic Modelling Introduction

How do we do it:

O

S

VV-1=

-1V=V S

O

With de MPPT look for