11
“G ütlich,Bill,Trautw ein: Mössbauer S pectroscopy and T ransition Metal C hemistry@ Springer-Verlag 2009” P P hotoswitching hotoswitching of of Nitroprussides Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen, A. X. Trautwein University of Lübeck, Germany The cover page of the journal Laser und Optoelektronik with visible information written in single crystal cut of sodium nitroprusside Na 2 [Fe(CN) 5 NO]2H 2 O, as a congratulation to its 25 th “birthday” anniversary. Through a model the crystal was first irradiated with light of wavelength 457.9 nm and then for the second time with light of wavelength irradiated part of the crystal populated with SI and SII crystal in ground state

Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

Embed Size (px)

Citation preview

Page 1: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

PPhotoswitching of hotoswitching of Nitroprussides Nitroprussides

V. Rusanov

Department of Atomic Physics, University of Sofia, Bulgaria

Sv. StankovESRF, Grenoble, France

H. Paulsen, A. X. Trautwein University of Lübeck, Germany

The cover page of the journal Laser und Optoelektronik with visible information written in single crystal cut of sodium nitroprusside Na2[Fe(CN)5NO]2H2O, as a congratulation to its 25th “birthday” anniversary. Through a model the crystal was first irradiated with light of wavelength 457.9 nm and then for the second time with light of wavelength 1064 nm. Expected population: GS 70 %, MSI 15% and MSII 15 %. Laser und Optoelektronik, 25(6) 18 (1995).

irradiated part of the crystal populated with SI and SII

crystal in ground state

Page 2: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

On Optical Dispersion in Transparent Molecular Systems

Ulrich Hauser, Volker Oestreich, and Heinz Dieter Rohrwecke

Physikalisches Institut, Universität zu Köln, Köln, Germany

Received September 17, 1976

The discovery !

Page 3: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

GS: QS=+1.716(3) mm/s

IS= 0.00 mm/s

MSI: Pop. 47.1(4) %

QS=+2.755(3) mm/s

IS=+0.178(3) mm/s

MSII: Pop. 35.5(5) %

QS=+2.862(3) mm/s

IS= 0.194(3) mm/s

Th. Woike, W. Kirchner, Hyung-sang Kim, S. Haussühl, V. Rusanov, V. Angelov, S. Ormandjiev, Ts. Bonchev, A. N. F. Schroeder, Hyperfine Interactions 77, 265 (1993).

Mössbauer investigation of the FWHM of the metastable states in SNP

Page 4: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

GS

MS II

MS I

600-900 nm

600-1200 nm

900 -1200 nm

350 -580nm

350 - 580 nm

350 - 580 nm

Wavelength range of transfers between GS, MSI and MSII

A maximum of about 45 % of the molecules can be transferred into the first metastable state, MSI, by irradiation with blue light of 457.9 nm from an Ar+-laser and only a few percent into the second state, MSII. The latter state can, however, be populated up to about 30 % when a crystal with the first state MSI already populated at maximum is irradiated a second time with infrared light from a Nd-YAG-laser with wavelength 1064 nm. Both states can be completely and reversibly transferred to the ground state GS by irradiation with light of the red spectral range, e.g. of 632.8 nm from a He-Ne-laser. A summary of the Mössbauer parameters for all three states and of the population conditions can be found in: V. Rusanov, Sv. Stankov, and A. X. Trautwein, Hyperfine Interactions, 144/145, (2002) 307.

Page 5: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

20 mm

single crystal cutbetween twomylar foils

twelve light-emitting diodes

-beam

9 5

1 0 0

1 0 5

11 0

11 5

1 2 0

G S = 7 4 %

M S I+ M S II= 2 6 %

M S I an d M S IIG S

V elo c ity , m m /s

c -cu t, 4 3 5 (5 ) m

Cou

nts,

104

-3 -2 -1 0 1 2 31 0 5

11 0

11 5

1 2 0

1 2 5

1 3 0G S

M S I an d M S II

a -cu t, 5 9 0 (5 ) m ir rad ia tio n tim e (h )

popu

lati

on (

%)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 00

5

1 0

1 5

2 0

2 5

3 0

a -cu t

c -cu t

V. Rusanov, H. Winkler, C. Ober, and A. X. Trautwein, Eur. Phys. J. B 12, 191 (1999).

Irradiation of the GNP single crystals by Light-Emitting Diodes (LED)

=450±35nm at 297 KG = guanidinium

Page 6: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

M. D. Carducci, M. R. Pressprich, P. Coppens, J. Am. Chem. Soc. 119, 2669 (1997).

GS of the NP anion

MSII: Side-on bonding MSI-Isonitrosyl bonding

En

ergy

Explanation of the nature of MSI and MSII by strong structural changes of the NP anion, proposed by M. Carducci et al.

Page 7: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

NFSdetector

tem

pera

ture

con

trol

NISdetector

LEDGNPcrystal

synchrotron beam

kap

ton

win

dow2 cm

40 50 60 70 80 90 100

b

MSII MSI GS

Energy, meV

a

c

(a) Simulated NIS spectrum for a crystal populated with GS (75 %), MSI (18 %) and MSII (7 %). New Fe–O isonitrosyl bond stretching vibrational mode of MSI at 72 meV has been predicted by DFT calculations ( ); (b) NIS spectrum of the crystal before the illumination; (c) NIS spectrum of the crystal illuminated for 24 h by two light emitting diodes (LED), 450 nm wavelength. A new line is observable in the NIS spectrum at 73 meV ( ). The inset shows schematically the illumination cell. H. Paulsen, V. Rusanov, R. Benda, C. Herta, V. Schünemann, C. Janiak, T. Dorn, A. I. Chumakov, H. Winkler, A. X. Trautwein, J. Am. Chem. Soc. 124, 3007 (2002).

NIS investigation of the MSI populated in GNP

Page 8: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

Angle-dependent Mössbauer study of the metastable states in SNP

V. Rusanov, Th. Woike, H. Kim, V. Angelov, Ts. Bonchev, S. Haussühl, Solid State Commun. 126, 457 (2003).

-30 0 30 60 90

0.6

0.7

0.8

0.9

1.0

1.1

MS II

= 37.3(5)o

= 0.17(5)

= 2(7)o

f a

LM = 0.70(2)

f b

LM = 0.57(2)

f c

LM = 0.74(3)

ba

fit of the ratio t1/2

/t3/2

for SII with 75 % GS ±3.6 limit for all fit parameters experimental values SI with 55 % GS pure GS GS with 45 % SI

t 1/

2/t

3/2

Th. Woike, M. Imlau, V. Angelov, J. Schefer, B. Delley, Phys. Rev. B 61, 18, 12249 (2000).

-30 0 30 60 90

0.6

0.7

0.8

0.9

1.0

1.1

t 1/2

/t3/

2

ba

MS I

fit of the ratio t1/2/t3/2 for MSI ±3.6 limit for all fit parameters experimental values synthesized ratio t1/2/t3/2 for GS

= 35.8(1)o

= 0.018(8)

= 7(6)o

f aLM = 0.70(1)

f b

LM = 0.65(1)

f c

LM = 0.70(1)

Mössbauer parameters for MSI and MSII extracted from measured angle-dependent ratio of the left-hand to the right-hand line effective thickness t1/2/t3/2. Three parameters for MSII given in bold differ substantially from those measured

for GS and MSI.

Page 9: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

The dynamic properties of MSII

Mössbauer spectra obtained at 83 K and 135 K from a SNP single crystal, b-cut, crystal thickness 490 m and natural isotope abundance of iron, populated up to about 30 % with MSII. In the inset the normalized areas for GS and MSII are given. In a temperature-dependent Mössbauer experiment new evidence in favour of the dynamic properties of MSII is found. The normalized area of MSII is reduced by about a factor of three when going from 83 to 135 K. This is not the result from a decay process of MSII to the GS (which occurs at about 150 K) because the normalized area of GS does not change significantly. The change of the Lamb-Mössbauer factor fLM for MSII, however, is dramatic and leads to a strong reduction of the normalized area.

-3 -2 -1 0 1 2 30.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

-3 -2 -1 0 1 2 30.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

80 90 100 110 120 130 1402

4

6

8

10

12

14

GS

Nor

mal

ized

are

a

Temperature

MSII

MSII

Tra

nsm

issi

on

83 K

GSMSII

GS

135 K

Velocity, mm/s

Page 10: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

Determination of the Mössbauer parameters of rare-earth nitrosylpentacyanoferrates (RNP)

-2 -1 0 1 2 3

126

129

132

135

138

MS: 12.6%

MS: 18%

MS: 10.4%

SNP

-2 -1 0 1 2 3

650

660

670

680

LaNP

-2 -1 0 1 2 3

410

420

430

Co

un

ts,

104

Velocity, mm/s

GdNP

C o III F e II

e

C o II F e II

C o III F e II C o II F e II

e

I

I

A light-induced colour change, which is stable at room temperature, has been observed in rare-earth nitroprussides RNP. This internal photochemical redox reaction has been discovered by O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science, 272,704 (1996) in Prussian blue analogs K0.2Co1.4[Fe(CN)6] ·6.9H2O. The irradiation induced an electron transfer from Fe to Co through the CN-bridges. The iron and the rare-earth cations in RNP are also connected via cyano bridges. The photoinduced valency, spin state and molecular magnetism can be observed because the rare-earth cation has a vacant electron state and could accept the electron transmitted via the cyano bridges. This is not the case for SNP in which this effect has not been observed.

V. Rusanov, Sv. Stankov, and A. X. Trautwein, Hyperfine Interactions, 144/145 307 (2002).

Page 11: Photoswitching of Nitroprussides V. Rusanov Department of Atomic Physics, University of Sofia, Bulgaria Sv. Stankov ESRF, Grenoble, France H. Paulsen,

“Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”

Conclusions All nitroprussides can be switched by irradiation with blue light into two metastable states MSI and MSII,

which are stable below 200 and 150 K, respectively. The ground state GS and the metastable states MSI and MSII are diamagnetic and, therefore, the photoswitching effects observed in nitroprussides can not be explained by light-induced spin-crossover. The metastable state MSI corresponds to the linkage isomer of the NO group, the so-called isonitrosyl configuration where the NO ligand is inverted and oxygen is bound to the central iron atom. For the metastable state MSII was a side-on bonded configuration of NO proposed. Mössbauer parameters of GS and MSI derived from Density Functional Theory calculations (DFT) are in quantitative agreement with the measured values. For MSII such agreement is lacking. This discrepancy is most likely due to the assumed static side-on configuration of the NO-group in the DFT calculations. The experimental Mössbauer parameters of MSII could be reproduced by calculation when taking into account the dynamic properties of the NO-group. In our opinion, in the liberation-rotation model of MSII, bending vibration as well as rotation of the NO-group occur, the latter around the main molecular axis. Population experiments were carried out on polycrystalline samples and confirmed the accessibility of light-induced metastable states in the nitroprussides of rare-earth elements. The colour of these nitroprussides can be changed (by light) and it remains stable at room temperature. Evidence for a new Light Induced Magnetic Excited State (LIMES), observed for the first time in rare-earth nitroprussides, is provided. Photo-induced changes in, structure, valency, spin and magnetization at low temperatures have been observed and are discussed.

AcknowledgementsWe would like to thank the Alexander von Humboldt Foundation, AvH (V. R. and A. X. T.), the German Academic Exchange Serves, DAAD, (Sv. S.) and the German Research Foundation, DFG (H. P. and A. X. T.) for supporting this research.