38
Photonics-enhanced Polymer Labs-on-Chips: from high-tech prototyping platform to applications Jürgen Van Erps Biosensors & Bioelectronics 2015 Hilton Atlanta Airport (USA) 30/09/2015 | pag. 1

Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Photonics-enhanced Polymer Labs-on-Chips: from high-tech prototyping platform to applications

Jürgen Van Erps

Biosensors & Bioelectronics 2015 Hilton Atlanta Airport (USA)

30/09/2015 | pag. 1

Page 2: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Lab-on-a-chip

J. Van Erps 30/09/2015 | pag. 2

Page 3: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Lab-on-a-chip for point-of-care diagnostics

E. Coli

Salmonella

Multifunctional micro-systems Water and food

Health

GLUCOSE

J. Van Erps 30/09/2015 | pag. 3

Page 4: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Human-on-a-chip

J. Van Erps 30/09/2015 | pag. 4

Page 5: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Lab-on-a-chip Challenges

• Limited to laboratory prototypes without widespread use in clinical or high-throughput applications – Detection is done using bulky and expensive instrumentation:

“chip-in-a-lab” rather than a lab-on-a-chip

J. Van Erps 30/09/2015 | pag. 5

Page 6: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Lab-on-a-chip Challenges

• Limited to laboratory prototypes without widespread use in clinical or high-throughput applications – Detection is done using bulky and expensive instrumentation:

“chip-in-a-lab” rather than a lab-on-a-chip

Need for miniaturized and integrated detection

J. Van Erps 30/09/2015 | pag. 6

Page 7: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Lab-on-a-chip Challenges

• Limited to laboratory prototypes without widespread use in clinical or high-throughput applications – A wide variety of approaches and competing material platforms

imec

Nortis Micronit

MIT

Si /

SiN

G

lass

Poly

mer

s

J. Van Erps 30/09/2015 | pag. 7

Page 8: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

The future could be plastic...

• Flexible organic photovoltaics as a low-cost alternative to silicon photovoltaic cells

J. Van Erps 30/09/2015 | pag. 8

Page 9: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

The future could be plastic...

• From rigid LCD displays to flexible OLED displays

J. Van Erps 30/09/2015 | pag. 9

Page 10: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

The future could be plastic...

• From glass fiber for long-haul optical telecom to polymer optical fiber for short-distance interconnects

J. Van Erps 30/09/2015 | pag. 10

Page 11: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

The future could be plastic...

• Towards ubiquitous polymer labs-on-chips?

– Low-cost wafer-scale mass manufacturing

– Wide range of material properties (e.g. Tg)

– Biocompatible – Biodegradable – Disposable – Surface functionalization

J. Van Erps 30/09/2015 | pag. 11

Page 12: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

B-PHOT’s micro-optics technology supply chain

J. Van Erps 30/09/2015 | pag. 12

Page 13: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Optical modelling capabilities

Ray-tracing of polymer labs-on-chips J. Van Erps 30/09/2015 | pag. 13

Page 14: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

We operate an advanced Polymer Prototyping Line

J. Van Erps 30/09/2015 | pag. 14

Page 15: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Mastering & Prototyping: Ultraprecision diamond tooling

• Ultraprecision machining: <140 nm PV and Ra < 5 nm

• Materials – Non-ferrous metals for mould formation – Polymers for direct prototyping

• Applications – Freeform one step optics – Micro-optics on non-flat substrates in diverse materials – Mould fabrication

J. Van Erps 30/09/2015 | pag. 15

Page 16: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Mastering & Prototyping: Deep Proton Writing

CGR-560 cyclotron

Selective proton irradiation of PMMA Local energy transfer of 12MeV proton beams

results in highly defined degraded points and contours

Proton beam size = 20µm – 300µm Translation precision of PMMA plates = 50nm

Translation range = 50mm x 50mm Process optimized up to 2mm thick PMMA plates

Proton beam

Shutter (T<1ms) Movable

Ion mask

PMMA sample

Precise measurement of collected charge

PLC Controllers

DPW vacuum chamber

C. Debaes et al., New J. Phys., Vol. 8, No. 11, 2006. J. Van Erps et al., Nucl. Instr. Phys. Methods B, Vol. 307, 2013.

J. Van Erps 30/09/2015 | pag. 16

Page 17: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

We enter the next paradigm shift using 3D-laser lithography with biopolymers

J. Van Erps 30/09/2015 | pag. 17

Page 18: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

We characterize these components with professional optical instrumentation and metrology

ISO class 7 cleanroom facility

J. Van Erps 30/09/2015 | pag. 18

Page 19: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

We test mass-manufacturability and fabricate low-volume series using hot embossing replication

– 300 mm wafer capacity – Double-sided embossing

(Mould alignment <2 µm) – Typical cycle times: 5 minutes – Maximum temp.: (350±2)°C – Maximum force: 450 kN – Low- temperature UV embossing

(nano-imprinting) possible

Micro-lenses Microfluidic channels Diffractive optics

Pillars / Alignment marks Micromirrors

J. Van Erps 30/09/2015 | pag. 19

Page 20: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

We apply clear-to-clear laser welding of 300mm wafers to seal the microfluidic channels

hot embosser for wafer replication

J. Van Erps 30/09/2015 | pag. 20

Page 21: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

How can light be used to probe biochemical molecules in microfluidic channels?

specular/diffuse reflection

surface inside

selective & vibrational absorption

internal scattering

fluorescence (OPIF & TPIF)

polarization

refraction

Raman scattering

Surface Plasmon Resonance (SPR)

UV-VIS-NIR (250-1600nm)

Transmission/ Absorption

J. Van Erps 30/09/2015 | pag. 21

Page 22: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Let us highlight two practical lab-on-a-chip demonstrators

• A combined absorbance and fluorescence detection module for lubricant oil monitoring

• A free-form optofluidic chip for confocal Raman spectroscopy measurements

J. Van Erps 30/09/2015 | pag. 22

Page 23: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Combined absorbance and fluorescence detection module for lubricant oil monitoring

T. Verschooten et al., Journal of Micro-Nanolithography MEMS and MOEMS, 13(3), 2014. J. Van Erps 30/09/2015 | pag. 23

Page 24: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Combined absorbance and fluorescence detection module for lubricant oil monitoring

T. Verschooten et al., Journal of Micro-Nanolithography MEMS and MOEMS, 13(3), 2014.

ABS: Experimental LOD = 500nM LIF: Experimental LOD = 50pM

Limit Of Detection LOD = smallest concentration that can be measured with an SNR ≥ 3.3

• Calibration curves to define LoC performance

J. Van Erps 30/09/2015 | pag. 24

Page 25: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Combined absorbance and fluorescence detection module for lubricant oil monitoring

• Application of the LoC for lubricant oil monitoring

J. Van Erps 30/09/2015 | pag. 25

Page 26: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Let us highlight two practical lab-on-a-chip demonstrators

• A combined absorbance and fluorescence detection module for lubricant oil monitoring

• A free-form optofluidic chip for confocal Raman spectroscopy measurements

J. Van Erps 30/09/2015 | pag. 26

Page 27: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015. J. Van Erps 30/09/2015 | pag. 27

Page 28: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Excitation path:

J. Van Erps 30/09/2015 | pag. 28

Page 29: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Collection path:

J. Van Erps 30/09/2015 | pag. 29

Page 30: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

- using the principle of confocal microscopy - background light is not focused into the collection fiber

• Minimize background by using the collection fiber as a pinhole:

J. Van Erps 30/09/2015 | pag. 30

Page 31: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Maximize the throughput by using free-form reflector lens:

- Non-parabolic reflector focuses a collimated incident light beam to the focal point ⇒ good performance

- geometry design based on the principle of a parabolic reflector and Fermat’s principle, taking the refraction before focus into account:

n1|QiSi| + n2|SiPi| + n2|PiRi| + n1|RiFi| = constant

- geometry is determined numerically ⇒ result: free-form reflector shape

n1 = water

n2 = PMMA

J. Van Erps 30/09/2015 | pag. 31

Page 32: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Maximize the throughput by using free-form reflector lens:

Simulation: -non-sequential ray-tracing in Breault ASAP -generation of Raman scattering in Matlab Source: -collimated Gaussian beam -λ = 785nm -beam waist is half of reflector diameter

J. Van Erps 30/09/2015 | pag. 32

Page 33: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Maximize the throughput by using free-form reflector lens: PMMA reflector:

-average ROC: 1.284 mm -diameter: 1.6 mm -height: 300 μm

Characterization (non-contact optical surface profiler)

UDT used to prototype the free-form lens directly in PMMA: -radius diamond tool: 221.3 μm

RMS roughness = 9 nm (std = 1.24 nm) 22 evaluation areas (45 μm x 60 μm)

200nm gold coating (Chemical Vapor Deposition)

J. Van Erps 30/09/2015 | pag. 33

Page 34: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Assembly of the LoC:

Lab-on-chip consists of 3 PMMA layers: - top layer (in- and outlet holes): milling - middle layer (fluidic channel): milling - bottom layer (reflector): diamond tooling {

J. Van Erps 30/09/2015 | pag. 34

Page 35: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Proof-on-concept demonstration: reference measurement

Raman spectrometer

J. Van Erps 30/09/2015 | pag. 35

Page 36: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Proof-on-concept demonstration: background suppression

PMMA background suppression: factor 7

(200um MMF)

J. Van Erps 30/09/2015 | pag. 36

Page 37: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Confocal Raman-on-chip measurement device

D. De Coster et al., IEEE J. of Sel. Top. in Quant. Electr., Vol. 21, No. 4. pp.1-8, 2015.

• Proof-on-concept demonstration: Raman measurements on urea solutions

Calibration of the system:

- Raman measurements on urea solutions with known concentrations - making use of an internal standard (KNO3) for normalization

Mixture 450mM urea and 100mM KNO3

reflector based Raman chip

commercial Raman spectrometer

Calibration curve for urea: SNR = mean(peak area) / std(peak area) over 10 measurements Noise Equivalent Concentration = 20mM (acquisition time = 15s, power 190mW)

J. Van Erps 30/09/2015 | pag. 37

Page 38: Photonics-enhanced Polymer Labs-on-Chips: from high-tech … · 2017-02-02 · from high-tech prototyping platform to applications Jürgen Van Erps . Biosensors & Bioelectronics 2015

Conclusion

Wafer-scale production of photonics-enhanced labs-on-chips holds tremendous potential for

• Low-cost mass production • Wafer-scale integration with electronics for

source/detector • True disposability • Biocompatibility / biodegradability • Ubiquitous deployment

Visit us at www.b-phot.org for more information

J. Van Erps 30/09/2015 | pag. 38