76
PHOTOMULTIPLIER TUBES AND ASSEMBLIES FOR SCINTILLATION COUNTING & HIGH ENERGY PHYSICS

PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

PHOTOMULTIPLIER TUBESAND ASSEMBLIES

FOR SCINTILLATION COUNTING & HIGH ENERGY PHYSICS

Page 2: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

INTRODUCTIONIn radiation measurements, scintillation counters which are combinations of scintillators and photomultiplier tubes are used as most common and useful devices in detecting X-, alpha-, beta-, gamma-rays and other high energy charged particles. A scintillator emits flashes of light in response to input radiations and a photomultiplier tube coupled to a scintillator detects these scintillation lights in a precise way.In high energy physics experiments, one of important apparatuses is a Cherenkov counter in which photomultiplier tubes detect Cherenkov radiations emitted by high energy charged particles passing through a dielectric material.To detect radiations accurately, photomultiplier tubes may be required to have high detecting efficiency (QE & energy resolution), wide dynamic range (pulse linearity), good time resolution (T.T.S.), high stablility & reliability, and to be operatable in high magnetic field environment or at high temperature condition. In addition, a ruggedized construction is required according to circumstances. On the other hand, several kinds of position sensitive photomultiplier tubes have been developed and are used in these measurements.This catalog provides a quick reference for Hamamatsu photomultiplier tubes, especially designed or selected for scintillation counters and Cherenkov radiation detectors, and includes most of types currently available ranging in size from 3/8" through 20" in diameter. It should be noted that this catalog is just a starting point in describing Hamamatsu product line since new types are continuously under-development.Please feel free to contact us with your specific requirements.

Page 3: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

PHOTOMULTIPLIER TUBES AND ASSEMBLIESFor scintillation counting & high energy physics

TABLE OF CONTENTS

Photomultiplier tubes PageOperating characteristics ......................................................................... 2List guide for photomultiplier tubes ........................................................ 18Photomultiplier tubes ............................................................................. 20Photomultiplier tube assemblies ............................................................ 26Dimensional outlines and basing diagrams for photomultiplier tubes ... 30Typical gain characteristics ................................................................... 52Voltage distribution ratios ...................................................................... 56

PMT socket assembliesQuick reference for PMT socket assemblies ......................................... 58Dimensional outlines and circuit diagrams for PMT socket assemblies ..... 60

Dimensional outlines for E678 series sockets ....................... 68

Index by type No. ...................................................................... 70

Cautions and warranty ............................................................. 72

Typical photocathode spectral response and emission spectrum of scintillators .................................. 73

Page 4: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

2

Operating characteristicsThis section describes the prime features of photomultiplier tube construction and basic operating characteristics.

1. GENERAL

The photomultiplier tube (PMT) is a photosensitive device consisting of an input window, a photocathode, focusing electrodes, an electron multiplier (dynodes) and an anode in a vacuum tube, as shown in Figure 1. When light enters the photocathode, the photocathode emits photoelectrons into vacuum by the external photoelectric effect. These photoelec-trons are directed by the potential of focusing electrode towards the electron multiplier where electrons are multiplied by the process of secondary electron emission.The multiplied electrons are collected to the anode to produce output signal.

2. PHOTOCATHODE

2.1 Spectral response

The photocathode of PMT converts energy of incident light into photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength of incident light. This relationship between the photocathode sensitivity and the wavelength is called the spectral response characteristics.Typical spectral response curves of the variation of bialkali photocathodes are shown on the inside of the back cover.The spectral response range is determined by the photocath-ode material on the long wavelength edge, and by the window material on the short wavelength edge.In this catalog, the long wavelength cut-off of spectral response range is defined as the wavelength at which the cathode radiant sensitivity drops to 1 % of the maximum sensitivity.

2.2 Quantum efficiency and radiant sensitivitySpectral response is usually expressed in term of quantum efficiency and radiant sensitivity as shown on the inside the back cover.Quantum efficiency (QE) is defined as the ratio of the number of photoelectrons emitted from the photocathode to the number of incident photons.It's customarily stated as a percentage. The equation of QE is as follows:

2.3 Window materials

The window materials commonly used in PMT are as follows:

(1) Borosilicate glass

This is the most frequently used material. It transmits light from the infrared to approximately down to 300 nm.For some scintillation applications where radioactivity of K40 contained in the glass affects the measurement, "K-free" glass is recommended.As "K-free" glass contains very little amount of Potassium, the background counts originated by 40K is minimized.

(2) UV-transmitting glass

This glass transmits ultraviolet light well as the name implies, and it is widely used. The UV cut-off wavelength is approxi-mately 185 nm.

(3) Silica glass

This material transmits ultraviolet light down to 160 nm. Silica is not suitable for the stem material of tubes because it has a different thermal expansion coefficient from kovar metal which is used for the tube leads. Thus, borosilicate glass is used for the stem. In order to seal these two materials having different thermal expansion ratios, a technique called graded seal is used. This is a technique to seal several glass materials having gradually different thermal expansion ratios. Another feature of silica is superiority in radiation hardness.

2.4 Photocathode materials

The photocathode is a photoemissive surface with very low work and high energy physics applications:

(1) Bialkali

This has a spectral response which fits the emission spectra of most scintillators. Thus, it is frequently used for scintillator applications.

(2) High temperature bialkali

This is particularly useful at higher operating temperatures up to 175 °C. Its major application is oil well logging. Also it can be operated with very low dark current at the room temperature.

Radiant sensitivity (S) is the photoelectric current from the photocathode divided by the incident radiant power at a given wavelength, expressed in A/W (ampere per watt).The equation of S is as follows:

Quantum efficiency and radiant sensitivity have the following relationship at a given wavelength.

where λ is the wavelength in nm (nanometer).

Figure 1: Cross-section of head-on type PMT

TPMHC0048EA

Number of photonsNumber of photoelectrons

QE = ×100 (%)

Radiant power of lightPhotoelectric current

S = (A/W)

λS×1240

QE = ×100 (%)

PHOTOCATHODE

INCIDENTLIGHT

ELECTRON MULTIPLIER(DYNODES)

ANODE

INPUTWINDOW

FOCUSING ELECTRODES

PHOTOELECTRON

STEM

Page 5: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

3

As stated above, the spectral response range is determined by the materials of the photocathode and the window as shown in Figure 34.It is important to select appropriate materials which will suit the application.

2.5 Luminous and blue sensitivity

Since the measurement of spectral response characteristics of a PMT requires a sophisticated system and time, it isn't practi-cal to provide spectral response data on each tube. Instead, cathode and anode luminous sensitivity data are usually attached.

The cathode luminous sensitivity is the photoelectric current from the photocathode per incident light flux (10-5 to 10-2 lumen) from a tungsten filament lamp operated at a distribution temperature of 2856 K.The cathode luminous sensitivity is expressed in the unit of μA/lm (micro amperes per lumen).Note that the lumen is a unit used for luminous flux in the visible region, therefore these values may be meaningless for tubes which are sensitive out of the visible region (refer to Figure 2).The cathode blue sensitivity is the photoelectric current from the photocathode per incident light flux of a tungsten filament lamp at 2856 K passing through a blue filter. Corning CS-5-58 filter which is polished to half stock thickness is used for the measurement of this sensitivity. This filter is a band-pass filter and its peak wavelength of transmittance is 400 nm.Since the light flux, once transmitted through the blue filter, can not be expressed in lumen, the blue sensitivity is usually repre-sented by the blue sensitivity index.The blue sensitivity is a very important parameter in the scintil-lation counting since most of the scintillators produce emission spectrum in the blue region, and it may dominant factor of energy resolution.These parameters of cathode luminous and blue sensitivities are particularly useful when comparing tubes having the same or similar spectral response ranges. Hamamatsu final test sheets accompanied with tubes usually indicate these parameters.

Figure 2: Typical human eye response and spectral distribution of 2856 K tungsten lamp

TPMOB0054EB

3. ELECTRON MULTIPLIER (DYNODES)

The superior sensitivity (high gain and high S/N ratio) of PMT is due to a low noise electron multiplier which amplifies electrons in a vaccum with cascade secondary emission process. The electron multiplier consists of several to up to 19 stages of electrodes which are called dynodes.

3.1 Dynode types

There are several principal types of dynode structures. Features of each type are as follows:

(1) Linear focused type

Fast time response, high pulse linearity

(2) Box and grid type

Good collection efficiency, good uniformity

(3) Box and linear focused type

Good collection efficiency, good uniformity, low profile

(4) Circular and linear-focused type

Fast time response, compactness

(5) Venetian blind type

Good uniformity, large output current

(6) Fine mesh type

High immunity to magnetic fields, good uniformity, high pulse linearity, position detection possible.

(7) Metal channel type

Compact dynode construction, fast time response, position detection possible.

4. ANODE

The PMT anode output is the product of photoelectric current from the photocathode and gain. Photoelectric current is proportional to the intensity of incident light. Gain is determined by the applied voltage on a specified voltage divider.

4.1 Luminous sensitivity

The anode luminous sensitivity is the anode output current per incident light flux (10-10 to 10-5 lumen) from a tungsten filament lamp operated at a distribution temperature of 2856 K. This is expressed in the unit of A/lm (amperes per lumen) at a speci-fied anode-to-cathode voltage with a specified voltage divider.

100

80

60

40

0

20

200 400 600 800 1000 1200 1400

WAVELENGTH (nm)

RE

LAT

IVE

VA

LUE

(%

)

VISUAL SENSITIVITY

TUNGSTEN LAMPAT 2856 K

Page 6: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

4

5. ANODE DARK CURRENT

A small amount of output current flows in a PMT even when it is operated in complete darkness. This current is called the anode dark current. The dark current and the noise resulted from are critical factors to determine the lower limit of light detection.The causes of dark current may be categorized as follows:

(1) Thermionic emission of electrons

Since the materials of the photocathode and dynodes have very low work functions, they emit thermionic electrons even at the room temperature. Most of the dark current originates from the thermionic emissions especially from the photocathode, and it is multiplied by the dynodes.

(2) Ionization of residual gases

Residual gases inside the PMT can be ionized by the flow of photoelectrons. When these ions strike the photocathode or earlier stages of dynodes, secondary electrons may be emitted, thus resulting in relatively large output noise pulses. These noise pulses are usually observed as afterpulses follow-ing the primary signal pulses and may be a problem in detect-ing short light pulses. Present PMT's are designed to minimize afterpulses.

(3) Glass scintillation

In case electrons deviating from their normal trajectories strike the glass envelope, scintillations may occur and dark pulses may result. To eliminate these pulses, PMT's may be operated with the anode at high voltage and the cathode at the ground potential. Otherwise it is useful to coat the glass bulb with a conductive paint connected to the cathode (called HA treatment: see page 13).

(4) Ohmic leakage

Ohmic leakage resulting from insufficient insulation of the glass stem base and socket may be another source of dark current. This is predominant when a PMT is operated at a low voltage or low temperature.Contamination by dirt and humidity on the surface of the tube may cause ohmic leakage, and therefore should be avoided.

(5) Field emission

When a PMT is operated at a voltage near the maximum rating value, some electrons may be emitted from electrodes by strong electric fields causing dark pulses. It is therefore recom-mended that the tube be operated at 100 volts to 300 volts lower than the maximum rating.The anode dark current decreases along time after a PMT is placed in darkness. In this catalog, anode dark currents are specified as the state after 30 minutes storage in darkness.

4.2 Gain (Current amplification)

Photoelectrons emitted from a photocathode are accelerated by an electric field so as to strike the first dynode and produce secondary electron emissions. These secondary electrons then impinge upon the next dynode to produce additional secondary electron emissions. Repeating this process over successive dynode stages (cascade process), a high gain is achieved. Therefore a very small photoelectric current from the photo-cathode can be observed as a large output current from the anode of the PMT.Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of the PMT is defined as δn, where n is the number of dynode stage and δ is an average secondary emission ratio.While the secondary electron emission ratio δ is given by

δ = A • Eα

where A is constant, E is an interstage voltage, and α is a coefficient determined by the dynode material and geometric structure. It usually has a value of 0.7 to 0.8.When a voltage V is applied between the cathode and the anode of the PMT having n dynode stages, gain G becomes

Figure 3 shows gain characteristics.Since generally PMTs have 8 to 12 dynode stages, the anode output varies directly with the 6th to 10th power of the change in applied voltage. The output signal of the PMT is extremely susceptible to fluctuations in the power supply voltage, thus the power supply should be very stable and exhibit minimum ripple, drift and temperature coefficient. Regulated high voltage power supplies designed with this consideration are available from Hamamatsu.

Figure 3: Example of gain vs. supply voltage

= δn = (A • Eα)n = A • n + 1

V α n{ }=

(n + 1)αnAn

Vαn = K • Vαn

( )G

(K: constant)

TPMOB0038EB104 109

200 300 500 700 1000 1500

AN

OD

E L

UM

INO

US

SE

NS

ITIV

ITY

(A

/lm)

SUPPLY VOLTAGE (V)

GA

IN

ANO

DE

SEN

SITI

VITY

GAI

N

108

107

106

105

104

103

103

102

101

100

10-1

10-2

Page 7: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

5

6. TIME RESPONSE

In applications where forms of the incident light are pulses, the anode output signal should reproduce a waveform faithful to the incident pulse waveform.This reproducibility depends on the anode pulse time response.

(1) Rise time (refer to Figure 4)

The time for the anode output pulse to rise from 10 % to 90 % of the peak amplitude when the whole photocathode is illumi-nated by a delta-function light pulse.

(2) Electron transit time (refer to Figure 4)

The time interval between the arrival of a delta-function light pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude.

(3) T.T.S. (Transit Time Spread) (refer to Figure 5)

This is also called the transit time jitter. This is the fluctuation in transit time between individual pulses, and is defined as the FWHM of the frequency distribution of electron transit times. T.T.S. depends on the number of incident photons. The values in this catalog are measured in the single photoelectron state.

(4) C.R.T. (Coincident Resolving Time)

This is one of the important parameters in high energy physics applications and is defined as the FWHM of a coincident timing spectrum of a pair PMT's facing each other when they detect coincident gamma-ray emission due to positron annihilation of a radiation source (22Na). The scintillators used are CsF, BGO or BaF2 crystals. These PMT's can be selected for special requirements.

Figure 4: Definition of rise time and transit time

Figure 5: Definition of T.T.S.

These parameters are affected by the dynode structure and applied voltage. In general, PMTs of the linear focused struc-ture exhibit better time response than that of the box-and-grid or venetian blind structure.

Figure 6 shows typical time response characteristics vs. applied voltage for types R2059 (51 mm dia. head-on, 12-stage, linear-focused type).

Figure 6: Time response characteristics vs. supply voltage

TPMOB0059EB

7. PULSE LINEARITY

The definition of the pulse linearity is proportionality between the input light amount and the output current in the pulse operation mode. When intense light pulses are to be measured, it's necessary to know the pulse linearity range of the PMT.In this catalog, typical values of pulse linearity are specified at two points (±2 % and ±5 % deviations from linear proportional-ity), as shown in Figure 7.The two-pulse technique is employed in this measurement. LED's are used for a pulsed light source. Its pulse width is 50 ns and the repetition rate is 1 kHz.The deviation from the proportionality is called non-linearity in this catalog. The cause of non-linearity is mainly a space charge effect in the later stages of an electron multiplier. This space charge effect depends on the pulse height of the PMT output current and the strength of electric fields between electrodes.

500 1000 1500 2000 30002500

SUPPLY VOLTAGE (V)

TIM

E (

ns)

TYPE NO.: R2059

T.T.S.

RISE TIME

TRANSIT TIME

102

101

100

TPMOC0041EA

TPMOC0042EA

DELTA-FUNCTIONLIGHT PULSE AT PHOTOCATHODE

RISE TIME

TRANSIT TIMETt

90 %

10 %

Tt

FWHM=T.T.S.

TIME

FR

EQ

UE

NC

Y

Tt

Page 8: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

6

9. STABILITY

In scintillation counting, there are two relevant stability charac-teristics for the PMT in pulse height mode operation, the long term and the short term. In each case a 137Cs source (662 keV), and an NaI(Tl) scintillator, and a multichannel pulse height analyzer are used. PMT's are warmed up for about one hour in the dark with voltage applied.

9.1 Long term stability (Mean gain deviation)

This is defined as follows when the PMT is operated for 16 hours at a constant count rate of 1000 s-1:

where P is the mean pulse height averaged over n readings, Pi is the pulse height at the i-th reading, and n is the total number of readings.

9.2 Short term stability

This is the gain shift against count rate change. The tube is initially operated at about 10000 s-1. The photo-peak count rate is then decreased to approximately 1000 s-1 by increasing the distance between the 137Cs source and the scintillator coupled to the PMT.

9.3 Drift and life characteristics

While operating a photomultiplier tube continuously over a long period, anode output current of the photomultiplier tube may vary slightly with time, although operating conditions have not changed. This change is reffered to as drift or in the case where the operating time is 1000 hours to 10000 hours it is called life characteristics. Figure 9 shows typical life characteristics. Drift is primarily caused by damage to the last dynode by heavy electron bombardment. Therefore the use of lower anode current is desirable. When stability is of prime impor-tance, the use of average anode current of 1 μA or less is recommended.

8. UNIFORMITY

Although the focusing electrodes of a PMT are designed so that electrons emitted from the photocathode or dynodes are collected efficiently by the first or following dynodes, some electrons may deviate from their desired trajectories and collection efficiency is degraded. The collection efficiency varies with the position on the photocathode from which the photoelectrons are emitted, and influences the spatial unifor-mity of a photomultiplier tube. The spatial uniformity is also determined by the photocathode surface uniformity itself.PMTs especially designed for gamma camera applications have excellent spatial uniformity. Example of spatial uniformity is shown in Figure 8.

The special voltage distribution ratios are designed to achieve strong electric fields in the later stages of the electron multiplier. Some types are specified with these special voltage dividers.

Figure 7: Example of pulse linearity characteristic

Figure 8: Example of spatial uniformity

Figure 9: Examples of life characteristics

nDg =

i =1P-Pi

P

100 • (%)

TPMHB0094ED

TPMHB0794EA

TPMHC0050EA

10

ANODE PEAK CURRENT (mA)

DE

VIA

TIO

N (

%)

2 %

5 %

0

-10

-20100 101 102 103

100

50

0

TOP VIEW OFPHOTOCATHODE

SE

NS

ITIV

ITY

(%

)

100 50 0

SENSITIVITY (%)

150

125

100

75

50

25

1 10 100

OPERATING TIME (h)

1000 100000

RE

LAT

IVE

AN

OD

E S

EN

SIT

IVIT

Y (

%)

TEST CONDITIONS SUPPLY VOLTAGE: 1000 V INITIAL CURRENT: 100 μA LIGHT SOURCE: TUNGSTEN LAMP TEMPERATURE: 25 °C NUMBER OF SAMPLES: 10

x

x + σ

x - σ

Page 9: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

7

10. ENVIRONMENT

10.1 Temperature characteristics

The sensitivity of the PMT varies with the temperature. Figure 10 shows typical temperature coefficients of anode sensitivity around the room temperature for bialkali and high temp. bialkali photocathode types. In the ultraviolet to visible region, the temperature coefficient of sensitivity has a negative value, while it has a positive value near the longer wavelength cut-off.Since the temperature coefficient change is large near the longer wavelength cut-off, temperature control may be required in some applications.

10.2 Magnetic field

Most PMTs are affected by the presence of magnetic fields. Magnetic fields may deflect electrons from their normal trajec-tories and cause a loss of gain. The extent of the loss of gain depends on the type of the PMT and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of PMTs. In general, a PMT having a long path from the photocathode to the first dynode are very sensi-tive to magnetic fields. Therefore head-on types, especially of large diameter, tend to be more adversely influenced by magnetic fields.When a PMT has to be operated in magnetic fields, it may be necessary to shield the PMT with a magnetic shield case. (Hamamatsu provides a variety of magnetic shield cases.)For example, the shield case, of which inner diameter is 60 mm and the thickness is 0.8 mm, can be used in a magnetic field of around 5 mT without satulation. If a magnetic field strength is more than 10 mT, the double shielding method is necessary for a conventional PMT, otherwise proximity mesh types should be used. The magnetic shielding factor is used to express the effect of a magnetic shield case. This is the ratio of the strength of the magnetic field outside the shield case or Hout, to that inside the shield case or Hin.

The magnetic shielding factor is determined by the permeability µ, the thickness t(mm) and inner diameter r(mm) of the shield case as follows.

It should be noted that the magnetic shielding effect decreases towards the edge of the shield case as shown in Figure 12. It is suggested to cover a PMT with a shield case longer than the PMT length by at least half the PMT diameter.

Figure 10: Typical temperature coefficients of anode sensitivity

TPMOB0036ED

Figure 11: Typical effects by magnetic fields perpendicular to tube axis

Figure 12: Edge effect of magnetic shield case

TPMOB0011EC

TPMOB0017EB

The proximity mesh made of non-magnetic material has been introduced as alternate dynodes in PMT's. These types (see page 24) exhibit much higher immunity to external magnetic fields than the conventional PMT's. Also triode and three types (see page 24) are useful for applications at high light intensi-ties.

-3 -2 -1 0 1 2 30.01

0.1

1.0

RE

LAT

IVE

OU

TP

UT

MAGNETIC FLUX DENSITY (mT)

51 mm dia.HEAD-ON TYPE BOX-AND-GRID TYPE DYNODE

19 mm dia.HEAD-ON TYPE LINEAR-FOCUSED TYPE DYNODE( )

( )

LONGER than rEDGE EFFECT

1000

100

10

1

t

L

r r

SH

IELD

ING

FA

CT

OR

(H

o/H

i)

2r PHOTOMULTIPLIER TUBE

HoutHin

3µt4r

=

1.5

1

0.5

0

-0.5

-1200 300 400 500 600 700 800

WAVELENGTH (nm)

AN

OD

E S

EN

SIT

IVIT

YT

EM

PE

RA

TU

RE

CO

EF

FIC

IEN

T (

% /

°C)

BIALKALI

HIGH TEMP. BIALKALI

Page 10: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

8

11.1 Anode grounding and photocathode grounding

In order to eliminate the potential difference between the photomultiplier tube anode and external circuits such as an ammeter, and to facilitate the connection, the generally used technique for voltage divider circuits is to ground the anode and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 14. This scheme provides the signal output in both DC and pulse operations, and is therefore used in a wide range of applications.

In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. This photocathode grounding scheme is shown in Figure 15, along with the coupling capacitor Cc for isolating the high voltage from the output circuit. Accordingly, this setup cannot provide a DC signal output and is only used in pulse output applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor, but the actual load resistance will be the combination of RP and RL.

11. VOLTAGE DIVIDER CIRCUITS

To operate a photomultiplier tube, a high voltage of 500 volts to 2000 volts is usually supplied between the photocathode (K) and the anode (P), with a proper voltage gradient set up along the photoelectron focusing electrode (F) or grid (G), secondary electron multiplier electrodes or dynodes (Dy) and, depending on photomultiplier tube type, an accelerating electrode (Acc). Figure 13 shows a schematic representation of photomultiplier tube operation using independent multiple power supplies, but this is not a practical method. Instead, a voltage divider circuit is commonly used to divide, by means of resistors, a high voltage supplied from a single power supply.

Figure 13: Schematic representation of photomultiplier tube operation

Figure 14: Anode grounded voltage divider circuit

Figure 15: Photocathode grounded voltage divider circuitTACCC0055EA

Figure 14 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C1 connected in parallel to the resistor R5 in the circuit is called a decoupling capacitor and improves the output linearity when the photomul-tiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications, transistors or Zener diodes may be used in place of these resistors.

TACCC0056EB

TACCC0057EB

KLIGHT

F Dy1 Dy2 Dy3 P

V1 V2 V3 V4 V5

POWER SUPPLIES

ANODE CURRENTIp

A

e- e- e- e-

PHOTOELECTRONS

SECONDARY ELECTRONS

K F P

IpOUTPUT

Dy3Dy2Dy1

R1 R2 R3 R4 R5

RL

C1

-HV

K F P

Cc

IpOUTPUT

Dy3Dy2Dy1

R5

RLRP

C1

C2

+HV

R1 R2 R3 R4

Page 11: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

9

Figure 16: Equally divided voltage divider circuit

Figure 17: Tapered voltage divider circuit

Figure 18: Output linearity of photomultiplier tube

Figure 19: Basic operation of photomultiplier tubeand voltage divider circuit

11.2 Standard voltage divider circuits

Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribu-tion ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in particu-lar mostly use a voltage divider circuit with equal interstage voltages allowing high gain as shown in Figure 16.

11.4 Voltage divider circuit and photomultiplier tube output linearity

In both DC and pulse operations, when the light incident on the photocathode increases to a certain level, the relationship between the incident light level and the output current begins to deviate from the ideal linearity. As can be seen from Figure 18, region A maintains good linearity, and region B is the so-called overlinearity range in which the output increase is larger than the ideal level. In region C, the output goes into saturation and becomes smaller than the ideal level. When accurate measure-ment with good linearity is essential, the maximum output current must be within region A. In contrast, the lower limit of the output current is determined by the dark current and noise of the photomultiplier tube as well as the leakage current and noise of the external circuit.

11.5 Output linearity in DC mode

Figure 19 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages of dynodes and four dividing resistors R1 through R4 having the same resistance value.

11.3 Tapered voltage divider circuits

In most pulsed light measurement applications, it is often necessary to enhance the voltage gradient at the first and/or last few stages of the voltage divider circuit, by using larger resistances as shown in Figure 17. This is called a tapered voltage divider circuit and is effective in improving various characteristics. However it should be noted that the overall gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below.

TACCC0058EB

Tapered circuit at the first few stages (resistance: large <First dynode> / small <Latter dynode>)

Photon counting (improvement in pulse height distribution)Low-light-level detection (S/N ratio enhancement)High-speed pulsed light detection (improvement in timing properties)Other applications requiring better magnetic characteristics and uniformity

Tapered circuit at the last few stages (resistance: small <First dynode> / large <Latter dynode>)

High pulsed light detection (improvement in output linearity)High-speed pulsed light detection (improvement in timing properties)Other applications requiring high output across the load resistor

TACCC0059EB

TACCB0005EB

TACCC0060EA

OUTPUT

PDy5Dy4K Dy3Dy2Dy1

RL

-HV

3R2R1R1R1.5R2R

C1 C2

P

OUTPUT

Dy5Dy4K Dy3Dy2Dy1

RL

-HV

C1

1R 1R 1R 1R 1R 1R

C2

0.001

0.01

0.1

1.0

10

0.001 0.01 0.1 1.0 10

A

B

C

RA

TIO

OF

OU

TP

UT

CU

RR

EN

TT

O D

IVID

ER

CU

RR

EN

T

LIGHT FLUX (A.U.)

ACTUALCURVE

IDEALCURVE

K Dy1 Dy2 Dy3 P

R1 R2 R3

-HV

Ip

R4

A

IR1 IR2 IR3 IR4

ID

IDy1 IDy2 IDy3IK

I1I2 I3

I4

Page 12: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

10

Figure 22: Changes in interstage voltages at differentincident light levels

Figure 21: Operation with light input

TACCC0062EA

Figure 22 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light input drops significantly compared to V4 in dark state opera-tion. This voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than those in dark state operation. The interstage voltage V4' is only required to collect the secondary electrons emitted from the last dynode to the anode, so it has little effect on the anode current even if dropped to 20 or 30 volts. In contrast, the increases in V1', V2' and V3' directly raise the secondary emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is the cause of overlinearity in region B in Figure 10. As the incident light level further increases so that V4' approaches 0 volts, output saturation occurs in region C.

TACCB0017EA

Where In' is the interelectrode current which has the following relation:

I1' < I2' < I3' < I4'

Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller at the latter stages, as follows:

V1' > V2' > V3' > V4'

Figure 20: Operation without Light Input

[When light is not incident on the tube]In dark state operation where a high voltage is supplied to a photomultiplier tube without incident light, the current compo-nents flowing through the voltage divider circuit will be similar to those shown in Figure 20 (if we ignore the photomultiplier tube dark current). The relation of current and voltage through each component is given below

Interelectrode current of photomultiplier tube

I1=I2=I3=I4 (= 0 A)

Electrode current of photomultiplier tube

IK=IDy1=IDy2=IDy3=IP (= 0 A)

Voltage divider circuit current

IR1=IR2=IR3=IR4=ID= (HV/ Rn)

Voltage divider circuit voltage

V1=V2=V3=V4=ID • Rn (= HV/4)

[When light is incident on the tube]When light is allowed to strike the photomultiplier tube under the conditions in Figure 20, the resulting currents can be considered to flow through the photomultiplier tube and the voltage divider circuit as schematically illustrated in Figure 21. Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them from those in dark state operation.The voltage divider circuit current ID' is the sum of the voltage divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube ΔID (equal to average interelectrode current). The current flowing through each dividing resistor Rn becomes as follows:

IRn' = ID' - In'

Σn=1

4

TACCC0061EAID

V1 V2 V3 V4

R1 R2 R3 R4

IR1 IR2 IR3 IR4

I1 (=IK) I2 I3 I4 (=IP)K Dy1 Dy2 Dy3 P

-HV

IK IDy1 IDy2 IDy3 IP

ID' =ID + ΔID

V1' V2' V3' V4'

IR1' IR2' IR3' IR4'

I1' (=IK') I2' I3'I4' (=IP')

Ik' IDy1' IDy2' IDy3' IP'

R1 R2 R3 R4

K Dy1 Dy2 Dy3 P

-HV

80

90

100

110

120

V1 V2 V3 V4

POSITION OF INTERSTAGE VOLTAGE

INT

ER

ST

AG

E V

OLT

AG

E (

%)

HIGH LIGHT INPUT

MODERATE LIGHT INPUT

NO OR FAINT LIGHT INPUT

Page 13: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

11

Figure 24: Active voltage divider circuit

Figure 25: Voltage divider circuit using zener diodes

Figure 23: Output linearity vs. anode current tovoltage divider current ratio

11.6 Linearity improvement in DC output mode

To improve the linearity in DC output mode, it is important to minimize the changes in the interstage voltage when photocur-rent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below.

TACCB0031EA

2Using the active voltage divider circuitUse of a voltage divider circuit having transistors in place of the dividing resistors in last few stages (for example, Hamamatsu E6270 series using FETs) is effective in improving the output linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the photomultiplier tube. A typical active voltage divider circuit is shown in Figure 24.

As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If this heat is conducted to the photomultiplier tube, it may cause problems such as an increase in the dark current, and variation in the output.

TACCC0063EA

3Using zener diodesThe output linearity can be improved by using Zener diodes in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is greatly varied, the voltage distribution may be imbalanced compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition, if the supply voltage is reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from the Zener diodes. Precautions should be taken when using this type of voltage divider circuit. Figure 25 shows a typical voltage divider circuit using Zener diodes.

TACCC0064EA

1Increasing the voltage divider currentFigure 23 shows the relationship between the output linearity of a 28 mm (1-1/8") diameter side-on photomultiplier tube and the ratio of anode current to voltage divider current. For exam-ple, to obtain an output linearity of 1 %, it can be seen from the figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a calculated plot, so actual data may differ from tube to tube even for the same type of photomultiplier tube, depending on the supply voltage and individual dynode gains. To ensure high photomet-ric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure.

The maximum linear output in DC mode listed for the D-type socket assemblies in this catalog indicates the anode current equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within 3 % to 5 %.

RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%)

OU

TP

UT

LIN

EA

RIT

Y (

%)

0.01

10

0.1

1

0.1 101

K P

-HV

TWOTRANSISTORS

RL

Dy1 Dy2 Dy3 Dy4 Dy5

K Dy1 Dy2 Dy3

-HV

Dy4 Dy5

TWOZENER DIODES

RL

P

Page 14: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

12

Figure 28: Equally divided voltage divider circuit anddecoupling capacitors

TACCC0067EB

11.7 Output linearity in pulsed mode

In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may range from a few to over 100 milliamperes even though the average anode current is small at low count rates. In this pulsed output mode, the peak current in extreme cases may reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last few stages of the photomulti-plier tube, thus leading to degradation in the output linearity.

11.8 Improving linearity in pulsed output mode

1Using decoupling capacitorsUsing multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is to supply the interelectrode current by using decoupling capaci-tors as shown in Figure 28. There are two methods for connecting these decoupling capacitors: the serial method and the parallel method. As Figures 28 and 29 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of the decoupling capacitor between the last dynode and the anode should be at least 100 times the output charge as follows:

C > 100 • Q/V

where Q is the charge of one output pulse (coulombs) and V is the voltage (volts) across the last dynode and the anode.

Since this method directly supplies the pulse current with electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the electrical charge will be insufficient. Therefore, in order to maintain good linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50 times larger than the average anode current just as with the DC output mode.The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior pulse output linearity even at a higher duty factor.

Figure 27: Voltage divider circuit using multiple powersupplies (Booster method)

5Using multiple high voltage power suppliesAs shown in Figure 27, this technique uses multiple power supplies to directly supply voltages to the last few stages near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments.

TACCC0066EA

Figure 26: Cockcroft-Walton circuit

4Using Cockcroft-Walton circuitWhen a Cockcroft-Walton circuit as shown in Figure 26 is used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC linearity can be obtained up to 200 µA and even higher. Since a high voltage is generated by supplying a low voltage to the oscillator circuit, there is no need for using a high voltage power supply.This Cockcroft-Walton circuit achieves superior DC output linearity as well as low current consumption.

TACCC0065EA

-HV GENERATED

K Dy1 Dy2 Dy3 Dy4 Dy5 P

OSCILLATIONCIRCUIT

RL

K

RL

PDy1 Dy2 Dy3 Dy4 Dy5

AUXILIARY POWER SUPPLY 1

MAIN POWER SUPPLY

AUXILIARYPOWER SUPPLY 2

K Dy1 Dy2 Dy3

-HV

Dy4 Dy5

RL

P

1R 1R 1R 1R 1R

CD2CD1

1R

TWO DECOUPLING CAPACITORS

Page 15: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

13

Figure 29: Tapered voltage divider circuit usingdecoupling capacitors

12. EXTERNAL POTENTIAL

If the input window or glass envelope near the photocathode is grounded, slight conductivity of glass material causes a current flow between the photocathode, which has a high negative potential, and ground.This may cause electrolysis of photocathode, leading to signifi-cant deterioration.Also this may cause noise resulted from the light flashes at the above input window or glass envelope.For those reasons, when designing a PMT housing with an electrostatic or magnetic shield case, extreme care should be required.When the anode ground scheme is used, bringing a grounded metallic holder or magnetic shield case near the glass enve-lope of PMT can cause electrons to strike the inner glass wall, resulting in the noise.This problem can be solved by applying a black conductive paint around the glass envelope and connecting it to the cathode potential. Then PMT is wrapped with an insulating black cover, as shown in Figure 30. This method is called HA treatment.

2Using tapered voltage divider circuit with decoupling capacitors

Use of the above voltage divider circuit having decoupling capacitors is effective in improving pulse linearity. However, when the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in Figure 29. Care should be taken in this case regarding loss of the gain and the breakdown voltages between electrodes.Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted however, that if the output voltage becomes excessively high, the voltage between the last dynode and the anode may drop, causing a degradation in output linearity.

TACCC0068EB

13. SCINTILLATION COUNTING

13.1 General

Scintillation counting is one of the most common and effective methods in detecting radiation particles. It uses a PMT coupled to a scintillator which produces light by incidence of radiation particles.In radiation particle measurement, there are two parameters that should be measured. One is the energy of individual particle and the other is the amount of particles. When radia-tion particles enter the scintillator, they produce light flashes in response to each particle. The amount of flash is proportional to the energy of the incident particle and individual light flashes are detected by the PMT. Consequently, the output pulses obtained from the PMT contain information on both the energy and number of pulses, as shown in Figure 31.

Figure 30: HA treatment

TPMHC0049EB

Figure 31: Incident particles and PMT output

TPMOC0039EA

K Dy1 Dy2 Dy3

-HV

Dy4 Dy5

RL

P

1R 1R 1R 1.5R 3R

CD2CD1

2.5R

TWO DECOUPLING CAPACITORS

INSULATING BLACK COVER

CONDUCTIVE PAINT CONNECTED TOCATHODE PIN

SCINTILLATOR

PMT

THE HEIGHT OF OUTPUTPULSE IS PROPORTIONALTO THE ENERGY OF INCIDENT PARTICLE.

TIME

CU

RR

EN

T

TIME

Page 16: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

14

To obtain a good energy resolution, it is important to use a good scintillator having a high efficiency and a good intrinsic energy resolution. It is also important to reduce a light loss between a PMT and a scintillator. For this purpose, it is useful to couple them with silicon oil having a refractive index close to that of the faceplate window of the PMT or scintillator material or its protective window.

The following factors determin the energy resolution.

(1) Energy conversion efficiency of the scintillator(2) Intrinsic energy resolution of the scintillator(3) Quantum efficiency of the photocathode(4) Collection efficiency of photoelectrons at the first dynode(5) Secondary emission yield of dynodes (especially first

dynode)

The equation of the pulse height resolution is described as follows:

R(E)2 = RS(E)2 + RP(E)2

where R(E) : energy resolution RS(E) : energy resolution of a scintillator RP(E) : energy resolution of a PMT

Figure 33: Definition of pulse height resolution

RP(E)2 is described as follows:

where N : mean number of incident photon η : quantum efficiency α : collection efficiency δ : mean secondary emission yield of each dynode

Nηα

2.352RP(E)2 = ×

δ – 1δ

TPMOB0088EA

By analyzing these output pulses using a multichannel analyzer (MCA), pulse height distribution (PHD), or energy spectra, as shown in Figure 32, are obtained. From the PHD, the number of incident particles at various energy levels can be measured.

13.2 Energy resolution

For the energy spectrum measurement, it is very important to have a distinct peak at each energy level. This characteristic is evaluated as the pulse height resolution or the energy resolution and is most significant in the radiation particle identification.Figure 33 shows the definition of the energy resolution using NaI(Tl) scintillator and 137Cs γ-ray source. It is customarily stated as a percentage.

Figure 32: Typical pulse height distribution (Energy spectral)

(a) 55Fe+Nal(TI)

(b) 137Cs+Nal(TI)

(c) 60Co+Nal(TI)

TPMOB0087EC

1000

500

5000 1000

10000

5000

(51 mm dia. × 51 mm t)

5000 1000

10000

5000

500

ENERGY

CO

UN

TS

ENERGY

ENERGY

CO

UN

TS

CO

UN

TS

0 1000

(51 mm dia. × 51 mm t)

PULSE HEIGHT

NU

MB

ER

OF

PU

LSE

S

ab

b

aH

H2

Energy Resolution (FWHM) =—× 100 %

Page 17: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

15

13.3 Emission spectrum of scintillator

The quantum efficiency of the PMT is one of the main factors to determine its energy resolution. It is necessary to choose a PMT whose spectral response matches the scintillator emission. Figure 34 shows PMT typical spectral response vs. emission spectra of scintillators. For NaI(Tl), which is the most popular scintillator, bialkali photocathode PMTs are widely used.

Figure 34: Typical spectral response and emission spectra of scintillators

TPMHB0342EE

13.4 Features of scintillators

Figure 35 shows typical temperature responses of various scintillators. These characteristics should be considered in the actual operation.Table 1 shows a summary of scintillator characteristics.These data are reported by scintillator manufactures.

Figure 35: Typical temperature response of various scintillators

TPMOB0033EA

Table 1: Summary of scintillator characteristics

Density (g/cm3)

Lrad (cm)

Refractive index

Hygroscopic

Luminescence (nm)

Decay time (ns)

Relative light output

3.67

2.59

1.85

Yes

410

230

100

7.13

1.12

2.15

No

480

300

15

4.51

1.85

1.80

Slightly

530

1000

45 to 50

4.51

1.85

1.80

Slightly

310

10

<10

4.88

2.10

1.58

Slightly

220 / 325

0.9 / 630

20

6.71

1.38

1.85

No

430

30

20

1.03

40

1.58

No

400

2.0

25

7.35

0.88

1.82

No

420

40

70

5.29

2.1

1.9

Yes

380

16

165

5.55

2.70

1.97

No

380

30

40

Nal(Tl) BGO Csl(Tl) Pure Csl BaF2 GSO: Ce Plastic LSO: CeLaBr3: Ce YAP: Ce

-100

CsI (Tl)

-60 -20 0 +20 +60 +100 +140

100

SCINTILLATOR TEMPERATURE (°C)

BGO

RE

LAT

IVE

LIG

HT

OU

TP

UT

(%

)

Pure CsI

80

40

60

20

NaI (Tl)

A: Bialkali Photocathode (Borosilicate Glass)B: Bialkali Photocathode (UV Glass)C: Bialkali Photocathode (Silica Glass)D: Bialkali PhotocathodeE: High Temp. Bialkali PhotocathodeF: Super BialkaliG: Ultra BialkaliH: Extended Green BialkaliI: Low Temp. (down to -110 °C) Bialkali PhotocathodeJ: Low Temp. (down to -186 °C) Bialkali Photocathode

0

100

WAVELENGTH (nm)

QU

AN

TU

M E

FF

ICIE

NC

Y (

%)

8060

40

20

100.1

RE

LAT

IVE

INT

EN

SIT

Y (

%)

100

10

1

700100 200 300 400 500 600

BaF2

LaBr3

Nal (Tl)

LSOCsI (Tl)

BGO

D

G

H

A

BE

C

I F

J

Page 18: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

16

As the metal channel dynode is a sort of an array of small linear focused dynodes, secondary electrons hardly go to the adjacent dynode channel in a process of multiplication. It is possible to make multi-anode PMTs utilizing this feature. These anode shapes are categorized into 5 groups. The first group is multianode in matrix. 4 (2 × 2), 16 (4 × 4) and 64 (8 × 8) matrix channels types are available. (see Figure 38-A) Those are suitable for scintillating fiber readout as well as RICH (Ring Image CHerenkov counter). The second group is linear anode. 16 (1 × 16) and 32 (1 × 32) linear channels types are available. (see Figure 38-B) Those are suitable for coupling with slit shape scintillators and ribbon-shaped scintillating fiber bundle.R11265 series are wider effective area and shorter length compare with those of R7600 series. Those are also offering matrix channel type as well as single channel type (see Figure 38-C).Flat panel PMT assemblies use a 52 mm square photomulti-plier tube having an effective area ratio of 89 % and a 64-channel or 256-channel multianode. These flat panel PMTs offer a wide photosensitive area and come in thin, compact shape (see Figure 38-D). These PMTs can be efficiently arrayed in rows or matrices with almost no unused space between them. (See figure 38-E)

14. METAL PACKAGE PHOTOMULTIPLIER TUBE

In general including, the development of more compact and portable equipment has continuously progressed. This has led to a strong demand for miniaturization of highly sensitive photodetectors like PMTs. However, it is difficult to miniaturize conventional PMTs with glass envelopes and sophisticated electrode structures.Accordingly, PMTs have been mainly used in high-precision photometric systems, while semiconductor sensors have been used in general purpose, compact and portable equipments/ applications. To meet the increasing needs for small photode-tectors with high sensitivity, Hamamatsu has developed subminiature PMTs (R9880 series) using a metal package in place of the traditional glass envelope. These tubes have a size as small as semiconductor sensors, without sacrificing high sensitivity, and have the high speed response offered by conventional PMTs. The remarkable features of R9880 series are: smallest size, fast time response, ability of low light level detection and good immunity to magnetic fields.R9880 series are a subminiature PMT that incorporates an eight stages electron multiplier constructed with stacked thin electrodes (metal channel dynode) into a TO-8 type metal can package of 15 mm in diameter and 10 mm in height. The development of this metal package and its unique thin electrodes have made the fabrication of this subminiature PMT possible. The electrode structure of the electron multiplier was designed by means of advanced computer simulation and electron trajectory analysis. Furthermore, our long experience with micromachining technol-ogy has achieved a closed proximity assembly of these thin electrodes. Figure 36 shows a cross section of the metal chan-nel dynode with simulated electron trajectories.

The R5900 / R7600 / R8520 / R11265 series is another version of metal package PMT. It incorporates 10 to 12 stages of metal channel dynodes into a metal package of 26 mm × 26 mm square and about 20 mm in height. The prime features are similar to those of R9880 series, but its effective area is differ-ent of R9880. The dimensional outline of R11265U is shown in Figure 37. In this figure, "U" means a tube having an insulation plastic cover. It is necessary to prevent electric shock with some insulation material, because a metal package has a cathode potential voltage.

Figure 36: Cross section of metal channel dynode with electron trajectories

Figure 37: Insulation plastic cover of R11265U

TPMHA0585EA

TPMHC0101EA

30.0 ± 0.5

23 MIN.

26.2+0 -0.5

12.0

± 0

.5

19-

0.4

5

4.2 MAX.

0.6 ± 0.4

18.7 ± 0.5 3.5 ± 0.7

PHOTOCATHODEEFFECTIVE AREA

2.22

PIT

CH

22.95

22.56

SIDE VIEW BOTTOM VIEWTOP VIEW

e e

Page 19: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

17

(A) Matrix channel type

Figure 38: Various anode shape

(B) Linear channel type

(C) R11265 series

(D) Flat panel type

(E) Flat panel PMT array

TPMHC0204EC

THBV3_1309EA

THBV3_1310EAb

15. FINE MESH PHOTOMULTIPLIER TUBE

As indicated in section 10.2, normal photomultiplier tubes exhibit a large variation in a magnetic field, for example, sensi-tivity reduces at least one order of magnitude in a magnetic field of 10 milliteslas. In high-energy physics applications, however, photomultiplier tubes capable of operating in a magnetic field of more than one tesla are demanded. To meet these demands, special photomultiplier tubes with fine-mesh dynodes have been developed and put into use. 1) The struc-ture of this photomultiplier tube is illustrated in Figure 39. Figure 40 shows current relative output of a 19-stage photo-multiplier tube versus magnetic field at different angles.

Figure 39: Structure of a photomultiplier tube designed for use in highly magnetic fields

Figure 40: Magnetic characteristics of photomultiplier tubes for highly magnetic fields

H8711(R7600-00-M16)

H7546B(R7600-00-M64)

R7600U-00-M4

H13700(R12699-00-M256)

H12700A(R12699-00-M64)

H7260(R7259)

R5900U-00-L16

* R5900 series has flange at the bottom of the metal package, whereas R7600 series doesn't have it.

R11265U-00-M4 R11265-00-M16 R11265-00-M64R11265U

* R11265 series have wider effective area and low profile with those of R7600 series.

H13974-00-1616

8 × 8 8 × 8

8 × 8 8 × 8

− −

− −

−−

ELECTRON ELECTRONFINE MESHDYNODE

0 0.25 0.50 0.75 1.0 1.25 1.510-3

10-2

10-1

100

101

MAGNETIC FLUX DENSITY (T)

RE

LAT

IVE

OU

TP

UT

SUPPLY VOLTAGE: 2000 V

30 °

0 °

θ

MAGNETIC FLUX DIRECTION

ANODE

INPUTWINDOW

PHOTOCATHODE HA TREATMENT

PIN BASE orSEMIFLEXIBLE LEADS

DYNODE

Page 20: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

18

List guide for photomultiplier tubes

q Outline No.

This number corresponds to that of PMT dimensional outline drawing shown on later pages.Basing diagram symbols are explained as follows:

w Spectral response

The relationship between photocathode sensitivity and wave-length of input light.Curve code corresponds to that of spectral response curve on the inside back cover.(Refer to section 2 on page 2 for further details.)

e QE (Quantum Efficiency)

The ratio of the number of photoelectrons emitted from the photocathode to the number of incident photons.This catalog shows quantum efficiency at the peak wavelength.(Refer to section 2.2 on page 2 for further details.)

r Cathode sensitivity (Luminous)

The photoelectric current from the photocathode per incident light flux from a tungsten filament lamp operated at 2856 K.(Refer to section 2.5 on page 3 for further details.)

t Cathode blue sensitivity index

The photoelectric current from the photocathode per incident light flux from a tungsten filament lamp operated at 2856 K passing through a blue filter which is Corning CS 5-58 polished to 1/2 stock thickness.(Refer to section 2.5 on page 3 for further details.)

y Radiant

Measured at the peak sensitivity wavelength.(Refer to section 2.2 on page 2 for further details.)

u Anode to cathode supply voltage

The voltage indicates a standard applied voltage used to measure characteristics. The number in circles corresponds to that of the voltage distribution ratio on page 56 and 57.

i Anode sensitivity (Luminous)

The output current from the anode per incident light flux from a tungsten filament lamp operated at 2856 K.(Refer to section 4.1 on page 3 for further details.)

o Gain (Current amplification)

The ratio of the anode output current to the photoelectric current from the photocathode.(Refer to section 4.2 on page 4 for further details.)

!0 Anode dark current

The output current from the anode measured after 30 minutes storage in complete darkness.(Refer to section 5 on page 4 for further details.)

!1 Time response

<Rise time>The time for the anode output pulse to rise from 10 % to 90 % of the peak amplitude.

<Electron transit time>The time interval between the arrival of a delta function light pulse at the photocathode and the instant when the anode output pulse reaches its peak amplitude.

<T.T.S. (Transit Time Spread)>This is the fluctuation in transit time among individual pulses, and is defined as the FWHM of the frequency distribution of transit time.(Refer to section 6 on page 5 for further details.)

TPMOC0068EC

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (mA/W) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time responseAnode tocathodesupplyvoltage

(V)

q w

e r t iuy y o !0 !1

: Dynode: Grid (Focusing Electrode): Accelerating Electrode: Photocathode: Anode: Shield: Internal Connection (Do not use)

DYG(F)ACCKPSHIC

Short IndexPin

SemiflexibleLead

Key

Pin

BASING DIAGRAM SYMBOLSAll base diagrams show terminals viewed from the base end of the tube.

Page 21: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

19

!2 Maximum rating

<Anode to cathode voltage>The maximum anode to cathode voltages are limited by the internal structure of the PMT.Excessive voltage causes electrical breakdown. The voltage lower than the maximum rating should be applied to the PMT.

<Average anode current>This indicates the maximum averaged current over any interval of 30 seconds. For practical use, operating at lower average anode current is recommended.(Refer to section 9.3 on page 6 for further details)

★Operating ambient temperature range for the photomultiplier itself is -30 °C to +50 °C except for some types of tubes.However, when photomultiplier tubes are operated below -30 ° C at their base section, please consult us in advance.

!3 Pulse height resolution (P.H.R.)

The P.H.R. is measured with the combination of an NaI(Tl) scintillator and a 137Cs source as a standard measurement. If other scintillators or γ-ray sources are used, note is attached.(Refer to section 13.2 on page 14 for further details.)

!4 Stability

<Long term stability (Mean gain deviation)>This is defined as follows under the operation for 16 hours at a constant count rate of 1000 s-1:

where P is the mean pulse height averaged over n readings, Pi is the pulse height at the i-th reading, and n is the total number of readings.

<Short term stability>This is the gain shift on count rate charge. The tube is first operated at about 10000 s-1. The photo-peak count rate is then decreased to about 1000 s-1 by increasing the distance between the 137Cs source and the tube coupled to the NaI(Tl) scintillator.(Refer to section 9 on page 6 for further details.)

!5 Pulse linearity

Typical values of pulse linearity are specified at two points (±2 % and ±5 % deviation points from linear proportionality).(Refer to section 7 on page 5 and 6 for further details.)

!6 Dynode

<Dynode structure>Each mark means dynode structure as follows:

LINE : linear focusedBOX : box and gridB + L : box and linear focusedC + L : circular and linear focusedVB : venetian blindFM : fine meshMC : metal channel

<No. of stages>The number of dynodes used.(Refer to section 3 on page 4 for further details.)

!7 Socket & socket assembly

★ mark : A socket will be supplied with a PMT.no mark : A socket will be supplied as an option.The number in square corresponds to the outline number of the PMT socket assembly on page 58 and 59.

nDg =

i =1P-Pi

P

100 • (%)

(at 25 °C)

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

(%)

5 %deviation

Typ.

Dynodestructure/ stage

(mA)

2 %deviation

Typ.

(mA)

ShorttermTyp.

(%)

LongtermTyp.

(%)

Averageanodecurrent

(mA)

Anodeto

cathodevoltage

(V)

!2 !3 !4 !5

!6 !7Typicalpulseheight

resolution

Socket&

socketassembly

Page 22: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

20

Photomultiplier tubes

A-D

C-D

A-D

A-D

A-E

A-D

H

A-D

A-D

A-D

A-E

A-D

A-D

A-E

A-D

A-D

A-D

A-D

A-D

F

A-D

A-D

F

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

F

A-D

300 to 650

160 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

100

100

110

100

30

110

160

110

115

115

30

115

90

30

90

80

95

95

95

130

95

90

130

100

90

95

95

95

120

90

95

130

95

10.0

10.0

10.0

10.0

4.5

10

14

10.5

11.0

11.0

4.5

11.0

10.5

4.5

10.5

9.5

11.0

11.0

11.0

13.5

10.0

10.5

13.5

11.0

10.5

11.0

10.0

11.0

11.5

10.5

11.0

13.5

10.0

80

80

80

80

38

80

105

85

88

88

38

88

85

38

85

76

88

88

88

110

80

85

110

88

85

88

80

88

89

85

88

110

80

25

25

25

25

12

25

32

26

27

27

12

27

26

12

26

23

27

27

27

35

25

26

35

27

26

27

25

27

28

26

27

35

25

1.0 × 106

1.0 × 106

1.4 × 106

1.0 × 106

5.0 × 105

2.0 × 106

2.0 × 106

1.0 × 106

1.7 × 106

1.7 × 106

3.3 × 105

8.7 × 105

5.5 × 105

3.3 × 105

2.0 × 106

5.0 × 106

2.0 × 106

1.7 × 106

2.6 × 106

1.1 × 106

1.1 × 106

5.3 × 105

1.3 × 106

1.0 × 106

5.0 × 106

2.0 × 106

2.0 × 106

5.3 × 105

2.1 × 105

5.3 × 105

1.1 × 106

7.9 × 105

1.0 × 106

2.0 × 106

5.0 × 105

5.0 × 105

5.3 × 105

8.0 × 104

8.0 × 104

1.1 × 105

8.0 × 104

1.9 × 104

1.6 × 105

2.1 × 105

8.5 × 104

1.5 × 105

1.5 × 105

1.3 × 104

7.7 × 104

4.7 × 104

1.2 × 104

1.7 × 105

3.8 × 105

1.8 × 105

1.5 × 105

2.3 × 105

9.3 × 104

1.2 × 105

4.2 × 104

1.1 × 105

1.1 × 105

4.4 × 105

1.7 × 105

1.7 × 105

4.7 × 104

1.8 × 104

4.2 × 104

4.7 × 104

7.0 × 104

8.9 × 104

1.7 × 105

4.4 × 104

5.5 × 104

4.2 × 104

100

100

150

100

15

220

320

110

200

200

10

100

50

10

180

400

190

160

250

100

140

50

120

130

500

190

180

45

19

50

100

75

120

180

47

65

50

1

2

1

1

0.5

0.5

1

1

3

10

0.1

10

3

0.1

3

10

2

2

2

5

10

3

2

5

10

4

3

5

2

3

3

2

2

3

10

10

3

50

50

2

15

10

2

5

5

50

300

10

50

20

10

20

200

15

20

15

50

100

30

10

25

200

80

20

100

40

30

20

15

20

20

100

100

30

0.8

0.7

2.1

1.1

2.0

1.2

1.2

2.5

1.8

1.3

1.0

2.5

1.3

1.3

1.5

0.7

1.6

1.6

2.5

1.0

1.0

0.9

4.4

4.4

1.7

1.8

1.6

1.3

1.3

0.9

2.7

2.7

3.2

2.6

1.6

1.6

1.2

9

9

22

12

20

14

14

27

19

14

10

16

12

13

17

10

17

16

28

11

11

9.1

32

32

16

17

18

14

15

10

37

40

34

30

17

17

13

0.5

0.5

2.0

0.5

1.4

1.4

2.8

0.76

0.36

0.85

0.8

0.9

0.16

0.6

0.7

1.2

0.27

0.27

0.13

3.5

3.5

0.5

0.5

0.9

0.55

0.58

0.17

4.5

4.5

4.8

2.0

0.55

0.55

0.19

1250

1250

1000

1000

1500

1000

1000

1000

1500

1700

1500

1500

1000

1500

1000

2250

1250

1500

1000

1300

1300

1500

1000

1000

1500

1500

1000

1500

1500

1500

1250

1500

1000

1000

1300

1300

1500

e

t

!6

@7

!6

@3

@3

@0

@5

!0

@6

@1

@6

@6

@6

!9

@7

@8

@7

o

o

w

!3

!3

#0

#1

@6

y

u

w

@3

@4

@3

@3

o

o

w

q

q

e

w

e

r

r

t

y

u

i

y

i

o

o

!0

!1

!2

!3

!3

!4

!5

!5

!6

!7

!8

!9

@0

@1

@2

@3

@3

@4

R1635

R2496

R647-01

R4124

R4177-06

R12421

R12421-300

R1166

R1450

R3478

R3991A-04

R4125

R5611A-01

R1288A-06

R1924A

R4998

R7899-01

R8619

R9800

R9800-100

R13478

R3998-02

R3998-100-02

R6427

R7111

R7525

R13449

R580

R11102

R3886A

R9420

R9420-100

R13408

10 mm(3/8")

13 mm(1/2")

19 mm(3/4")

25 mm(1")

28 mm(1-1/8")

38 mm(1-1/2")

Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list.

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (mA/W) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time response

(V)

q w

e r t iuy y o !0 !1Anode tocathodesupplyvoltage

Page 23: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

21

E678-11*

E678-11*

E678-13F*

E849-68

E678-13E*

E678-13F*

E678-13F*

E678-12L*

E678-12L*

E678-12L*

E678-12R*

E678-12L*

E678-12A*

E678-14-03*

E678-14C*

E678-12A*

E678-12A*

E678-12A*

E678-12A*

E678-12A*

E678-20B*

E678-14C*

E678-14C*

E678-14C*

E678-14C*

E678-14C*

E678-20B*

E678-12A*

E678-12A

E678-12A*

E678-12A*

E678-12A*

E678-20B*

z

z

x

c

c

c

v

b

n

m

⁄1

⁄0

⁄0

⁄2⁄3

⁄1

⁄4

⁄4

⁄4

1500

1500

1250

1250

1800

1250

1250

1250

1800

1800

1800

1800

1250

1800

1250

2500

1800

1800

1500

1500

1500

1750

1500

1500

2000

2000

1250

1750

1750

1750

1750

1750

1250

1250

1500

1500

1750

0.03

0.03

0.1

0.03

0.02

0.1

0.1

0.1

0.1

0.1

0.02

0.1

0.1

0.02

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.5

1.0

1.0

1.0

23 / BGO *1

23 / BGO *1

7.8

8.1

12.0

7.8

7.8

7.8

11.0

7.8

8.0

9.0

7.8

8.0

7.8

7.8

8.0

7.8

8.0

7.5

7.0

7.8

7.8

7.8

7.8

7.8

8.0

7.7

7.7

7.6

7.5

7.8

7.0

8.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

1.0

1.0

0.5

2.0

2.0

2.0

3

3

3

2

8

3

3

4

4

4

20

100

10

30

30

40

30

100

5

30

30

10

8

8

10

100

30

10

100

10

40

150

10

20

30

30

20

7

7

7

5

13

12

12

7

8

8

40

170

20

50

50

70

50

150

8

50

50

25

10

10

30

150

50

30

150

30

60

200

30

30

50

50

50

UV type (R3878)

SILICA (R760) and UV (R960) types

UV type (R4141)

Flying lead type (R4177-04)

UV types (R12421-03)

EGBA type

SILICA (R762) and UV (R750) types

SILICA (R2076) and UV (R3479) types

Glass base type (R5611A)

Flying lead type (R1288A-04)

Flying lead type (R1924A-01)

SILICA type (R5320)

Glass base type (R7899)

SBA type

SBA type

UV type (R7056)

SBA type

R1635

R2496

R647-01

R4124

R4177-06

R12421

R12421-300

R1166

R1450

R3478

R3991A-04

R4125

R5611A-01

R1288A-06

R1924A

R4998

R7899-01

R8619

R9800

R9800-100

R13478

R3998-02

R3998-100-02

R6427

R7111

R7525

R13449

R580

R11102

R3886A

R9420

R9420-100

R13408

LINE / 8

LINE / 8

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 8

C+L / 10

LINE / 10

LINE / 10

C+L / 10

C+L / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 8

LINE / 8

LINE / 8

B+L / 9

B+L / 9

LINE / 10

C+L / 10

LINE / 8

LINE / 8

LINE / 10

C+L / 10

C+L / 10

LINE / 8

LINE / 8

LINE / 8

Note 1: This data is measured with 22Na source and BGO scintillator.

(at 25 °C)

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

(%)

5 %deviation

Typ.

Dynodestructure/ stage

(mA)

2 %deviation

Typ.

(mA)

ShorttermTyp.

(%)

LongtermTyp.

(%)

Averageanodecurrent

(mA)

Anodeto

cathodevoltage

(V)

!2 !3 !4 !5

!6 !7Typicalpulseheight

resolution

Socket&

socketassembly

Page 24: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

22

Photomultiplier tubes

A-D

A-DA-D

A-D

A-D

A-D

A-EA-D

I

J

A-DF

A-DA-DF

A-DA-DA-DA-DA-D

A-D

A-DF

J

I

A-DA-DF

A-DF

A-DF

A-D

A-D

A-DF

A-DA-DF

A-DA-DF

A-D

300 to 650

300 to 650300 to 650

300 to 650

300 to 650

300 to 650

300 to 650300 to 650

160 to 650

160 to 650

300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650

300 to 650

300 to 650300 to 650

200 to 650

160 to 650

300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650

300 to 650

300 to 650

300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650300 to 650

90

90110

90

80

90

3060

100

100

1101309090130909595110110

90

110130

90

90

901101309010590105

70

80

701058080130808013080

10.5

10.511.5

10.5

10.0

10.5

4.58.5

12.5

11.5

11.513.510.510.513.510.510.010.011.511.5

10.5

11.513.5

10

10

10.511.513.510.513.510.513.5

9.0

10.0

9.013.510.010.013.510.010.013.511.5

85

8595

85

80

85

3860

100

90

9511085851108580809595

85

95110

85

85

85951108511085110

72

80

761108080115808011590

26

2628

26

25

26

1220

30

25

28352626352625252828

26

2835

25

26

26303526352635

22

25

223525253525253530

1.1 × 106

3.0 × 106

1.3 × 106

2.7 × 105

2.0 × 107

1.0 × 107

2.5 × 106

1.0 × 106

6.0 × 105

3.3 × 105

1.0 × 106

1.0 × 106

1.0 × 106

2.7 × 105

2.3 × 105

1.0 × 106

3.3 × 106

2.3 × 106

6.7 × 106

3.2 × 105

4.2 × 106

2.7 × 105

2.7 × 105

5.0 × 106

1.0 × 107

2.7 × 105

2.3 × 105

5.0 × 106

5.0 × 106

3.0 × 106

2.7 × 105

2.3 × 105

3.3 × 105

2.9 × 105

4.4 × 105

4.4 × 105

1.4 × 107

4.0 × 107

3.0 × 106

2.0 × 106

5.0 × 105

4.4 × 105

1.0 × 107

1.0 × 109

1.0 × 107

1.0 × 107

1.0 × 109

1.0 × 107

1.0 × 107

9.4 × 104

2.6 × 105

1.1 × 105

2.6 × 104

1.7 × 106

8.5 × 105

2.0 × 105

8.5 × 104

5.1 × 104

1.2 × 104

6.0 × 104

1.0 × 105

9.0 × 104

2.6 × 104

2.5 × 104

8.5 × 104

2.8 × 105

2.5 × 105

5.7 × 105

2.5 × 104

3.4 × 105

2.6 × 104

2.6 × 104

4.3 × 105

8.5 × 105

2.6 × 104

2.5 × 104

4.2 × 105

4.2 × 105

2.6 × 105

2.6 × 104

2.5 × 104

2.8 × 104

3.1 × 104

3.7 × 104

4.8 × 104

1.0 × 106

2.9 × 106

2.4 × 105

1.6 × 105

3.3 × 104

5.5 × 104

8.0 × 105

8.0 × 107

1.2 × 106

8.0 × 105

8.0 × 107

1.2 × 106

9.0 × 105

10027012030

180090020090541060

100

100

3030903003006003040030304509003030

450

450

500303030304046

100028002401603550800

80 0001300800

80 0001300800

610

1000 s-1 *2250251005335

5

5

21036691030221030210

10

10

502105101020503003020102010050005001005000500500

40100

2000 s-1 *22040020080020155050

50

50

203020405060502002020601202030

100

100

5002030204050100300180030020050100100010000100010001000010001000

2.62.72.67.01.31.70.83.43.42.62.3

2.3

2.3

8.58.51.72.12.12.52.02.09.58.02.62.79.59.5

5.5

5.5

3.610.010.09.09.020.020.02.52.23.53.53.33.33.64.43.63.85.03.86.0

4840486028321631332816

16

16

4848232929352023526448405252

46

46

435252555511511554534545414154725462806295

1.11.11.1—

0.550.550.373.63.6—

0.75

0.75

0.75

6.96.91.11.21.21.30.230.238.5—2

1.58.58.5

9.0

9.0

3.79.49.410.510.518.518.51.21.21.51.54.64.62.43.02.43.43.93.42.4

1500200015001000250025003000125015001500800

800

800

10001000175017501750175015001750100010001500200010001000

1500

1500

10001000100010001000125012502000250015001500125012501500150015001500150015002000

$4

$7

$4

q

#7

#8

!2

@3

@4

@3

$0

$0

$0

r

r

i

#2

#2

$5

w

!8

r

q

$3

$6

r

r

$8

$6

@6

t

t

r

r

!7

!7

$9

%0

#3

#4

!1

!1

%1

%2

%1

%1

%2

%1

#5

@5

@6

@7

@8

@9

#0

#1

#2

#3

#3

#4

#4

#5

#5

#5

#5

#6

#7

#8

#9

$0

$1

$1

$2

$2

$3

$4

$4

$5

$5

$6

$6

$7

$8

$9

$9

%0

%0

%0

%1

%1

%1

%2

R329-02

R331-05R1306

R1828-01

R2083

R2154-02

R4607A-06R6041

R6041-406

R6041-506

R6231R6231-100R7723R7724R7724-100R7725R13089R13435R6232R1307

R6091

R6233R6233-100

R11065

R11410

R12199R10233R10233-100R10806R10806-100R877R877-100

R1250

R6594

R11833-03R11833-100-03R5912R5912-20R5912-100R7081R7081-20R7081-100R12860

51 mm(2")

76 mm(3")

90 mm(3.5")

102 mm(4")

127 mm(5")

204 mm(8")

254 mm(10")

508 mm(20")

60 mm

80 mm

Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list.

Note 2: Dark count

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time response

(V)

q w

e r t iuy y o !0 !1

(mA/W)

Anode tocathodesupplyvoltage

Page 25: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

23

E678-21C*

E678-21C*E678-14W

E678-20B*

E678-19J*

E678-14W

E678-15C* —

E678-14WE678-14WE678-21C* E678-21C*E678-21CE678-21C*E678-20B*E678-20B*E678-14WE678-14W

E678-21C*

E678-14WE678-14W

E678-20B*

E678-20B*

E678-14WE678-14WE678-14WE678-14WE678-14WE678-14WE678-14W

E678-20B*

E678-20B*

E678-14WE678-14WE678-20B*E678-20B* E678-20BE678-20B*E678-20B* E678-20BE678-20B

⁄7⁄8

⁄6

⁄5

⁄9

⁄9

⁄9

⁄7⁄8

⁄9

⁄9

⁄9

⁄9

⁄9

⁄9

27002700250015003000300035001750175018001000

1000

1000

15001500200020002000200017502000150015002500250015001500

1750

1750

15001500150015001500150015003000300020002000150015002000200020002000200020002500

0.20.20.20.10.20.20.20.10.10.020.1

0.1

0.1

0.10.10.20.20.20.20.10.10.10.10.20.20.10.1

0.1

0.1

0.10.10.10.10.10.10.10.20.20.10.10.10.10.10.10.10.10.10.10.1

1.01.0—0.51.01.01.01.01.02.0—

0.50.51.01.01.01.0——0.50.51.01.00.50.5

—0.50.51.01.01.01.01.01.0——1.01.0———————

7.67.6—

6.3 (8.5) *37.87.87.87.67.610.0—

6.3 (8.5) *36.17.67.6—7.68.08.0

6.3 (8.5) *36.3 (8.5) *3

7.87.8

6.3 (8.5) *36.1

—6.3 (8.5)

6.1——8.07.68.38.3———————————

1.01.0—0.51.01.02.01.01.02.0—

0.50.51.01.01.01.0——0.50.51.01.00.50.5

—0.50.52.02.01.01.01.01.0——1.01.0———————

15100151

100250100501503040

40

40

5580606040303051408055

20

20

—5555101010016030100101040304040304020

30200305

2005001507020060—

10101009090806060105601101010

25

25

—10101010202015025050150303060606060606040

SILICA type (R2256-02) UV type (R5113-02)

K-FREE type (R1306-15)SILICA type (R2059) UV type (R4004)SILICA type (R3377)

Glass base type (R3149)

For low temperature operation down to -110 °CLow radicoactivity materialFor low temperature operation down to -186 °CLow radicoactivity materialSemiflexible lead type (R6231-01)SBA type

SBA type

Semiflexible lead type (R6232-01)K-FREE type (R1307-07)

Semiflexible lead type (R6233-01)SBA typeFor low temperature operation down to -186 °CLow radicoactivity materialFor low temperature operation down to -110 °CLow radicoactivity material

Semiflexible lead type (R10233-01)SBA type

SBA typeK-FREE type (R877-01)SBA type

SBA type

SBA type

SBA type

R329-02

R331-05R1306

R1828-01

R2083

R2154-02

R4607A-06R6041

R6041-406

R6041-506

R6231R6231-100R7723R7724R7724-100R7725R13089R13435R6232R1307

R6091

R6233R6233-100

R11065

R11410

R12199R10233R10233-100R10806R10806-100R877R877-100

R1250

R6594

R11833-03R11833-100-03R5912R5912-02R5912-100R7081R7081-20R7081-100R12860

LINE / 12

LINE / 12BOX / 8

LINE / 12

LINE / 8

LINE / 10

C+L / 10MC / 12

MC / 12

MC / 12

B+L / 8B+L / 8LINE / 8LINE / 10LINE / 10LINE / 12LINE / 8LINE / 10B+L / 8BOX / 8

LINE / 12

B+L / 8B+L / 8

B+L / 12

B+L / 12

C+L / 10B+L / 8B+L / 8B+L / 8B+L / 8

BOX / 10BOX / 10

LINE / 14

B+L / 10

B+L / 8B+L / 8B+L / 10B+L / 14B+L / 10B+L / 10B+L / 14B+L / 10B+L / 10

20

20

20

20

20

20

20

21 22

21 22

23

24

24

24

24

24

Note 3: This data in parenthese is measured with 57Co.

(at 25 °C)

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

(%)

5 %deviation

Typ.

Dynodestructure/ stage

(mA)

2 %deviation

Typ.

(mA)

ShorttermTyp.

(%)

LongtermTyp.

(%)

Averageanodecurrent

(mA)

Anodeto

cathodevoltage

(V)

!2 !3 !4 !5

!6 !7Typicalpulseheight

resolution

Socket&

socketassembly

Page 26: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

24

Photomultiplier tubes of special shapes

I

J

A-D

F

G

H

F

G

H

A-D

A-D

F

G

F

G

F

G

H

160 to 650

160 to 650

300 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

300 to 650

230 to 700

230 to 700

300 to 650

300 to 650

300 to 700

100

100

80

105

135

160

105

135

160

80

70

105

135

105

135

105

135

160

11.0

9.5

9.5

13.5

15.5

14

13.5

15.5

14

9.5

8.5

13.5

15.5

13.5

15.5

13.5

15.5

14

100

80

80

110

130

125

110

130

125

80

72

110

130

110

130

110

130

125

30

25

24

35

43

39

35

43

39

24

21

35

43

35

43

35

43

39

1.0 × 106

1.0 × 106

2.0 × 106

1.0 × 106

1.0 × 106

2.0 × 106

1.3 × 106

1.3 × 106

1.3 × 106

1.8 × 106

4.0 × 106

1.0 × 106

1.0 × 106

2.0 × 106

2.0 × 106

1.2 × 106

1.2 × 106

1.2 × 106

1.0 × 105

8.0 × 104

1.6 × 105

1.1 × 105

1.3 × 105

2.5 × 105

1.4 × 105

1.7 × 105

1.6 × 105

1.4 × 105

2.9 × 105

1.1 × 105

1.3 × 105

2.2 × 105

2.6 × 105

1.3 × 105

1.6 × 105

1.5 × 105

100

100

160

105

135

320

140

175

210

140

280

105

135

210

270

126

162

192

2

2

2

2

2

2

0.5/ch

0.5/ch

0.5/ch

0.5/ch

0.2/ch

0.2/ch

0.2/ch

1

1

2

2

2

20

20

20

20

20

20

5/ch

5/ch

5/ch

5/ch

2/ch

2/ch

2/ch

10

10

20

20

20

1.8

1.8

1.6

1.6

1.6

1.6

1.2

1.2

1.2

1.2

0.6

0.6

0.6

0.57

0.57

1.3

1.3

1.3

12.4

12.4

9.6

9.6

9.6

9.6

9.5

9.5

9.5

9.5

7.4

7.4

7.4

2.7

2.7

5.8

5.8

5.8

0.8

0.8

0.35

0.35

0.35

0.35

0.36

0.36

0.36

0.36

0.18

0.18

0.18

0.2

0.2

0.27

0.27

0.27

800

800

800

800

800

800

800

800

800

800

800

800

800

1000

1000

900

900

900

!5

!5

@2

@2

@2

@2

@2

@2

@2

@2

!6

!6

!6

!4

!4

$1

$1

$1

%3

%3

%4

%4

%4

%4

%5

%5

%5

%5

%6

%6

%6

%7

%7

%8

%8

%8

R8520-406

R8520-506

R7600U

R7600U-100

R7600U-200

R7600U-300

R7600U-100-M4

R7600U-200-M4

R7600U-300-M4

R7600U-00-M4

R5900U-00-L16

R5900U-100-L16

R5900U-200-L16

R9880U-110

R9880U-210

R11265U-100

R11265U-200

R11265U-300

30 mmsquare

type

25 mm(1")

39 mm(1.5")

51 mm(2")

A-D

A-D

A-D

300 to 650

300 to 650

300 to 650

80

80

70

9.5

9.5

9.0

23

23

22

5.0 × 105

1.0 × 107

1.0 × 107

40

800

700

5

15

30

30

100

200

1.5

2.1

2.5

5.6

7.5

9.5

0.35

0.35

0.44

2000

2000

2000

%3

%4

%4

%9

^0

^1

R5505-70

R7761-70

R5924-70

Metal package photomultipliers

Fine mesh photomultipliers

60 mm

76 mm(3")

A-D

A-D

300 to 650

300 to 650

110

110

11.5

11.5

28

28

2.7 × 105

2.7 × 105

30

30

2

2

20

20

9.5

9.5

52

52

8.5

8.5

1000

1000

r

r

^8

^9

R6234

R6235

Hexagonal shape photomultipliers

25 mm(1")

28 mm(1-1/8")

A-D

A-D

300 to 650

300 to 650

90

90

10.5

10.5

26

26

1.1 × 106

2.2 × 106

100

200

3

2

20

10

2

25

19

72

1.1

1000

1000

@6

#6

&0

&1

R7373A-01

R8143

2π shape photomultipliers

10 mm(3/8")

60 mm

76 mm(3")

25 mm(1")

25 mm(1")

38 mm(1-1/2")

A-D

A-D

A-D

A-D

A-D

A-D

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

100

110

110

80

80

80

10.0

11.5

11.5

9.5

9.5

10.0

76

76

72

95

95

85

85

80

95

95

76

76

80

25

28

28

23

23

25

1.0 × 106

2.7 × 105

2.7 × 105

2.5 × 106

1.2 × 106

1.3 × 106

3.8 × 104

7.6 × 105

7.2 × 105

2.6 × 104

2.6 × 104

9.4 × 104

1.8 × 105

8.0 × 104

2.6 × 104

2.6 × 104

1.9 × 105

9.9 × 104

1.0 × 105

100

30

30

200

100

100

1

2

2

20

10

10

50

20

20

250

200

100

0.9

9.5

9.5

1.8

5.0

1.3

9.0

52

52

20

25

12

0.6

8.5

8.5

1.0

2.8

0.6

1250

1000

1000

1250

1250

1300

e

r

r

#0

@9

o

^2

^3

^4

^5

^6

^7

R2248

R6236

R6237

R1548-07

R8997

R10550

Square, Rectangular shape photomultipliers

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time response

(V)

q w

e r t iuy y o !0 !1

(mA/W)

Anode tocathodesupplyvoltage

Page 27: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

25

(%) (mA)(mA)(%)(%)(mA)(V)

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-32B

E678-12-01

E678-12-01

E678-19K

E678-19K

E678-19K

‹0

‹1

‹0

‹0

‹0

900

900

900

900

900

900

900

900

900

900

900

900

900

1100

1100

1000

1000

1000

0.03

0.03

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1.0

2.0

30

30

30 *5

30 *5

30 *5

30 *5

10/ch

10/ch

10/ch

10

0.8/ch

0.8/ch

0.8/ch

10

10

20 *5

20 *5

20 *5

60

60

60

60

60

30/ch

30/ch

30/ch

30

1.2/ch

1.2/ch

1.2/ch

30

30

60

60

60

UV type (R7600U-03) is available

SBA type

UBA type

EGBA type

SBA type

UBA type

EGBA type

*4

*4

SBA type *4

UBA type *4

SBA type

UBA type

SBA type

UBA type

EGBA type

R8520-406

R8520-506

R7600U

R7600U-100

R7600U-200

R7600U-300

R7600U-100-M4

R7600U-200-M4

R7600U-300-M4

R7600U-00-M4

R5900U-00-L16

R5900U-100-L16

R5900U-200-L16

R9880U-110

R9880U-210

R11265U-100

R11265U-200

R11265U-300

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 12

MC / 12

MC / 12

For low temperature operation down to -110 °CLow radioactivity materialFor low temperature operation down to -186 °CLow radioactivity material

26

25

25

26

26

E678-17D*

.2300

2300

2300

0.01

0.01

0.1

2.0

2.0

2.0

9.5

9.5

9.5

2.0

2.0

2.0

180

320

500

250

450

700

For +HV operation

For +HV operation

For +HV operation

R5505-70

R7761-70

R5924-70

FM / 15

FM / 19

FM / 19

27

27

27

27

28

28

28

E678-14W

E678-14W

⁄9

⁄9

1500

1500

0.1

0.1

0.5

0.5

6.3 (8.5) *3

6.3 (8.5) *3

0.5

0.5

5

5

10

10

Semiflexible lead type (R6234-01) is available

Semiflexible lead type (R6235-01) is available

R6234

R6235

B+L / 8

B+L / 8

E678-12A*

E678-14C*

1250

1250

0.1

0.1

1.0

1.0

7.8

8

2.0

2.0

15

0.2

30

0.5

R7373A-01

R8143

LINE / 10

BOX / 11

E678-11N*

E678-14W

E678-14W

E678-17D*

E678-20B*

E678-20B*

z

⁄9

⁄9

,

1500

1500

1500

1750

1600

1600

0.03

0.1

0.1

0.1

0.1

0.1

1.0

0.5

0.5

1.0

2.0

23 / BGO *1

6.3 (8.5) *3

6.3 (8.5) *3

20 / BGO *1

16 / BGO *1

2.0

0.5

0.5

2.0

2.0

3

5

5

10

4

10

7

10

10

15

10

30

Semiflexible lead type (R6236-01) is available

Semiflexible lead type (R6237-01) is available

*4, Dual (2) channel

*4, Quadrant (4) channel

*4, Quadrant (4) channel

R2248

R6236

R6237

R1548-07

R8997

R10550

LINE / 8

B+L / 8

B+L / 8

LINE / 10

L+VB / 10

LINE / 8

Note 1: This data is measured with 22Na source and BGO scintillator.Note 3: This data in parenthese is measured with 57Co.Note 4: Dark current, time response and pulse linearity data is typical value for channel.Note 5: Tapered divider type is available.

(at 25 °C)

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

5 %deviation

Typ.

Dynodestructure/ stage

2 %deviation

Typ.

ShorttermTyp.

LongtermTyp.

Averageanodecurrent

Anodeto

cathodevoltage

!2 !3 !4 !5

!6 !7Typicalpulseheight

resolution

Socket&

socketassembly

Page 28: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

26

Photomultiplier tubes assemblies

A-D

F

G

H

A-D

F

G

H

A-D

F

G

H

F

G

H

F

G

F

G

F

G

F

G

A-D

A-D

A-D

A-D

A-D

A-D

A-D

F

G

300 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

80

105

135

160

80

105

135

160

80

105

135

160

105

135

160

105

135

105

135

105

135

105

135

95

95

95

95

75

95

70

105

135

9.5

13.5

15.5

14

9.5

13.5

15.5

14

9.5

13.5

15.5

14

13.5

15.5

14

13.5

15.5

13.5

15.5

13.5

15.5

13.5

15.5

12

12

12

12

12

12

8.5

13.5

15.5

80

110

130

125

80

110

130

125

80

110

130

125

110

130

130

110

130

110

130

110

130

110

130

100

100

100

100

90

100

72

110

130

24

35

43

39

24

35

43

39

24

35

43

39

35

43

39

35

43

35

43

35

43

35

43

32

32

32

32

29

32

21

35

43

3.5 × 106

2.0 × 106

2.0 × 106

2.5 × 106

6.0 × 105

5.0 × 105

5.0 × 105

5.0 × 105

6.0 × 105

5.0 × 105

5.0 × 105

5.0 × 105

1.2 × 106

1.2 × 106

1.2 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.0 × 106

1.5 × 106

4.0 × 105

1.5 × 106

4.0 × 105

1.5 × 106

1.5 × 106

2.0 × 106

2.0 × 106

2.0 × 106

2.8 × 105

2.2 × 105

2.6 × 105

3.1 × 105

4.8 × 104

5.5 × 104

6.5 × 104

6.2 × 104

5.0 × 104

5.5 × 104

6.5 × 104

6.2 × 104

1.3 × 105

1.6 × 105

1.5 × 105

1.1 × 105

1.3 × 105

1.1 × 105

1.3 × 105

1.1 × 105

1.3 × 105

1.1 × 105

1.3 × 105

1.5 × 105

4.0 × 104

1.5 × 105

4.0 × 104

1.4 × 105

1.5 × 105

1.4 × 105

2.2 × 105

2.6 × 105

280

210

270

400

50

53

68

80

50

53

68

80

126

162

192

105

135

105

135

105

135

105

135

142

38

142

38

110

142

140

210

270

0.8/ch

0.8/ch

0.8/ch

0.8/ch

0.2/ch

0.2/ch

0.2/ch

0.2/ch

0.2/ch

0.2/ch

0.2/ch

0.2/ch

2

2

2

1/ch

1/ch

0.4/ch

0.4/ch

0.4/ch

0.4/ch

0.2/ch

0.2/ch

0.1/ch

0.1/ch

0.1/ch

0.1/ch

0.02/ch

0.1/ch

0.2/ch

0.2/ch

0.2/ch

4/ch

4/ch

4/ch

4/ch

2/ch

2/ch

2/ch

2/ch

2/ch

2/ch

2/ch

2/ch

20

20

20

4/ch

4/ch

4/ch

4/ch

4/ch

4/ch

2/ch

2/ch

2/ch

2/ch

2/ch

0.83

0.83

0.83

0.83

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.3

1.3

1.3

1.1

1.1

0.52

0.52

0.6

0.6

0.6

0.6

0.52

0.52

0.52

0.52

0.45

0.52

0.60

0.60

0.60

12

12

12

12

12

12

12

12

12

12

12

12

5.8

5.8

5.8

5.3

5.3

5

5

5.1

5.1

7.4

7.4

4.9

4.9

4.9

4.9

5.2

4.9

6.8

6.8

6.8

0.33

0.33

0.33

0.33

0.38

0.38

0.38

0.38

0.38

0.38

0.38

0.38

0.27

0.27

0.27

0.39

0.39

0.34

0.34

0.35

0.35

0.18

0.18

0.35

0.35

0.35

0.35

0.38

0.35

0.18

0.18

0.18

-800

-800

-800

-800

-800

-800

-800

-800

-800

-800

-800

-800

-900

-900

-900

-1000

-1000

-1000

-1000

-1000

-1000

-800

-800

-1000

-1000

-1000

-1000

-1000

-1000

-800

-800

-800

#9

#9

#9

#9

$2

$2

$2

$2

$2

$2

$2

$2

$1

$1

$1

%6

%6

%6

%6

%6

%6

!6

!6

%5

%5

%5

%5

%5

%5

!6

!6

!6

&2

&2

&2

&2

&3

&3

&3

&3

&4

&4

&4

&4

&5

&5

&5

&6

&6

&7

&7

&8

&8

&9

&9

*0

*0

*1

*1

*2

*3

*4

*4

*4

H8711

H8711-100

H8711-200

H8711-300

H7546B

H7546B-100

H7546B-200

H7546B-300

H8804

H8804-100

H8804-200

H8804-300

H11934-100

H11934-200

H11934-300

H13226A-100

H13226A-200

H12445-100

H12445-200

H12428-100

H12428-200

H10515B-100

H10515B-200

H12700A

H12700A-10

H12700B

H12700B-10

H13700

H13974-00-1616

H7260

H7260-100

H7260-200

30 mmsquare

type

51 mmsquare

type

Rectangletype

106 mmsquare

type

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time response

(V)

q w

e r t iuy y o !0 !1

(mA/W)

Anode tocathodesupplyvoltage

Page 29: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

27

R7600-00-M16

R7600-100-M16

R7600-200-M16

R7600-300-M16

R7600-00-M64

R7600-100-M64

R7600-200-M64

R7600-300-M64

R7600-00-M64

R7600-100-M64

R7600-200-M64

R7600-300-M64

R11265-100

R11265-200

R11265-300

R11265-100-M4

R11265-200-M4

R11265-100-M16

R11265-200-M16

R11265-100-M64

R11265-200-M64

R5900-100-L16

R5900-200-L16

R12699-00-M64

R12699-00-M64

R12699-00-M64

R12699-00-M64

R12699-00-M256

R12699-00-M64

R7259

R7259-100

R7259-200

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1000

-1100

-1100

-1100

-1100

-1100

-1100

-900

-900

-1100

-1100

-1100

-1100

-1100

-1100

-900

-900

-900

0.017

0.017

0.017

0.017

0.023

0.023

0.023

0.023

0.023

0.023

0.023

0.023

0.018

0.018

0.018

0.018

0.018

0.018

0.018

0.018

0.018

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

7.4 / 3.1

0.5/ch

0.5/ch

0.5/ch

0.5/ch

0.3/ch

0.3/ch

0.3/ch

0.3/ch

0.3/ch

0.3/ch

0.3/ch

0.3/ch

20 *5

20 *5

20 *5

4/ch *5

4/ch *5

0.8/ch

0.8/ch

0.2/ch

0.2/ch

0.8/ch

0.8/ch

1/ch

3/ch

1/ch

3/ch

0.15/ch

1/ch

0.6/ch

0.6/ch

0.6/ch

1/ch

1/ch

1/ch

1/ch

0.6/ch

0.6/ch

0.6/ch

0.6/ch

0.6/ch

0.6/ch

0.6/ch

0.6/ch

60

60

60

7/ch

7/ch

2/ch

2/ch

0.4/ch

0.4/ch

1.2/ch

1.2/ch

0.8/ch

0.8/ch

0.8/ch

*4

SBA type

UBA type

EGBA type

*4

SBA type

UBA type

EGBA type

*4

SBA type

UBA type

EGBA type

SBA type

UBA type

EGBA type

SBA type *4

UBA type *4

SBA type *4

UBA type *4

SBA type *4

UBA type *4

SBA type *4

UBA type *4

UV types (H12700A-03)

Tapered divider type *4

UV types (H12700A-03) *4

Tapered divider type *4

UV types (H13700A-03) *4

2×2 PMT array, UV type (H13974-03-1616) *4

*4

SBA type *4

UBA type *4

H8711

H8711-100

H8711-200

H8711-300

H7546B

H7546B-100

H7546B-200

H7546B-300

H8804

H8804-100

H8804-200

H8804-300

H11934-100

H11934-200

H11934-300

H13226A-100

H13226A-200

H12445-100

H12445-200

H12428-100

H12428-200

H10515B-100

H10515B-200

H12700A

H12700A-10

H12700B

H12700B-10

H13700

H13974-00-1616

H7260

H7260-100

H7260-200

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 12

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

MC / 10

Note 4: Dark current, time response and pulse linearity data is typical value for channel.Note 5: Tapered divider type is available.

(at 25 °C)

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

(%)

5 %deviation

Typ.

Dynodestructure/ stage

(mA)

2 %deviation

Typ.

(mA)

ShorttermTyp.

(%)

LongtermTyp.

(%)

Averageanodecurrent

(mA)

Anodeto

cathodevoltage

(V)

!2 !3 !4 !5

!6Typicalpulseheight

resolution

Built-in PMT(Type No.

for referring)

Page 30: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

28

Photomultiplier tubes assemblies

A-D

C-D

A-D

A-D

H

A-D

A-D

A-D

C-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

A-D

300 to 650

160 to 650

300 to 650

300 to 650

300 to 700

300 to 650

300 to 650

300 to 650

160 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

300 to 650

100

100

110

110

160

110

115

115

115

90

80

80

95

95

100

95

80

90

90

90

90

80

70

90

70

10

10

10

10

14

10.5

11.0

11.0

11.0

10.5

9.5

9.5

11.0

11.0

11.0

11.0

9.5

10.5

10.5

10.5

10.5

10.0

9.0

10.5

9.0

80

80

80

80

105

85

88

88

88

85

76

76

88

88

88

88

76

85

85

85

85

80

72

85

72

25

25

25

25

31

26

27

27

27

26

23

23

27

27

27

27

23

26

26

26

26

25

22

26

22

1.0 × 106

1.0 × 106

1.4 × 106

2.0 × 106

2.0 × 106

1.0 × 106

1.7 × 106

1.7 × 106

1.0 × 106

5.5 × 105

5.0 × 106

5.0 × 105

1.7 × 106

1.1 × 106

5.0 × 106

7.9 × 105

1.0 × 107

3.0 × 106

3.0 × 106

2.0 × 107

2.0 × 107

2.5 × 106

1.0 × 106

1.0 × 107

1.4 × 107

8.0 × 104

8.0 × 104

1.1 × 105

1.6 × 105

2.1 × 105

8.5 × 104

1.5 × 105

1.5 × 105

8.6 × 104

4.7 × 104

3.8 × 105

3.8 × 104

1.5 × 105

9.3 × 104

4.4 × 105

7.0 × 104

7.6 × 105

2.5 × 105

2.5 × 105

1.7 × 106

1.7 × 106

2.0 × 105

7.2 × 105

8.5 × 105

1.0 × 106

100

100

150

220

320

110

200

200

120

50

400

40

160

100

500

75

800

270

270

1800

1800

200

700

900

1000

1

2

1

0.5

1

1

3

10

10

3

10

5

2

5

10

2

15

10

10

50

50

100

30

30

50

50

50

2

2

5

5

50

300

300

20

200

30

20

50

200

15

100

100

100

400

400

800

200

120

300

0.8

0.7

2.1

1.2

1.2

2.5

1.8

1.3

1.3

1.3

0.7

1.5

1.6

1.0

1.7

2.7

2.1

2.7

2.7

1.3

1.3

0.8

2.5

2.7

2.5

9.0

9

22

14

14

27

19

14

14

12

10

5.6

16

11

16

40

7.5

40

40

28

28

16

9.5

40

54

0.5

0.5

2.0

1.4

1.4

2.8

0.76

0.36

0.36

0.8

0.16

0.35

0.7

0.27

0.5

4.5

0.35

1.1

1.1

0.55

0.55

0.37

0.44

1.5

1.2

-1250

-1250

-1000

-1000

-1000

-1000

-1500

-1700

-1700

-1000

-2250

+2000

-1500

-1300

-1500

-1500

+2000

-2000

-2000

-2500

-2500

-3000

+2000

-2000

-3000

*5

*6

*7

*8

*8

*9

(0

(1

(2

(3

(4

(5

(6

(7

(8

(9

H3164-10

H3695-10

H3165-10

H12690

H12690-300

H6520

H6524

H6612

H6613

H8135

H6533

H6152-70

H8643

H10580

H7415

H3178-51

H8409-70

H6410

H7195

H1949-50

H1949-51

H2431-50

H6614-70

H6559

H6527

100

101

102

103

104

105

106

107

108

10 mm(3/8")

19 mm(3/4")

38 mm(1-1/2")

51 mm(2")

76 mm(3")

127 mm(5")

25 mm(1")

13 mm(1/2")

28 mm(1-1/8")

Tubediameter

TypeNo.

Out-lineNo.

Spectral response Cathode characteristics Anode characteristics

Spectralresponse

range

Q.E.at peakTyp.

Curvecode

(nm) (%)

Lumi-nousTyp.

Bluesensitivityindex

(CS 5-58)Typ.

RadiantTyp.

RadiantTyp.

(µA/lm) (A/W)

Lumi-nousTyp.

GainTyp.

(A/lm)

Typ.

(nA)

Max.

(nA)

RisetimeTyp.(ns)

TransittimeTyp.(ns)

T.T.S.Typ.

(FWHM)(ns)

Dark current Time response

(V)

q w

e r t iuy y o !0 !1

(mA/W)

Anode tocathodesupplyvoltage

Page 31: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

29

R1635

R2496

R647-01

R12421

R12421-300

R1166

R1450

R3478

R2076

R5611A

R4998

R5505-70

R7899-01

R9800

R6427

R580

R7761-70

R329-02

R329-02

R1828-01

R1828-01

R2083

R5924-70

R6091

R1250

-1500

-1500

-1250

-1250

-1250

-1250

-1800

-1800

-1800

-1250

-2500

+2300

-1800

-1500

-2000

-1750

+2300

-2700

-2700

-3000

-3000

-3500

+2300

-2500

-3000

0.03

0.03

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.01

0.1

0.1

0.2

0.1

0.01

0.2

0.2

0.2

0.2

0.2

0.1

0.2

0.2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

23/BGO *1

23/BGO *1

7.8

7.8

7.8

7.8

7.8

8.0

8.0

9.5

7.8

7.8

7.8

7.7

9.5

7.6

7.6

7.8

7.8

7.8

9.5

7.8

8.3

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

1.0

1.0

1.0

1.0

2.0

2.0

1.0

1.0

3

3

3

3

3

4

4

4

4

10

40

180

100

30

10

150

320

100

80

100

100

100

500

100

100

7

7

7

12

12

7

8

8

8

20

70

250

150

50

30

200

450

200

110

200

200

150

700

200

150

EGBA type

Silica type H6610 (R5320)

For +HV operation

Silica type H7416 (R7056)

For +HV operation

Silica type H3378-50 (R3377)

For +HV operation

H3164-10

H3695-10

H3165-10

H12690

H12690-300

H6520

H6524

H6612

H6613

H8135

H6533

H6152-70

H8643

H10580

H7415

H3178-51

H8409-70

H6410

H7195

H1949-50

H1949-51

H2431-50

H6614-70

H6559

H6527

LINE / 8

LINE / 8

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 10

LINE / 8

LINE / 8

C+L/10

LINE / 10

FM/15

LINE / 10

LINE / 8

LINE / 10

LINE / 10

FM/19

LINE / 12

LINE / 12

LINE / 12

LINE / 12

LINE / 8

FM/19

LINE / 12

LINE / 14

Note 1: This data is measured with 22Na source and BGO scintillator.

TypeNo.

Note

StabirityMax. ratings RemarksPulse linearity

(%)

5 %deviation

Typ.

Dynodestructure/ stage

(mA)

2 %deviation

Typ.

(mA)

ShorttermTyp.

(%)

LongtermTyp.

(%)

Averageanodecurrent

(mA)

Anodeto

cathodevoltage

(V)

(at 25 °C)

!2 !3 !4 !5

!6Typicalpulseheight

resolution

Built-in PMT(Type No.

for referring)

UV type H6522 (R5115-02)Silica type H6521 (R2256-02)

UV type H4022-50 (R4004)Silica type H3177-50 (R2059)UV type H4022-51 (R4004)Silica type H3177-51 (R2059)

Page 32: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

30

15 MIN.

18.6 ± 0.7

FACEPLATE

PHOTOCATHODE

88 ±

213

MA

X.

12 PIN BASE

DY3

DY5

DY7

DY9

P

SHORT PIN

12

3

4

56 7

8

9

10

1112

DY10 DY8

DY6

DY4

DY2

K

DY1

Dimensional outline and basing diagramsFor photomultiplier tubesq R1635, R2496 w R4124

e R647-01, R4177-06 r R12421, R12421-300

t R1166 y R1450, R4125

TPMHA0343EB TPMHA0102EA

TPMHA0593EATPMHA0120EA

TPMHA0344EA TPMHA0307EA

15 MIN.

18.6 ± 0.7

FACEPLATE

PHOTOCATHODE

88 ±

213

MA

X.

12 PIN BASE

DY3

DY5

DY7

DY9

P

SHORT PIN

12

3

4

56 7

8

9

10

1112

DY10 DY8

DY6

DY4

DY2

K

DY1

A

R1635

R2496

R2496 has a plano-concave faceplate.

9.7 ± 0.4

10.5 ± 0.5

12

3

4

56

7

8

9

1011

IC

DY1

DY3

DY5

DY7

SHORT PIN

DY8

DY6

DY4

DY2

K

P

FACEPLATE

PHOTOCATHODE

11 PIN BASE

8 MIN.

10 M

AX

.45

.0 ±

1.5

A

12

3

4

56 7 8

9

10

11

1213

DY1

DY3

DY5

DY7

DY9

P DY10 DY8

DY6

DY4

DY2

ICK

SHORT PIN

BASING DIAGRAM(BOTTOM VIEW)

10 MIN.

13.5 ± 0.5

43 ±

213

MA

X.

13 PIN BASE

PHOTOCATHODE

FACEPLATE

13.5 ± 0.5

10 MIN.

50 ±

213

MA

X.

13 PIN BASE

PHOTOCATHODE

FACEPLATE

12

3

4

56 7 8

9

10

11

1213

ICDY1

DY3

DY5

DY7

DY9P

DY10

DY8

DY6

DY4

DY2

K

SHORT PIN

13 PIN BASE

PHOTOCATHODE

FACEPLATE

B

A

10 MIN.

13 M

AX

.

A B

R647-01

R4177-06

13.5 ± 0.5

14.5 ± 0.7

71 ± 2

61 ± 2

12

3

4

56 7 8

9

10

11

1213DY3

DY5

DY7

DY9

PDY10

SHORT PIN

DY8

DY6

DY4

DY2

KDY1IC

Page 33: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

31

u R3478 i R3991A-04, R5611A-01

o R1288A-06, R1924A

!1 R7899-01 !2 R8619

TPMHA0431EB TPMHA0117ED

TPMHA0040EC

TPMHA0474EB TPMHA0551ED

TPMHA0093EF

!0 R4998

FACEPLATE

PHOTOCATHODE

15 MIN.

18.6 ± 0.7

65 ±

213

MA

X.

12 PIN BASE

DY3

DY5

DY7

IC

P

IC

SHORT PIN

12

3

4

56 7

8

9

10

1112

DY8

DY6

DY4

DY2

K

DY1

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

25.4 ± 0.5

22 MIN.

13 M

AX

.43

.0 ±

1.5

FACEPLATE

PHOTOCATHODE

14 PIN GLASS BASE

3

4

5

67

10

18

DY1

DY3

DY5

DY7

DY9

PDY10

DY8

DY6

DY4

DY2

K

1112

13

14

17

A TEMPORARY BASE REMOVED

B BOTTOM VIEW

25.4 ± 0.5

22 MIN.

68.0

± 1

.5

13 M

AX

.

LEA

D L

EN

GT

H 5

0 M

IN.

FACEPLATE

PHOTO-CATHODE

12 PIN BASEJEDECNo. B12-43

A

SEMIFLEXIBLELEADS

B

37.3 ± 0.5

12

3

4

56 7

8

9

10

1112

DY1

DY3

DY5

DY7

DY9 DY8

DY6

DY4

DY2

K

P DY10

A TEMPORARY BASE REMOVED

A

R3991A-04

R5611A-01

28 ± 1.5

30 ± 1.5

PHOTOCATHODE

FACEPLATE

A

18.6 ± 0.7

13 M

AX

.

LEA

D L

EN

GTH

45

MIN

.

15 MIN.

37.3 ± 0.5

DY3

DY5

DY7

DY9

P DY10

12

3

4

56 7

8

9

10

1112

DY8

DY6

DY4

DY2

KDY1

DY1

DY3

DY5

DY7

P

DY9 DY10

DY8

DY6

DY4

DY2K

12

3

4

5

69

10

11

121314

B BOTTOM VIEW

A GLASS BASE

(12)

(360/14)°

A

B

SEMIFLEXIBLELEADS

12PIN BASEJEDEC No.B12-43

12

3

4

7

5

1211

109

18

P

DY1DY3

DY5

DY7(Acc)

DY9

DY10

ICICIC

DY8

DY6

DY4

DY2GK

12

3

4

56 7

8

9

10

1112

P

DY1

DY3

DY5

DY7(Acc)

DY9

DY10 DY8

DY6

DY4

DY2

G

K

13

14

1516

17

A GLASS BASE

A TEMPORARY BASE REMOVED

26 ± 1

20 MIN.

71 ±

2

13 M

AX

.

LEA

D L

EN

GT

H 5

2 M

IN.

HA TREATMENT

37.3 ± 0.5

PHOTOCATHODE

FACEPLATE

B BOTTOM VIEW

(17.3)

7

40° 20°

A

SMA CONNECTOR

SEMIFLEXIBLELEADS

12 PIN BASEJEDECNo. B12-43

B

4

32

1

12

135

6

14

1516

18

DY9

DY7

DY5

DY3DY1

P DY10

DY8

DY6

DY4

DY2

K

DY1

DY3

DY5

DY7

DY9P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

K

ATEMPORARY BASE REMOVED

BBOTTOM VIEW

13 M

AX

.

79 ±

2LE

AD

LE

NG

TH

50

MIN

.

22 MIN.

25.4 ± 0.5

PHOTOCATHODE

FACE PLATE

SEMIFLEXIBLELEADS

37.3 ± 0.5

A

B

12 PIN BASE JEDECNo. B12-43

(17.3)

6.5

MA

X.20°

A GLASS BASE

Page 34: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

32

!3 R9800, R9800-100 !4 R13478

!5 R3998-02, R3998-100-02 !6 R6427

!7 R7111 !8 R7525

TPMHA0521ED TPMHA0619EA

TPMHA0114EA TPMHA0387EB

TPMHA0506EA TPMHA0450EB

FACEPLATE

PHOTO-CATHODE

14 PIN BASE

28.5 ± 0.5

25 MIN.

60 ±

213

MA

X.

12

3

4

56

7 89

10

11

12

1314

GDY2

DY3

IC

DY6

DY8P DY9

DY7

DY5

IC

DY4

DY1K

SHORT PIN

28.5 ± 0.5

25 MIN.FACEPLATE

PHOTOCATHODE

85 ±

213

MA

X.

14 PIN BASE

12

3

4

56

7 89

10

11

12

1314

ICDY3

DY2

DY7

DY9

ICP DY10

DY8

DY6

DY4

DY5

KDY1

SHORT PIN

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

28.5 ± 0.5

25 MIN.FACEPLATE

PHOTOCATHODE

43.0

± 1

.513

MA

X.

14 PIN BASE

12

3

4

56

7 89

10

11

12

1314

ICDY3

DY2

DY5

DY7

ICP DY8

DY6

IC

DY4

IC

KDY1

SHORT PIN

28.5 ± 0.5

25 MIN.FACEPLATE

PHOTOCATHODE

85 ±

213

MA

X.

14 PIN BASE

5

13

810

146

127

15

1

DY3

DY1

DY5

DY7P

DY8

DY6

DY4

DY2

K

DY1

DY3

DY5

DY7

ICP

12

3

4

56 7

8

9

10

1112

IC

DY8

DY6

DY4

DY2

K

ATEMPORARY BASE REMOVED

BBOTTOM VIEW

A GLASS BASE

20°

(17.3)13

MA

X.

55 ±

2LE

AD

LE

NG

TH

55

MIN

.

22 MIN.

25.4 ± 0.5

PHOTOCATHODE

FACE PLATE

SEMIFLEXIBLELEADS

37.3 ± 0.5

A

B

12 PIN BASE JEDECNo. B12-43

DY1

DY7

DY3

DY5

Acc

P

DY8

DY6

DY4

DY2

1112

14

15

13

18K

G

DY1

DY3

IC

DY5

DY7

PIC

IC Acc

ICIC

ICK

11 1213

14

DY8DY6

IC

DY4

DY2

IC

G

BBOTTOM VIEW

9

6

4

32

1

15

1617

1819

2023

45

67

89 10

1

A GLASS BASE

ATEMPORARY BASE REMOVED

13 M

AX

. 55 ±

2LE

AD

LE

NG

TH

55

MIN

.

22 MIN.

25.4 ± 0.5

51.2 ± 0.5

20 PIN BASEJEDECNo. B20-102

SEMIFLEXIBLELEADS 0.7

FACEPLATE

PHOTOCATHODE

A

B

20°

(17.3)

6.5

MA

X.

Page 35: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

33

TPMHA0620EA

!9 R13449 @0 R580

@1 R11102

@3 R9420, R9420-100 @4 R13408

TPMHA0121EB

TPMHA0228EA

TPMHA0519EE TPMHA0621EE

TPMHA0104EC

@2 R3886A

37.3 ± 0.5

12 PIN BASEJEDECNo. B12-43

34 MIN.FACEPLATE 38 ± 1

PHOTO-CATHODE

109

± 2

127

MA

X. DY1

DY3

DY5

DY7

DY9

P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

K

R580

37.3 ± 0.5

12 PIN BASEJEDECNo. B12-43

34 MIN.FACEPLATE

38 ± 1

PHOTO-CATHODE

99 ±

2

116

MA

X. DY1

DY3

DY5

DY7

DY9

P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

KP

DY1

DY3

DY5

DY7

DY9

P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

K

ATEMPORARY BASE REMOVED

BBOTTOM VIEW

38.0 ± 0.7

34 MIN.

63.5

± 1

.5LE

AD

LE

NG

TH

70

MIN

.

13 M

AX

.

DY3

DY5

DY7

DY9

DY10

DY8

DY6

DY4

DY2

K

3

4

5

6 10

11

12

13

1512

9

DY1

B

37.3 ± 0.5

PHOTO-CATHODE

FACEPLATE

12 PIN BASEJEDECNo. B12-43

A

SEMIFLEXIBLELEADS

A GLASS BASE

(23)

22.5°

5 13

4 14

2

6 12

7 11

1DY1

DY3

DY5

DY7

P DY8

DY6

DY4

DY2

K

DY1

DY3

DY5

DY7

IC

P

12

3

4

56 7

8

9

10

1112

IC

DY8

DY6

DY4

DY2

K

ATEMPORARY BASE REMOVED

BBOTTOM VIEW13 M

AX

.

87 ±

2LE

AD

LE

NG

TH

70

MIN

.

34 MIN.

38 ± 1

PHOTOCATHODE

FACE PLATE

37.3 ± 0.5

12 PIN BASE JEDECNo. B12-43

A

B

SEMIFLEXIBLELEADS

A GLASS BASE

(23)

22.5°

DY5

DY1

DY3

DY7

AccP DY8

DY6

DY4

DY2

G

9

10

11

12

13

15K

DY1

DY3

IC

DY5

DY7

PIC

IC Acc

ICIC

ICK

11 1213

14

DY8DY6

IC

DY4

DY2

IC

G

BBOTTOM VIEW

76

5

4

2

3

15

1617

1819

2023

45

67

89 10

1

A GLASS BASE

ATEMPORARY BASE REMOVED13

MA

X. 55

± 2

LEA

D L

EN

GT

H 7

0 M

IN.

25 MIN.

28.7 ± 0.5

51.2 ± 0.5

20 PIN BASEJEDECNo. B20-102

SEMIFLEXIBLELEADS

FACEPLATE

PHOTOCATHODE

A

B

24°

(19.05)

7.5

MA

X.

4 12

13

2

3

5 11

6 108 9

16DY1

DY3

DY5

DY7

P

Acc

DY6

DY8

DY4

DY2

G

K

BBOTTOM VIEW

A GLASS BASE

ATEMPORARY BASE REMOVED

DY1

DY3

IC

DY5

DY7

PIC

IC Acc

ICIC

ICK

11 1213

14

DY8DY6

IC

DY4

DY2

IC

G

15

1617

1819

2023

45

67

89 10

1

13 M

AX

.

73 ±

2LE

AD

LE

NG

TH

73

MIN

.

34 MIN.

38 ± 1

PHOTOCATHODE

FACEPLATE

SEMIFLEXIBLELEADS

51.2 ± 0.5

20 PIN BASEJEDECNo. B20-102

A

B

(23)

22.5°

7.5

MA

X.

Page 36: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

34

@5 R329-02 @6 R331-05

@7 R1306 @8 R1828-01

@9 R2083 #0 R2154-02

TPMHA0123EG TPMHA0072EF

TPMHA0089EC TPMHA0064EE

TPMHA0185EE TPMHA0296EB

123

4567

98

11121314

151617

1819

2021

DY1DY3

DY5

DY2

P

DY9DY11

DY12IC

SH IC DY10DY8

DY6DY4

DY7

G

IC

ICIC

K

10

21 PIN BASE

46 MIN.FACEPLATE53.0 ± 1.5

127

± 2

HA TREATMENT14

MA

X.

LIGHT TIGHT SHIELD

PHOTO-CATHODE

*CONNECT SH TO DY5

53.0 ± 1.5

46 MIN.FACEPLATE

PHOTO-CATHODE

HA TREATMENT

21 PIN BASE

126

± 2

13 M

AX

.

50.0

± 0

.2

123

4567

98

10 11 12 1314

151617

1819

2021

DY1DY3

DY5

DY2

P

DY9

DY11

DY12IC

SH IC DY10DY8

DY6DY4

DY7

G

ICIC

ICK

*CONNECT SH TO DY5

SHORT PIN

12

3

4

56

7 89

10

11

12

1314

DY1DY2

IC

DY4

DY5

DY6DY7 DY8

IC

IC

P

DY3

GK

51.0 ± 0.5

46 MIN.

114

± 2

137

MA

X.

56.5 ± 0.5

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDEC No. B14-38

53.0 ± 1.5

46 MIN.FACEPLATE

PHOTO-CATHODE

170

± 3

192

MA

X.

HA TREATMENT

51.2 ± 0.5

20 PIN BASEJEDECNo. B20-102

2

IC

34567

89 10 1112

1314151617

1819

201DY1DY3IC

DY5

DY7

DY9DY11

ICP DY12

DY10DY8

DY6

DY4

DY4DY2

ICG

K

19 PIN BASE

46 MIN.

53.0 ± 1.5

PHOTO-CATHODE

121

± 2

FACEPLATE

13 M

AX

.

HA TREATMENT

SHORT PIN

12

345

76

98

10 1112

1314

15

1617

1819DY1

DY3

DY5

DY7

P

IC IC IC

ACC KG

IC

DY2

DY4

DY4

DY6DY8

SMA CONNECTOR

51.0 ± 0.5

46 MIN.FACEPLATE

PHOTO-CATHODE

124

± 2

147

MA

X.

56.5 ± 0.5

14 PIN BASEJEDECNo. B14-38

12

3

4

7 89

10

11

12

1314

DY1DY2

IC

DY4

DY5

DY6DY7 DY8

DY9

DY10

P

DY3

ICK

56

Page 37: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

35

TPMHA0003EC

#1 R4607A-06 #2 R6041

#3 R6041-406, R6041-506

#5 R7723, R7724, R7724-100, R7725 #6 R13089

TPMHA0578EB

TPMHA0579EB

TPMHA0509EC TPMHA0606EA

TPMHA0388EB

#4 R6231, R6231-100

52 ± 1

46 MIN.FACEPLATE

PHOTOCATHODE

80 ±

213

MA

X.

15 PIN BASE

DY1

DY3

DY5

DY7

DY9

P

IC IC DY10

DY8

DY6

DY4

DY2

IC

K

12

3

4

56

7 8 910

11

12

1314

15

SHORT PIN

51.0 ± 0.5

46 MIN.FACEPLATE

PHOTO-CATHODE

90 ±

3

113

MA

X.

56.5 ± 0.5

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

14 PIN BASEJEDEC No. B14-38

123

4567

98

11121314

151617

1819

2021

DY1DY3

IC

DY2

P

DY5DY7

DY8IC

IC IC DY6IC

ICDY4

IC

IC

IC

ICIC

K

10

21 PIN BASE

46 MIN.FACEPLATE52 ± 1

112

± 2

13 M

AX

.

PHOTO-CATHODE

123

4567

98

11121314

151617

1819

2021

DY1DY3

DY5

DY2

P

DY7

DY9

DY10IC

IC IC DY8DY6

ICDY4

IC

IC

ICIC

ICK

10

123

4567

98

11121314

151617

1819

2021

DY1DY3

DY5

DY2

P

DY9DY7

DY11

DY12IC

IC IC DY10DY8

DY6DY4

IC

ICIC

ICK

10

R7723

R7724/-100 R7725

BOTTOM VIEW

8 97

5

34

21 18

13

1415

1110DY6

DY2

DY5

DY4

DY11

DY12

DY3 P

DY7 DY8

DY1

DY10DY9

K

BASING DIAGRAM

45 MIN.

53.0 ± 0.5

55.0 ± 0.5

57.0 ± 0.5

29.5

± 0

.59

MA

X.

32 ±

170

± 1

0

P.C.D. 34.0 ± 0.3SEMI-FLEXIBLE LEADS (Ni PLATING)18- 0.75 ± 0.10

PHOTOCATHODE

METAL (CONNECTED WITH CATHODE)(Ni PLATING)

45 MIN.

47.0 ± 0.5

34.0 ± 0.3

20°

8.5

MA

X.

BOTTOM VIEW

8 97

5

34

21 18

13

1415

1110DY6

DY2

DY5

DY4

DY11

DY12

DY3 P

DY7 DY8

DY1

DY10DY9

K

BASING DIAGRAM

47.0 ± 0.5

34.0 ± 0.3

20°

8.5

MA

X.

45 MIN.

50.5 ± 0.5

55.6 ± 0.5

57.0 ± 0.5

31.0

± 0

.59

MA

X.

32.5

± 1

.070

± 1

0

PHOTOCATHODE

METAL (CONNECTED WITH CATHODE)(Ni PLATING)

SEMI-FLEXIBLE LEADS (Ni PLATING)

45 MIN.

4

12

13

14

15

17

5

12

79

11

18

DY5

DY1

DY7

DY3

PAcc

DY8

DY6

DY4

DY4

DY2

GK

IC

DY3

IC

DY5

DY7

IC

1617

181920

1514

131211109

87

654

32 1

DY6DY8Acc

PIC

IC

DY1

DY4

DY4

DY2

GIC

IC

K

BBOTTOM VIEW

AGLASS BASE

ATEMPORARY BASE REMOVED

112

± 2

13 M

AX

.

LEAD

LEN

GTH

70

MIN

.

46 MIN.

51 ± 1

PHOTO-CATHODE

FACEPLATE

SEMIFLEXIBLELEADS

A

B

20 PIN BASEJEDECNo. B20-102

51.2 ± 0.5

(34)

20°

Page 38: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

36

#7 R13435 #8 R6232

#9 R1307 $0 R6091

$1 R6233, R6233-100 $2 R11065, R11410

TPMHA0510EATPMHA0627EA

TPMHA0078EA TPMHA0285EE

TPMHA0389EB TPMHA0573EA

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

59.5 ± 0.5

55 MIN.

100

± 3

123

MA

X.

56.5 ± 0.5

51.5 ± 1.5

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

12

3

4

56

7 89

10

11

12

1314

DY1DY2

IC

DY4

DY5

DY6DY7 DY8

IC

IC

P

DY3

GK

76.0 ± 0.8

70 MIN.

127

± 3

150

MA

X.

56.5 ± 0.5

51.5 ± 1.5

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

* CONNECT SH TO DY5

76 ± 1

65 MIN.

137

± 2

FACEPLATE

PHOTO-CATHODE

13 M

AX

.

123

4567

98

11 12 1314

151617

1819

2021

DY1DY3

DY5

DY2

P

DY9DY11

DY12IC

SH IC DY10DY8

DY6DY4

DY7

G

IC

ICIC

K

10

SHORT PIN

51.5 ± 1.521 PIN BASE

76.0 ± 0.8

70 MINFACEPLATE

PHOTO-CATHODE

100

± 3

123

MA

X.

56.5 ± 0.5

14 PIN BASEJEDECNo. B14-38

51.5 ± 1.5

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

ATEMPORARY BASE REMOVED

BBOTTOM VIEW

P

DY3DY5

DY7

DY9

DY11

DY12IC IC DY10IC

DY8

DY6

DY4

DY2

GIC

ICKDY1

10 11

1 20

129

192

8 13

3 18

147

174

6 15165

P

DY3DY5

DY7

DY9

DY11

DY12IC IC DY10IC

DY8

DY6

DY4

DY2

GIC

ICKDY1

10 11

1 20

129

192

8 13

3 18

147

174

6 15165

53.3 ± 1.0

( 64 MIN.)

76 ± 1

77.5 ± 1.0

123.

0 ±

1.5

LEA

D L

EN

GT

H 6

5 M

IN.

15 M

AX

.

51.2 ± 0.5

PHOTOCATHODE

METAL TUBE(Ni PLATING)

20 PIN BASEJEDEC No. B20-102

Note: E678-20B will be supplied with PMT

Operating Ambient Temperature for JEDEC BASE and E678-20B: -30 °C to +50 °C

A

B

SEMIFLEXIBLELEADS(Ni PLATING)

4 14

152

1

3

5 13

712

1198

18 17DY1

DY3

DY5

DY7

DY9

PIC Acc

DY10

DY8

DY6

DY4

DY2

GK

BBOTTOM VIEW

AGLASS BASE

ATEMPORARY BASE REMOVED

DY1

DY3

DY5

DY7

DY9

PIC

IC Acc

ICIC

ICK

11 1213

14

DY10DY8

DY6

DY4

DY2

IC

G

15

1617

1819

2023

45

67

89 10

1

13 M

AX

.

120

± 2

LEA

D L

EN

GT

H 7

0 M

IN.

46 MIN.

52 ± 1

PHOTOCATHODE

FACEPLATE

SEMIFLEXIBLELEADS

51.2 ± 0.5

20 PIN BASEJEDECNo. B20-102

A

B

(34)

20°

7.5

MA

X.

Page 39: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

37

TPMHA0615EB

TPMHA0628EA

$3 R12199

$5 R10806, R10806-100 $6 R877, R877-100

$8 R6594

TPMHA0074EC

TPMHA0373EFTPMHA0018EE

$7 R1250

TPMHA0580EB

$4 R10233, R10233-100

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

85 MIN.

90 MIN.

104.

5 ±

3.0

127.

5 M

AX

.

56.5 ± 0.5

51.5 ± 1.5

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

12

3

4

56

7 89

10

11

12

1314

DY1DY2

IC

DY4

DY5

DY6DY7 DY8

DY9

DY10

P

DY3

GK

133.0 ± 1.5

111 MIN.

171

± 3

194

MA

X.

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

56.5 ± 0.5

55 MAX.

10

12

34567

89 11 12

13141516

1718

1920G2 & DY1

DY3DY5

DY7

DY9

DY11

DY13IC P

IC KG1

DY2

DY4DY6

DY8DY10

IC

DY12DY14

133 ± 2

120 MIN.

259

± 5

276

± 5

51.2 ± 0.5

HA TREATMENT

20 PIN BASEJEDECNo. B20-102

FACEPLATE

PHOTO-CATHODE

78.0 ± 1.5

54.0 ± 1.5

10

123

4567

89 1112

13141516

1718

1920

G3DY3

DY5

DY7

NC

DY9P

NC NC

DY1 KG2

G1

DY4

NCDY6

DY8

DY2

DY10NC

12

4

78

9 10

615

14

16

1920

2123G3

DY3

DY5

DY7DY9

P

DY1 K G2

G1

DY4DY6

DY8

DY2

DY10

B BOTTOM VIEW

A TEMPORARY BASE REMOVED

84.5 ± 2

PHOTOCATHODE

R82

.5

178

± 2

LEA

D L

EN

GTH

70

MIN

.

265

MA

X.

20 PIN BASEJEDEC No. B20-102

51.2 ± 0.5

13 M

AX

.

128 ± 2

110 MIN.

A

B

SEMIFLEXIBLELEADS

12

3

4

56

7 89

10

11

12

1314

ICDY1

DY10

DY3

DY4

DY5DY6 DY7

IC

DY8

DY9

DY2

PK

72 MIN.

80 MIN.

115

± 3

138

MA

X.

56.5 ± 0.5

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

R50

51.9 ± 2.0

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

102 ± 1

95 MINFACEPLATE

PHOTO-CATHODE

119

± 3

138

MA

X.

56.5 ± 0.5

14 PIN BASEJEDECNo. B14-38

55 MAX.

Page 40: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

38

%0 R5912, R5912-20, R5912-100

%1 R7081, R7081-20, R7081-100 %2 R12860

%3 R8520-406, -506 %4 R7600U, R7600U-100/-200/-300

TPMHA0501EC TPMHA0630EA

TPMHA0500EC

TPMHA0575EA TPMHA0278EJ

(Bottom view)

R5912/-100

20-PIN BASEJEDEC No. B20-102

84.5 ± 2.0

10

12

34567

89 11 12

13141516

1718

1920G3

DY3DY5DY7

IC

DY9P

IC IC

DY1 KG2

DY2

DY4

ICDY6

DY8

G1

DY10IC

(Bottom view)

R5912-20

10

12

34567

89 11 12

13141516

1718

1920DY3

G3DY5DY7

DY9

DY11DY13

P IC

DY1 KG2

DY4

G1

DY6DY8

DY10

DY2

DY12DY14

51.2 ± 0.5

220

± 5

250

± 7

275

MA

X.

190 MIN.

202 ± 5INPUT WINDOW

R131

PHOTOCATHODE

IC: Internal connection(Do not use)

(Bottom View)

R7081/-100

20-PIN BASEJEDEC No. B20-102

84.5 ± 2.0

10

12

34567

89 11 12

13141516

1718

1920G3

DY3DY5DY7

IC

DY9P

IC IC

DY1 KG2

DY2

DY4

ICDY6

DY8

G1

DY10IC

(Bottom View)

R7081-20

10

12

34567

89 11 12

13141516

1718

1920DY3

G3DY5DY7

DY9

DY11DY13

P IC

DY1 KG2

DY4

G1

DY6DY8

DY10

DY2

DY12DY14

51.2 ± 0.5

245

± 5

300

MA

X.

275

± 7

220 MIN.

253 ± 5

INPUT WINDOW

R136.7

PHOTOCATHODE

IC: Internal Connection(Do not use)

BASING DIAGRAM

KDyPCUTIC

: Photocathode: Dynode: Anode: Cut Pin: Internal connection (Don't use)

CUT (Dy10)

CUT (Dy10)

PCUT (Dy10)

CUT (Dy10)

ICIC

1 2 3 4 5 6 7 8 923 1022

21 11252420 1219 18 17 16 1514 13

G CU

T (

Dy1

0)K D

y1D

y2D

y3D

y4C

UT

(D

y10)

CU

T (

G)

CU

T (

G)

Dy1

0D

y9D

y8D

y7D

y6D

y5C

UT

(D

y10)

CU

T (

G)

2.54 PITCH

8×2.54=20.32

10.16

5.08

20.3

2

15.2

4

GUIDE MARK

45° ± 10°

25- 1.5EFFECTIVE AREA

28.25 ± 1.00 7.0 ± 0.5

1.2 5 MAX.

13-

0.4

55

MA

X.

1.2 MAX.2.5 MAX.

24

QUARTZ GLASS

AL RING

Ni PLATING

PHOTOCATHODE

4-R3.2

SIDE VIEW BOTTOM VIEWTOP VIEW

20.5 MIN.

25.7 ± 0.4

SIDE VIEW BOTTOM VIEWTOP VIEW

0.6 ± 0.4

22.0 ± 0.5

30.0 ± 0.5

18 MIN.

4.4 ± 0.7

12.0

± 0

.5

PHOTOCATHODE

INSULATIONCOVER

2.54 PITCH

29- 0.45

EFFECTIVE AREA

25.7 ± 0.5

BASING DIAGRAM

KDyPCUTIC

: Photocathode: Dynode: Anode: Short pin: Internal connection (Don't use)

ICICP

ICICICIC

ICICICICICICIC

1 2 3 4 5 6 7 8 932 1031 1130 1229 1328 1427 1526 1625 1724 23 22 21 2019 18

K IC (

Dy1

0)IC D

y1D

y2D

y3D

y4IC

(D

y10)

CU

T (

K)

CU

T (

K)

Dy1

0D

y9D

y8D

y7D

y6D

y5IC

(D

y10)

CU

T (

K)

GUIDECORNER

4 MAX.

TPMHA0629EA

$9 R11833-03, R11833-100-03

12

3

4

56

7 89

10

11

12

1314

DY1DY2

DY2

DY7

IC

PIC DY8

DY6

IC

DY4

DY3

GK

134 ± 2

111 MIN.

142

± 3

165

MA

X.FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

56.5 ± 0.5

55 MAX.

HA TREATMENT

10

12

34567

89 11 12

13141516

1718

1920IC

DY2DY4

DY6

DY8

DY10ICACC IC

IC KG

IC

DY1

DY3

DY5DY7

IC

DY9P

460 MIN.

508 ± 8

210

65

610

± 1

0

640

± 1

0

660

MA

X.

51.2 ± 0.5

254 ± 8

75 ± 220-PIN BASEJEDEC No. B20-102

R32

5

R22

5

Page 41: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

39

%5 R7600U-00-M4, R7600U-100-M4/-200-M4/-300-M4

TPMHA0298EH

TPMHA0577EBTPMHA0539EC

TPMHA0297EJ

%6 R5900U-00-L16, R5900U-100-L16/-200-L16

%7 R9880U-110, R9880U-210 %8 R11265U-100, R11265U-200, R11265U-300

^0 R7761-70

TPMHA0469EETPMHA0236EB

%9 R5505-70

K CU

T (

IC)

CU

T (

IC)

Dy1

Dy2

Dy3

Dy4

CU

T (

IC)

CU

T (

K)

CU

T (

K)

Dy1

0D

y9D

y8D

y7D

y6D

y5C

UT

(IC

)C

UT

(K

)

GUIDECORNER

12.0

± 0

.5

SIDE VIEW BOTTOM VIEW

TOP VIEW

CUT (IC)P1

CUT (IC)CUT (IC)CUT (IC)

P4CUT (IC)

CUT (IC)P2CUT (IC)CUT (IC)CUT (IC)P3CUT (IC)

25 1724 23 22 21 2019 18

10111213141516

1 2 3 4 5 6 7 8 932313029282726

P1

P4

P2

P3

15- 0.454 MAX.

0.6 ± 0.4

22.0 ± 0.5 4.4 ± 0.7

PHOTO-CATHODE

2.54 PITCH

20.32

20.3

2

BASING DIAGRAM

KDyPCUTIC

: Photocathode: Dynode: Anode: Short pin: Internal connection (Do not Use)

18 M

IN.

18 MIN.

30.0 ± 0.5

18 MIN.

25.7 ± 0.5

INSULATION COVER

PHOTOCATHODE

GUIDECORNER

1 2 3 4 5 6 7 8 910

1112

1314

1516

17181920212223242526

2728

2930

3132

Dy8

CU

T (

K)

P12

P10 P8

P6

P4

Dy5 K

Dy1Dy3ICP2P1P3Dy9

Dy7

CU

T (

K)

P5

P7

P9

P11

P13

Dy6

K

Dy2Dy4

ICP15

P14P16

Dy10

PHOTO-CATHODE

PHOTOCATHODE

INSULATION COVER

12.0

± 0

.5

4 MAX.

0.6 ± 0.4.

22.0 ± 0.5 4.4 ± 0.7

30.0 ± 0.5

15.8

25.7 ± 0.5

16

P16

15.8

0.81.0 PITCH

30- 0.45

2.54 PITCH

20.32

20.3

2

P1

KDyPCUTIC

: Photocathode: Dynode: Anode: Short pin: Internal connection (Do not use)

SIDE VIEW BOTTOM VIEW

TOP VIEW

BASING DIAGRAM

25.8 ± 0.7

17.5 MIN.

40.0

± 1

.513

MA

X.

FACEPLATE

PHOTO-CATHODE

HA TREATMENT

17 PIN BASE

1716

1514

1312

1011

987

65

4

32

1

P

DY 4DY 6

DY 8

DY 7

DY 5

DY 3

K

DY 15DY 13

DY 14

DY 10

DY 1

DY 11DY 12

DY 2

DY 9

SHORT PIN

DY1DY3

DY5

DY7

DY9

DY11DY13

DY15DY17 DY19 P

DY18DY16

DY14

DY12

DY10

DY8

DY6DY4

DY2K

11 1213

14151617

1819

20211

23

4567

89

10

GLASS BASE

HA TREATMENT

(360/22)°

(27)

FACEPLATE

PHOTO-CATHODE

39 ± 1

27 MIN.

50 ±

2

LEA

D L

EN

GT

H 4

5 M

IN.

13 M

AX

.

27

SEMIFLEXIBLELEADS

BOTTOM VIEWSIDE VIEW

1 2 3

9 8 7

4

5

6

12

11

10

DY

7

DY

5

DY

3

DY

8

DY

6

DY

4

DY10

P

DY9

DY2

DY1

K

WIN

DO

W 9

.4 ±

0.3

16.

0 ±

0.3

12.4 ± 0.4 4.6 ± 0.8

0.5 ± 0.2

INSULATION COVER

PHOTOCATHODE

GUIDE MARK

12- 0.45

5.08

10.16

5.08

10.1

6

GUIDE MARK

EFFE

CTIV

EAR

EA

8.0

Dy5Dy6

IC (P)

IC (P)K

Dy1P

Dy7

Dy12Dy11Dy10IC (P)

IC (P)

Dy9Dy8

Dy2Dy3

IC (P)Dy4

789101112131415

282726252423222120

122.95

22.564-R3.5

2.22

PIT

CH

22.2

12.0

± 0

.5

18.7 ± 0.5 3.5 ± 0.7

0.6 ± 0.4

4.2 MAX.

23

30.0 ± 0.5

26.2+0 -0.5

EFFECTIVE AREA

19- 0.45

PHOTOCATHODE

SIDE VIEW BOTTOM VIEWTOP VIEW

4-R1.35

BASING DIAGRAM

KDyPIC

: Photocathode: Dynode: Anode: Internal connection (Don't use)

Page 42: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

40

^2 R2248

^3 R6236 ^4 R6237

^5 R1548-07 ^6 R8997

TPMHA0392EB

TPMHA0098EC

TPMHA0393EC

TPMHA0511EA TPMHA0552EC

12

3

4

56

7

8

9

1011

IC

DY1

DY3

DY5

DY7P

DY8

DY6

DY4

DY2

K

FACEPLATE

PHOTOCATHODE

8 MIN.

9.8 ± 0.4

8 M

IN.

10 M

AX

.

11 PIN BASE

45.0

± 1

.5

9.8

± 0

.4

SHORT PIN

54 M

IN.

59.5

± 1

.0

59.5 ± 1.0

54 MIN.

56.5 ± 0.5

100

± 3

123

MA

X.

51.5 ± 1.5

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

56.5 ± 0.5

100

± 3

123

MA

X.

51.5 ± 1.5

70 MIN.

76 ± 1.5

76 ±

1.5

70 M

IN.

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

IC

DY3 IC

DY7-1

DY9

DY7-2

DY6

DY4

DY2DY5

ICK

P1P2 DY10

SHORT PIN

DY8

DY1 12

3

45

67

8 9 1011

12

1314

1516

17

24.0 ± 0.5FACEPLATE

PHOTOCATHODE

70 ±

213

MA

X.

17 PIN BASE

8 MIN. 8 MIN.

18 M

IN.

24.0

± 0

.5

^1 R5924-70

TPMHA0490EC

DY1DY3DY5DY7

DY9DY11

DY13

DY15

DY17

DY19P

DY18 DY16DY14

DY12DY10

DY8

DY6

DY4

DY2

K

26

222120

1918

17161514

1110

9876

54

3 2 1

HA TREATMENT

GLASS BASE

(360/26)°

(31)

FACEPLATE

PHOTO-CATHODE

52 ± 1

39 MIN.

50 ±

2

LEA

D L

EN

GT

H 8

0 M

IN.

13 M

AX

.

31

SEMIFLEXIBLELEADS

5 15

4 16

1

7

14

813

20DY1

DY5

DY3

P-C

DY7-D

DY7-C

DY9

P-D

DY8DY10

DY7-A

DY7-B

P-A

P-B

DY6

DY2DY4

K

A GLASS BASE

A TEMPORARY BASE REMOVED

B BOTTOM VIEW

32

6

1918

17

1211

DY1

DY5DY3

P-C

DY7-D

DY7-C

ICIC

DY9

P-D

DY8DY10

DY7-A

DY7-B

P-A

P-B

DY6

DY2DY4

K

1 202 193 18

4 17

5

6

16

15

7 148 13

9 1210 11

18°

13 M

AX

.

84 ±

2LE

AD

LE

NG

TH

45

MIN

.

PHOTOCATHODE

FACEPLATE

SEMI-FLEXIBLELEADS

51.2 ± 0.5

20 PIN BASE JEDECNo. B20-102

A

B

38.8 ± 0.3

33 MIN.

16 MIN.

16 M

IN.

33 M

IN.

37.7 ± 1.0

( 26)

Page 43: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

41

^7 R10550

TPMHA0390EB

TPMHA0460EBTPMHA0391EB

TPMHA0576EC

^8 R6234

^9 R6235 &0 R7373A-01

TPMHA0507EA

&1 R8143

56.5 ± 0.5

59.5 ± 0.5

55 MIN.

100

± 3

123

MA

X.

60 M

IN.

67.5

± 0

.6

51.5 ± 1.5

12

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

79 M

IN.

85 ±

1

56.5 ± 0.5

76.0 ± 1.5

70 MIN.

100

± 3

123

MA

X.

51.5 ± 1.51

2

3

4

56

7 89

10

11

12

1314

DY1IC

P

DY3

DY4

DY5DY6 IC

IC

DY7

DY8

DY2

GK

FACEPLATE

PHOTO-CATHODE

14 PIN BASEJEDECNo. B14-38

DY1

DY3

DY5

DY7

PDY9 DY10

DY8

DY6

DY4

DY2

3

4

56 10

11

12

13

14

17

K

A TEMPORARY BASE REMOVED

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

2

8

25.4 ± 0.5

13 M

AX

.

43.0

± 1

.5LE

AD

LE

NG

TH

50

MIN

.

R13 ± 1

PHOTOCATHODE

FACEPLATE

12 PIN BASE JEDECNo. B12-43

B BOTTOM VIEWA

B

37.3

SEMIFLEXIBLELEADS

2

3

4

56

7 89

10

11

12

14IC

DY3

DY2

DY7

DY9

DY11P DY10

DY8

DY6

DY4

DY5

KDY1

SHORT PIN

1

112

± 2

13 M

AX

.

20 M

IN.

28.5 ± 0.5

25 MIN.

PHOTOCATHODE

14 PIN BASE

13

HA TREATMENT

FACEPLATE

29.0 ± 0.7

5 15

4 16

1

7

14

89

13

20DY1

DY4

DY3

P-C

DY6-D

DY6-C

DY5DY7

P-D

DY8

DY6-A

DY6-B

P-A

P-B

DY4

DY2DY3

K

AGLASS BASE

ATEMPORARY BASE REMOVED

B BOTTOM VIEW

32

6

1918

17

11

DY1

DY4DY3

P-C

DY6-D

DY6-C

NCDY7

DY5

P-D

NCDY8

DY6-A

DY6-B

P-A

P-B

DY4

DY2DY3

K

1 202 193 18

4 17

5

6

16

15

7 148 13

9 1210 11

PHOTOCATHODE

FACEPLATE

SEMIFLEXIBLELEADS

20 PIN BASE JEDECNo. B20-102

A

B

38.8 ± 0.3

16 MIN.

16 M

IN.

33 M

IN.

37.7 ± 1.0

18°

( 26)

51.2 ± 0.5

13 M

AX

.

87.5

± 2

.0LE

AD

LE

NG

TH

45

MIN

.

Page 44: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

42

&2 H8711, H8711-100, H8711-200, H8711-300 &3 H7546B, H7546B-100, H7546B-200, H7546B-300

TPMHA0223EC

TPMHA0586EA

TPMHA0487EE

TPMHA0550EB

&5 H11934-100, H11934-200, H11934-300&4 H8804, H8804-100, H8804-200, H8804-300

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R14

C2

C1

C3C4

KF

R17

R18

R34

R16

R15

Dy12

Dy11

Dy10

Dy9

Dy8

Dy7

Dy6

Dy5

Dy4

Dy3

Dy2

Dy1

AN

OD

E15

OU

TP

UT

AN

OD

E16

OU

TP

UT

GN

D

-HV

INP

UT

GN

D

P15 P16

R13

DY

12 O

UT

PU

TG

ND

GN

D

AN

OD

E1

OU

TP

UT

AN

OD

E2

OU

TP

UT

GN

D

GN

D

GN

D

P1 P2

GN

D

AN

OD

E9

OU

TP

UT

TE

RM

INA

L P

INS

TE

RM

INA

L P

INS

TE

RM

INA

L P

INS

P9

AN

OD

E8

OU

TP

UT

P8

TE

RM

INA

L P

INS

R1 to R3R4 to R13

R14R15 to R17

R18C1 to C4

: 360 kΩ: 180 kΩ: 1 MΩ: 51 Ω: 10 kΩ: 0.01 μF

12

34

1314

1516

GN

D

GN

D-H

VD

Y

P8

P1

P16

P9

4 × 164.5 PITCH

4- 0.3GUIDE MARKS

25.7 0.

3

4.2

TOP VIEW

25.7

18.1

30.0 ± 0.5

SIDE VIEW

BOTTOM VIEW

45.0

± 0

.8

0.8

MA

X.

2.8

DIVIDER ASSEMBLY

POM CASE

INSULATINGTAPE

PMT:R7600-M16 SERIES

2.54

× 7=

17.7

8

2.54

12.7

7.62

2.545.082.54

Dy12 OUTPUT TERMINAL PIN ( 0.46)

-HV INPUTTERMINAL PINS ( 0.46)

ANODE OUTPUTTERMINAL PIN( 0.46,2.54 PITCH 8 × 4)

4-SCREWS (M2)

P64

P57

P8P1

P1

P8

P9

P16

P17

P24

P25

(PINS CONNECTION: BOTTOM VIEW)

*A: THROUGH HOLE (NO CONNECTION)

P32

P33

P40

P41

P48

P49

P56

P57

GND-HV

*A

GND

DY12OUT

P64

12

34

56

78

5758

5960

6162

6364

BOTTOM VIEW

DY12 OUTPUT TERMINAL PIN ( 0.64)TS-101-T-A-1, SAMTEC

GND TERMINAL PIN ( 0.64)TS-101-T-A-1, SAMTEC

ANODE OUTPUT TERMINAL PINS( 0.64, 2.54 PITCH, 8 × 8)TD-108-T-A-1, SAMTEC × 4 PCS

-HV TERMINAL PINS ( 0.64)ASP-23882-A-1, SAMTEC

0.3

24- 0.3GUIDE MARKS

2- 3.5

25.7

FILLED WITH INSULATOR

45.0 ± 0.8

5.2

4.2

SIDE VIEW

30.0

± 0

.5

2.54×

7=17

.78

2.54

POM CASE

DIVIDER ASSEMBLY

PMT: R7600-M64 SERIES

TOP VIEW

45

0.95

X

Y

4- 0.3GUIDE MARKS

40.0

± 0

.3

48.0

± 0

.5

30+0.5 -0

5+0.5 -0

2.54×9=22.86

2.54

4-SCREWS (M2)

FK

R21

R1 R2 R3

Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

C1 C3

C4

R14

R17 R18 R19 R20

R15 R16

-HV INPUT TERMINAL PIN( 0.64)

P1P2P63P64

AN

OD

E1

OU

TP

UT

AN

OD

E2

OU

TP

UT

AN

OD

E63

OU

TP

UT

AN

OD

E64

OU

TP

UT

Dy1

2 O

UTP

UT

TER

MIN

AL

PIN

( 0

.64)

2.54 PITCH( 0.64) 8 × 8

GN

D T

ER

MIN

AL

PIN

( 0

.64)

× 2

......

R1, R5 to R14R2 to R4, R15

R16R17 to R19

R20R21

C1 to C3C4

: 100 kΩ: 200 kΩ: 300 kΩ: 51 Ω: 10 kΩ: 1 MΩ: 22 nF: 10 nF

C2

12345678

5758596061626364

25.7

18.1

45

P8 P1

P64 P57

0.95

F

K R21 R1

R2

R3Dy1

Dy2

Dy3

Dy4

Dy5

Dy6

Dy7

Dy8

Dy9

Dy10

Dy11

Dy12

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

C1

C2

C3C4

R14

R17

R18

R19

R20

R15

R16

-HV INPUT TERMINAL PIN( 0.64)

P1

P2

P63

P64

ANODE1 OUTPUT

ANODE2 OUTPUT

ANODE63 OUTPUT

ANODE64 OUTPUT

Dy12 OUTPUTTERMINAL PIN ( 0.64)

2.54 PITCH( 0.64)8 × 8

GND TERMINAL PIN( 0.64) × 2

......

R1, R5 to R14R2 to R4, R15

R16R17 to R19

R20R21

C1 to C3C4

: 100 kΩ: 200 kΩ: 300 kΩ: 51 Ω: 10 kΩ: 1 MΩ: 22 nF: 10 nF

4- 0.3 GUIDE MARKS

ANODE OUTPUT TERMINAL PINS ( 0.64) 2.54 PITCH 8 × 8

4-SCREWS (M2) -HV INPUT TERMINAL PINS( 0.64)

GND TERMINAL PIN ( 0.64)

Dy12 OUTPUTTERMINAL PIN( 0.64)

POM CASE

SOFT TAPE

PMT:R7600-M64 SERIES

4- 0.3GUIDE MARKS

X

Y

30.0 ± 0.5

0.3 2

0.8

MA

X.

45 ±

0.8

4.2

5.2

2.54×7=17.78

2.54

2.54

×9=2

2.86

2.54

TOP VIEW

SIDE VIEW

BOTTOM VIEW

R1R2, R7 to R14

R3, R4R5, R6

R15R16 to R18

R19C1 to C3

: 300 kΩ: 200 kΩ: 130 kΩ: 160 kΩ: 100 kΩ: 51 Ω: 1 MΩ: 0.01 μF

DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12

K P

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

C1 C2 C3

R18R16R19

R17

SIGNAL OUTPUTRG-174/U (BLACK)

-HVRG-174/U (RED)

NOTE: DIVIDER RATIO=2.5: 1.3: 0.8: 0.8: 1: 1: .....1: 0.5TOTAL RESISTANCE=2.78 MΩ, DIVIDER CURRENT=359.7 μA at -1000 V (MAX.)

30.0 ± 0.5

26.2 32.5 ± 0.50.8 MAX. 10 51500+50 -0

23

MIN

.PH

OTO

CAT

HO

DE

SIG

-HV

POM CASE 5-SCREWS(M2)

-HV: RG-174/U (RED)

SIGNAL OUTPUT: RG-174/U (BLACK)

TOP VIEW SIDE VIEW BOTTOM VIEW

Page 45: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

43

TPMHA0591EA

TPMHA0592EA

TPMHA0623EA

&6 H13226A-100, H13226A-200 &7 H12445-100, H12445-200

&8 H12428-100, H12428-200

R1, R3R2

R4 to R14R15

: 240 kΩ: 220 kΩ: 200 kΩ: 100 kΩ

R16 to R18R19

C1 to C3

: 51 Ω: 1 MΩ: 0.01 μF

DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12

K GR

P4

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

C1 C2 C3

R18R16R19

R17

ANODE4 OUTPUTRG-174/U (BLACK)

-HVRG-174/U

(RED)

NOTE: DIVIDER RATIO=2.3: 1.2: 1: 1: .....1: 0.5TOTAL RESISTANCE=3 MΩ, DIVIDER CURRENT=367 μA at -1000 V (MAX.)

P3ANODE3 OUTPUTRG-174/U (BLACK)

P2ANODE2 OUTPUTRG-174/U (BLACK)

P1ANODE1 OUTPUTRG-174/U (BLACK)

41

1613

23

P1

P4

P5

P8

P9

P12

P13

P16

GN

D

GN

D-H

V

DY

12

(PIN CONNECTION: BOTTOM VIEW)

*A: THROUGH HOLE (NO CONNECTION)

5.085.08

2.54 × 3=7.62

2.54

× 3

=7.

62

39.0 ± 0.8

1 REF. 4.2

5.75

× 4

=23

23.55

26.2

5.75 × 4=23

30.0 ± 0.5

0.275POM CASE

P1

P2

P3

P4

GND

*A

DY12

-HV

*A

GND

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

GUIDEMARK

SIDE VIEWTOP VIEW BOTTOM VIEW

PH

OTO

CA

THO

DE

23

MIN

.

-HV TERMINAL PIN ( 0.64)ASP-23882-A-1, SAMTEC

ANODE OUTPUT TERMINAL PIN ( 0.64, 2.54 PITCH, 4 × 4)TD-104-T-A-1, SAMTEC × 2 PCS

DY12 OUTPUTTERMINAL PIN ( 0.64)ASP-23882-A-1, SAMTEC

4-SCREW(M2)

P64 ANODE64 OUTPUT

ANODE63 OUTPUTP63

P2 ANODE2 OUTPUT

ANODE1 OUTPUTP1

TERMINAL PIN (2.54 mm PITCH, 0.64, 8 × 8)

C1 C2 C3

DY1

K GR

DY2

R1 R2 R3

DY3

R4

DY4

R5

DY5

R6

DY6

R7

DY7

R8

DY8

R9

DY9

R10

DY10

R11

DY11

R12

DY12

R13

R20R16 R17 R18

R14 R15

C4

R19

R1, R3R2

R4 to R14R15

: 240 kΩ: 220 kΩ: 200 kΩ: 100 kΩ

R16 to R18R19R20

C1 to C4

: 51 Ω: 10 kΩ: 1 MΩ: 0.01 μF

-HV TERMINAL PIN ( 0.64)

GND TERMINAL PIN ( 0.64)

GND TERMINAL PIN ( 0.64)

DY12 OUTPUTTERMINAL PIN ( 0.64)

81

6457

45

1213

*A: THROUGH HOLE (NO CONNECTION)

P8P1GN

D

GND

P64

DY

-HV

P57

P1

P8

P9

P16

P17

P24

P25

(PINS CONNECTION: BOTTOM VIEW)

P32

P33

P40

P41

P48

P49

P56

P57

GND

*A

GND

-HV

DY12OUT

P64

2.54

2.54 × 9=22.8639.0 ± 0.8

1 REF. 4.2

2.88

× 8

=23.

04

2.54

× 7

=17

.78

2.54

26.2

2.88 × 8=23.04

30.0 ± 0.5

0.25POM CASE

INSULATING TAPE

GUIDEMARK

SIDE VIEWTOP VIEW BOTTOM VIEW

PH

OTO

CA

THO

DE

23

MIN

.

-HV TERMINAL PIN ( 0.64)ASP-23882-A-1, SAMTEC

4-SCREW (M2)

ANODE OUTPUT TERMINAL PIN ( 0.64, 2.54 PITCH, 8 × 8)TD-108-T-A-1, SAMTEC × 4 PCS

GND TERMINAL PIN ( 0.64)TS-101-T-A-1, SAMTEC

DY12 OUTPUT TERMINAL PIN ( 0.64)TS-101-T-A-1, SAMTEC

&9 H10515B-100, H10515B-200

TPMHA0534EB

P15 P16

P13 P14

P11 P12

P9 P10

P7 P8

P5 P6

P3 P4

P1 P2

TOP VIEW

BOTTOM VIEW

P16

P15

P2 P1

R1R8K

DY1R2

DY2R3

DY3R4

DY4R5

DY5R6

DY6R7

DY7

R9DY8

R10DY9

R11DY10

ACTI

VE V

OLT

AGE

DIVI

DER

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

GND

-HV AN

ODE

OUTP

UT

ANOD

E OU

TPUT

G

P16

P15

P2 P1

P4 P3

P6 P5

P8 P7

P10

P9

P12

P11

P14

P13

GND

-HV

24

2.54

× 7=

17.7

8

6.35 2.54

24

30.0 ± 0.5

45.0

± 0

.55.

70.

8 M

AX

.

POM CASE

4-SCREW (M2)

PMT:R5900 SERIES

16

0.64

ANODE OUTPUT

R1 to R7R8

R9 to R11

: 220 kΩ: 1 MΩ: 51 Ω

DIVIDER CURRENT: 0.37 mA (at -900 V)

15.8

1.0

PIT

CH

0.8 16

PHOTO-CATHODEP1

P16

SIDE VIEW

GND INPUTTERMINAL PIN ( 0.46)

-HV INPUTTERMINAL PIN ( 0.46)

ANODE #1 to #16OUTPUT ( 0.46)

-HV INPUTTERMINAL PIN

GNDTERMINAL PIN

ANODE OUTPUT TERMINAL PIN(BDL-108-G-F, Mfg. SAMTEC)

30.0 ± 0.5

26.2 32.5 ± 0.50.8 MAX. 10 5450+20 -0

23

MIN

.P

HO

TOC

ATH

OD

E

SIG-HV

P4SIGP1

SIGP3

SIGP2

POM CASE 5-SCREWS(M2)

-HV: RG-174/U (RED)

SIGNAL OUTPUT: RG-174/U (BLACK)

14

23

TOP VIEW SIDE VIEW BOTTOM VIEW

C1 C2 C3

R1, R3R2

R4 to R14R15

: 240 kΩ: 220 kΩ: 200 kΩ: 100 kΩ

R16 to R18R19R20

C1 to C4

: 51 Ω: 10 kΩ: 1 MΩ: 0.01 μF

DY1

K GR

DY2

R1 R2 R3

DY3

R4

DY4

R5

DY5

R6

DY6

R7

DY7

R8

DY8

R9

DY9

R10

DY10

R11

DY11

R12

DY12P16

TERMINAL PIN (2.54 mm PITCH, 0.64, 4 × 4)P15

P2

P1

R13

R20R16 R17 R18

R14 R15

C4

R19

DY12 OUTPUTTERMINAL PIN ( 0.64)

-HV TERMINAL PIN ( 0.64)

GND TERMINAL PIN ( 0.64)

GND TERMINAL PIN ( 0.64)

ANODE1 OUTPUT

ANODE2 OUTPUT

ANODE15 OUTPUT

ANODE16 OUTPUT

Page 46: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

44

*0 H12700A, H12700A-10

*1 H12700B, H12700B-10

TPMHA0601EB

TPMHA0602EB

DY

10 O

UT

PU

T

SIG

NA

L G

ND

AN

OD

E O

UT

PU

T P

1

AN

OD

E O

UT

PU

T P

2

AN

OD

E O

UT

PU

T P

3

AN

OD

E O

UT

PU

T P

4

AN

OD

E O

UT

PU

T P

5

AN

OD

E O

UT

PU

T P

6

AN

OD

E O

UT

PU

T P

7

AN

OD

E O

UT

PU

T P

8

AN

OD

E O

UT

PU

T P

57

AN

OD

E O

UT

PU

T P

58

AN

OD

E O

UT

PU

T P

59

AN

OD

E O

UT

PU

T P

60

AN

OD

E O

UT

PU

T P

61

AN

OD

E O

UT

PU

T P

62

AN

OD

E O

UT

PU

T P

63

AN

OD

E O

UT

PU

T P

64

. .....

4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR

P1

P2

P3

P4

P5

P6

P7

P8

P57

P58

P59

P60

P61

P62

P63

P64

ACTIVE VOLTAGEDIVIDER

K

R8R7R6R5R4R3R2R1

DY10DY9DY8DY7DY6DY5DY4DY3DY2DY1

GR

R21

R23

R22

R20R19R18R17R16

C4C3C2C1

C10

C12

C11

SHV-P(SHIELD CABLE, GRAY)

R1 to R8: 390 kΩR16, R20: 10 kΩR17 to R19: 51 ΩR21: 1 MΩR22, R23: 4.99 kΩ

DIVIDER CURRENT 225 µA at -1100 V

C1, C2: 0.01 µFC3: 0.022 µFC4: 0.033 µFC10: 0.01 µFC11, C12: 0.0015 µF

DY

10 O

UT

PU

T

SIG

NA

L G

ND

AN

OD

E O

UT

PU

T P

1

AN

OD

E O

UT

PU

T P

2

AN

OD

E O

UT

PU

T P

3

AN

OD

E O

UT

PU

T P

4

AN

OD

E O

UT

PU

T P

5

AN

OD

E O

UT

PU

T P

6

AN

OD

E O

UT

PU

T P

7

AN

OD

E O

UT

PU

T P

8

AN

OD

E O

UT

PU

T P

57

AN

OD

E O

UT

PU

T P

58

AN

OD

E O

UT

PU

T P

59

AN

OD

E O

UT

PU

T P

60

AN

OD

E O

UT

PU

T P

61

AN

OD

E O

UT

PU

T P

62

AN

OD

E O

UT

PU

T P

63

AN

OD

E O

UT

PU

T P

64

. .....

4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR

P1

P2

P3

P4

P5

P6

P7

P8

P57

P58

P59

P60

P61

P62

P63

P64

ACTIVE VOLTAGEDIVIDER

K

R8R7R6R5R4R3R2R1

DY10DY9DY8DY7DY6DY5DY4DY3DY2DY1

GR

R21

R23

R22

R20R19R18R17R16

C4C3C2C1

C10

C12

C11

R1 to R8: 390 kΩR16, R20: 10 kΩR17 to R19: 51 ΩR21: 1 MΩR22, R23: 4.99 kΩ

DIVIDER CURRENT 225 µA at -1100 V

C1, C2: 0.01 µFC3: 0.022 µFC4: 0.033 µFC10: 0.01 µFC11, C12: 0.0015 µF

GND-HV

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND*B

P7P8

P15P16P23P24P31P32P39P40P47P48P55P56P63P64

DY12GND

SIG4

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

P5P6P13P14P21P22P29P30P37P38P45P46P53P54P61P62GND*B

SIG3

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND*B

GND

P3P4

P11P12P19P20P27P28P35P36P43P44P51P52P59P60GNDGND

SIG2

CONNECTION FOR SIGNAL CONNECTORS(BOTTOM VIEW)

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

P1P2P9

P10P17P18P25P26P33P34P41P42P49P50P57P58*B

GNDSIG1

4.5 ± 0.342

12 × 3=36

51.0

± 0

.3

36

GN

DA

NO

DE

GN

DA

NO

DE

GN

DA

NO

DE

GN

DA

NO

DE

58.5

7.50

.49.

42.4

1.34

.33.

26.2

5.18

.17.

10.9

.2.1

60.5

9.52

.51.

44.4

3.36

.35.

28.2

7.20

.19.

12.1

1.4.

3

DY

.64.

63.5

6.55

.48.

47.3

9.32

.31.

24.2

3.16

.15.

8.7

62.6

1.54

.53.

46.4

538

.37

30.2

9.22

.21.

14.1

3.6.

5

SIG

4

SIG

3

SIG

2

SIG

1

4-SIGNAL OUTPUT CONNECTORHSA-200-D36P-Xmfg. JC ELECTRONICS CORPORATION

450

± 2

0

PH

OT

OC

AT

HO

DE

(E

FF

EC

TIV

E A

RE

A)

4

8.5

22

× 1

7=34

5

1.7

± 0

.3

16.4 ± 0.51.5 4

27.4 ± 0.932.7 ± 1.0

6 ×

6=

366.

256.

25

6 × 6=36 6.256.25

P1

P9

P17

P25

P33

P41

P49

P57

P2

P10

P18

P26

P34

P42

P50

P58

P3

P11

P19

P27

P35

P43

P51

P59

P4

P12

P20

P28

P36

P44

P52

P60

P5

P13

P21

P29

P37

P45

P53

P61

P6

P14

P22

P30

P38

P46

P54

P62

P7

P15

P23

P31

P39

P47

P55

P63

P8

P16

P24

P32

P40

P48

P56

P64

0

.5

NOTE *B: No pin.TOP VIEW SIDE VIEW

BOTTOM VIEW

-HV: SHV-P(SHIELD CABLE, GRAY)

M3 DEPTH 2.5INSULATING TAPE

PLASTIC BASE

PC BOARD

START MARK

51

.0+

0.5

-0.1

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND*B

P7P8

P15P16P23P24P31P32P39P40P47P48P55P56P63P64

DY12GND

GNDGND

-HV-HV

SIG4

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

P5P6

P13P14P21P22P29P30P37P38P45P46P53P54P61P62GND*B

SIG3

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND*B

GND

P3P4

P11P12P19P20P27P28P35P36P43P44P51P52P59P60GNDGND

SIG2

CONNECTION FOR SIGNAL CONNECTORS(BOTTOM VIEW)

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

P1P2P9

P10P17P18P25P26P33P34P41P42P49P50P57P58*B

GNDSIG1

4.5 ± 0.342

12 × 3=36

36

HV

GN

D

SIG

4

SIG

3

SIG

2

SIG

1

4-SIGNAL OUTPUT CONNECTOR *A

HSA-200-D36P-Xmfg. JC ELECTRONICS CORPORATION

NOTEGND CONNECTOR *A

HSA-200-S02Pmfg. JC ELECTRONICS CORPORATION

-HV CONNECTOR *A

HSA-200-S02Pmfg. JC ELECTRONICS CORPORATION

2

6 ×

6=

366.

256.

25

6 × 6=36 6.256.25

P1

P9

P17

P25

P33

P41

P49

P57

P2

P10

P18

P26

P34

P42

P50

P58

P3

P11

P19

P27

P35

P43

P51

P59

P4

P12

P20

P28

P36

P44

P52

P60

P5

P13

P21

P29

P37

P45

P53

P61

P6

P14

P22

P30

P38

P46

P54

P62

P7

P15

P23

P31

P39

P47

P55

P63

P8

P16

P24

P32

P40

P48

P56

P64

TOP VIEW SIDE VIEW BOTTOM VIEW

M3 DEPTH 2.5

START MARK

2412

223.5

51.0

± 0

.3

INSULATING TAPE

PLASTIC BASE

PC BOARD

22

× 1

7=34

16.4 ± 0.51.5 4

27.4 ± 0.932.7 ± 1.0

0

.5

*A: Suitable sockets for the connectors will be attached.For signal output is HSC-200-D36P-X (JC ELECTRONICS CORPORATION).For -HV, GND is SQT-102-01-L-S (SAMTEC).

NOTE *B: No pin.

GN

DA

NO

DE

GN

DA

NO

DE

GN

DA

NO

DE

GN

DA

NO

DE

58.5

7.50

.49.

42.4

1.34

.33.

26.2

5.18

.17.

10.9

.2.1

60.5

9.52

.51.

44.4

3.36

.35.

28.2

7.20

.19.

12.1

1.4.

3

DY

.64.

63.5

6.55

.48.

47.3

9.32

.31.

24.2

3.16

.15.

8.7

62.6

1.54

.53.

46.4

538

.37

30.2

9.22

.21.

14.1

3.6.

5

PH

OT

OC

AT

HO

DE

(E

FF

EC

TIV

E A

RE

A)

4

8.5

5

1.7

± 0

.3

51

.0+

0.5

-0.1

DY

10 O

UT

PU

T

SIG

NA

L G

ND

AN

OD

E O

UT

PU

T P

1

AN

OD

E O

UT

PU

T P

2

AN

OD

E O

UT

PU

T P

3

AN

OD

E O

UT

PU

T P

4

AN

OD

E O

UT

PU

T P

5

AN

OD

E O

UT

PU

T P

6

AN

OD

E O

UT

PU

T P

7

AN

OD

E O

UT

PU

T P

8

AN

OD

E O

UT

PU

T P

57

AN

OD

E O

UT

PU

T P

58

AN

OD

E O

UT

PU

T P

59

AN

OD

E O

UT

PU

T P

60

AN

OD

E O

UT

PU

T P

61

AN

OD

E O

UT

PU

T P

62

AN

OD

E O

UT

PU

T P

63

AN

OD

E O

UT

PU

T P

64

. .....

4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR

P1

P2

P3

P4

P5

P6

P7

P8

P57

P58

P59

P60

P61

P62

P63

P64

ACTIVE VOLTAGEDIVIDER

K

R8R7R6R5R4R3R2R1

DY10DY9DY8DY7DY6DY5DY4DY3DY2DY1

GR

R21

R23

R22

R20R19R18R17R16

C4C3C2C1

C10

C12

C11

R1: 430 kΩR2: 360 kΩR3: 51 kΩR4 to R8: 330 kΩR16, R20: 10 kΩR17, R19: 51 ΩR21: 1 MΩ

DIVIDER CURRENT 214 µA at -1100 V (MAX.)

R22, R23: 4.99 kΩ

1, C2: 0.01 µFC3: 0.022 µFC4: 0.033 µFC10: 0.01 µFC11, C12: 0.0015 µF

SHV-P(SHIELD CABLE, GLAY)

H12700B H12700B-10

H12700A H12700A-10

DY

10 O

UT

PU

T

SIG

NA

L G

ND

AN

OD

E O

UT

PU

T P

1

AN

OD

E O

UT

PU

T P

2

AN

OD

E O

UT

PU

T P

3

AN

OD

E O

UT

PU

T P

4

AN

OD

E O

UT

PU

T P

5

AN

OD

E O

UT

PU

T P

6

AN

OD

E O

UT

PU

T P

7

AN

OD

E O

UT

PU

T P

8

AN

OD

E O

UT

PU

T P

57

AN

OD

E O

UT

PU

T P

58

AN

OD

E O

UT

PU

T P

59

AN

OD

E O

UT

PU

T P

60

AN

OD

E O

UT

PU

T P

61

AN

OD

E O

UT

PU

T P

62

AN

OD

E O

UT

PU

T P

63

AN

OD

E O

UT

PU

T P

64

. .....

4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR

P1

P2

P3

P4

P5

P6

P7

P8

P57

P58

P59

P60

P61

P62

P63

P64

ACTIVE VOLTAGEDIVIDER

K

R8R7R6R5R4R3R2R1

DY10DY9DY8DY7DY6DY5DY4DY3DY2DY1

GR

R21

R23

R22

R20R19R18R17R16

C4C3C2C1

C10

C12

C11

SHV-P(SHIELD CABLE, GRAY)

R1 to R8: 390 kΩR16, R20: 10 kΩR17 to R19: 51 ΩR21: 1 MΩR22, R23: 4.99 kΩ

DIVIDER CURRENT 225 µA at -1100 V

C1, C2: 0.01 µFC3: 0.022 µFC4: 0.033 µFC10: 0.01 µFC11, C12: 0.0015 µF

Page 47: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

45

(Unit: mm)

*2 H13700

*3 H13974-00-1616

TPMHA0618EB

SHV-P(SHIELD CABLE, GRAY)

K

R1

DY1 DY2

R2

DY3

R3

DY4

R4

DY5

R5

DY6

R6 R7

R15

C2

TRANSISTOR CIRCUIT

DY

10 O

UT

PU

T

SIG

NA

L G

ND

DY8

R16

DY9

R17 R18

DY10 GR P1

R19

R20

R21

R14

C1

DY7

C3 C4

C10

C12

C11

AN

OD

E O

UT

PU

T (

P1)

P2

AN

OD

E O

UT

PU

T (

P2)

P15

AN

OD

E O

UT

PU

T (

P15

)

P16

AN

OD

E O

UT

PU

T (

P16

)(P

17 t

o P

32)

(P22

5 to

P24

0)

P241

AN

OD

E O

UT

PU

T (

P24

1)

P242

AN

OD

E O

UT

PU

T (

P24

2)

P255

AN

OD

E O

UT

PU

T (

P25

5)

P256

AN

OD

E O

UT

PU

T (

P25

6)

. ..... ...... ......

....

2-(DOUBLE-ROW 0.5 PITCH) CONNECTOR

....

..

....

..

CONNECTION FOR SIGNAL CONNECTORS(BOTTOM VIEW)

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

GNDGNDGNDP177P161P145P129P178P162P146P130P179P163P147P131P180P164P148P132P181P165P149P133P182P166P150P134P183P167P151P135P184P168P152P136P137P153P169P185P138P154P170P186P139P155P171P187P140P156P172P188P141P157P173P189P142P158P174P190P143P159P175P191P144P160P176P192GNDGNDGND

GNDGNDGNDP193P209P225P241P194P210P226P242P195P211P227P243P196P212P228P244P197P213P229P245P198P214P230P246P199P215P231P247P200P216P232P248P249P233P217P201P250P234P218P202P251P235P219P203P252P236P220P204P253P237P221P205P254P238P222P206P255P239P223P207P256P240P224P208GNDGNDGND

7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140

PIN

AS

SIG

NM

EN

T F

OR

CO

NN

EC

TO

R (

9984

B-1

40Y

901)

PIN

AS

SIG

NM

EN

T F

OR

PM

T A

NO

DE

PIN

AS

SIG

NM

EN

T F

OR

PM

T A

NO

DE

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

GNDGNDGNDP49P33P17P1P50P34P18P2P51P35P19P3P52P36P20P4P53P37P21P5P54P38P22P6P55P39P23P7P56P40P24P8P9P25P41P57P10P26P42P58P11P27P43P59P12P28P44P60P13P29P45P61P14P30P46P62P15P31P47P63P16P32P48P64GNDGNDDY10

GNDGNDGNDP65P81P97P113P66P82P98P114P67P83P99P115P68P84P100P116P69P85P101P117P70P86P102P118P71P87P103P119P72P88P104P120P121P105P89P73P122P106P90P74P123P107P91P75P124P108P92P76P125P109P93P77P126P110P94P78P127P111P95P79P128P112P96P80GNDGNDGND

7172737475767778798081828384858687888990919293949596979899

100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140

PIN

AS

SIG

NM

EN

T F

OR

CO

NN

EC

TO

R (

9984

B-1

40Y

901)

PIN

AS

SIG

NM

EN

T F

OR

PM

T A

NO

DE

PIN

AS

SIG

NM

EN

T F

OR

PM

T A

NO

DE

SIG1 SIG2

INSULATING TAPE9984B-140Y901IRISO ELECTRONICS CO., LTD

SIG1

SIG2P

HO

TO

CA

TH

OD

E (

EF

FE

CT

IVE

AR

EA

)

48.

5

106

5

1.8

± 0

.3

32.1 47.5

48.2

3.0 × 14=42.0

3.0

( 48.5)

3

4

2

3

1173349658197113129145161177193209225241

2183450668298114130146162178194210226242

3193551678399115131147163179195211227243

42036526884100116132148164180196212228244

52137536985101117133149165181197213229245

62238547086102118134150166182198214230246

72339557187103119135151167183199215231247

82440567288104120136152168184200216232248

92541577389105121137153169185201217233249

102642587490106122138154170186202218234250

112743597591107123139155171187203219235251

122844607692108124140156172188204220236252

132945617793109125141157173189205221237253

143046627894110126142158174190206222238254

153147637995111127143159175191207223239255

163248648096112128144160176192208224240256

TOP VIEW SIDE VIEW BOTTOM VIEW

CASE (POM)

4 × M2 DEPTH: 8

-HV: SHV-P(SHIELD CABLE, GRAY)

START MARK

3.0

× 1

4=42

.0

3.0

450

5

1

18.3

29.9

31

+20

-0

R1.8

51.8 ± 0.3

SE

PA

RA

TIO

N M

AR

KO

N F

OC

US

ING

ELE

CT

RO

DE

R1, R19: 1 MΩR2-R7: 470 kΩR14, R18: 10 kΩR15 to R17: 51 ΩR20, R21: 4.99 kΩ

C1, C2: 0.01 µFC3: 0.022 µFC4: 0.033 µFC10: 0.01 µFC11, C12: 0.0015 µF

DIVIDER CURRENT 185 µA at -1100 V (MAX.)

TPMHA0455ED

TPMHC0269EA

TPMHA0625EA

*4 H7260, H7260-100, H7260-200

PMT-1

VOLTAGEDIVIDER CIRCUIT

(ACTIVE BASE)

-HV

: SH

V-P

SH

IELD

CA

BLE

(GR

AY)

SIG

NA

L G

ND

Dy1

0 O

UTP

UT

ANO

DE O

UTPU

TP

1 to

P64

PMT-2

VOLTAGEDIVIDER CIRCUIT

(ACTIVE BASE)

SIG

NA

L G

ND

Dy1

0 O

UTP

UT

ANO

DE O

UTPU

TP

1 to

P64

PMT-3

VOLTAGEDIVIDER CIRCUIT

(ACTIVE BASE)

SIG

NA

L G

ND

Dy1

0 O

UTP

UT

ANO

DE O

UTPU

TP

1 to

P64

PMT-4

VOLTAGEDIVIDER CIRCUIT

(ACTIVE BASE)

SIG

NA

L G

ND

Dy1

0 O

UTP

UT

ANO

DE O

UTPU

TP

1 to

P64

16- (DOUBLE-ROW 2 mm PITCH) CONNECTOR-P

GND

ANODESIG

4

7.8. 15.16. 23.24. 31.32. 39.40. 47.48. 55.56. 63.64. Dy

GND

ANODESIG

3

5.6. 13.14. 21.22. 29.30. 37.38. 45.46. 53.54. 61.62

GND

ANODESIG

2

3.4. 11.12. 19.20. 27.28. 35.36. 43.44. 51.52. 59.60

GND

ANODESIG

1

1.2. 9.10. 17.18. 25.26. 33. 34. 41.42. 49.50. 57.58

GND

ANODESIG

4

GND

ANODESIG

3

GND

ANODESIG

2

GND

ANODESIG

1

GND

ANODESIG

4

GND

ANODESIG

3

GND

ANODESIG

2

GND

ANODESIG

1

GND

ANODESIG

4

GND

ANODESIG

3

GND

ANODESIG

2

GND

ANODESIG

1

-HV

HA

MA

MATS

UF

LAT PA

NE

L PM

T A

RR

AY

48.5 48.5(3) 2 15.5

36 (12 PITCH)

4

48.5

48.5

(3) (0

.5) 51

.0 ±

0.3

51.0

± 0

.3 105.

7 ±

0.3

(0.5)

51.0 ± 0.351.0 ± 0.3

105.7 ± 0.3

1532.5 ± 0.5

1 2

3 4

3615

.5

16 × SIGNAL OUTPUT CONNECTORHSA-200-D36P-Xmfg. JC ELECTRONICS CORPORATION

450+20 -0

ALUMINUM CASE(No electric potential)

Silicone (BLACK): Between PMT and case

Silicone (CLEAR): Between PMT and PMT

-HV: SHV-P (SHIELD CABLE, GRAY)

* 2 × 2 array of 51 mm (efective area 48.5) PMT

TOP VIEW SIDE VIEW BOTTOM VIEW

52.0 ± 0.5

24.0

± 0

.5

70.

8 T

YP

.35

.0 ±

0.5

3.3

31.8

2.54 × 15 = 38.11.27 2.54

2.54

5.08

7.62

-HV INPUT TERMINAL ( 0.5)

GND TERMINALPIN ( 0.5)ANODE #1

ANODE #2

HOUSING (POM)

ANODE #32

ANODE #31

ANODEWINDOW #1

0.8

1

ANODEWINDOW #32

DY10 OUTPUTPIN ( 0.5)

ANODE #1 to #32 OUTPUT ( 0.46)(16 PIN × 2 LINE 2.54 PITCH)

A32-ANODE - A2 -HV

DY OUT A31-ANODE - A1 GND7.5

GN

D T

ER

MIN

AL

PIN

SHIELD

SHIELD

-HV

INP

UT

TE

RM

INA

L P

INP1 P2 P31 P32

AN

OD

E1

OU

TPU

T

AN

OD

E2

OU

TPU

T

8 × 2 LINE2.54 PITCH

AN

OD

E31

OU

TPU

T

AN

OD

E32

OU

TPU

T

DY

10 O

UT

PU

T

R10

GK

R1 to R7R8, R9

R10R11

C1 to C4

: 220 kΩ: 51 Ω: 1 MΩ: 10 kΩ: 0.01 μF

VO

LTA

GE

DIV

IDE

R C

UR

RE

NT

= 0

.37

mA

at -

900

V (

MA

X. R

AT

ING

) IN

PU

T

R7

R6

R5

R4

R3

R2

R1

C1

C2

C3C4

DY1

DY2

DY3

DY4

DY5

DY6

DY7

DY8

DY9

DY10R9

R11

R8

ACTI

VE B

ASE

CIRC

UIT

BOTTOM VIEW

SIDE VIEW

TOP VIEW

Page 48: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

46

*8 H12690, H12690-300

TPMHA0596EATPMHA0311EE

TPMHA0310EE

*6 H3695-10

*7 H3165-10

TPMHA0309EE

*5 H3164-10

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

*TO MAGNETIC SHIELD CASE

PC3

C2

C1

K -HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

R1 to R11C1 to C3

: 330 kΩ: 0.01 μF

* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

95.0

± 2

.515

00

-HV: SHIELD CABLE (GRAY)

10.6 ± 0.2

PHOTOCATHODE

PMT: R1635WITH HA TREATMENT

MAGNETICSHIELD (t=0.2 mm)WITH HEATSHRINKABLE TUBE

10.5 ± 0.6

8 MIN.

SIGNAL OUTPUT: RG-174/U (BLACK)

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

PC3

C2

C1

K

R1 to R4R5 to R10C1 to C3

: 510 kΩ: 330 kΩ: 0.01 μF

-HV: SHIELD CABLE (GRAY)

*TO MAGNETIC SHIELD CASE

SIGNAL OUTPUT: RG-174/U (BLACK)

11.3 ± 0.7

8 MIN.

PHOTOCATHODE

PMT: R2496WITH HA TREATMENT

MAGNETICSHIELD (t=0.2 mm)WITH HEATSHRINKABLE TUBE

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (GRAY)

10.6 ± 0.2

95.0

± 2

.515

00

* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

PC3

C2

C1

K

R1 to R11C1 to C3

: 330 kΩ: 0.01 μF

-HV: SHIELD CABLE (RED)

SIGNAL OUTPUT: RG-174/U (BLACK)

* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

* TO MAGNETIC SHIELD CASE

14.3 ± 0.6

10 MIN.

PHOTOCATHODE

PMT: R647-01WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.2 mm)WITH HEATSHRINKABLE TUBE

12.4 ± 0.5

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (RED)

116.

0 ±

3.0

1500

C3

C2

C1

R12DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R1 to R12C1 to C3

: 330 kΩ: 0.01 μF

SIGNAL OUTPUTRG-174/U (BLACK)

-HVSHIELD CABLE (RED)

* TO MAGNETIC SHIELD CASE

* MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

(H12690-300: PMT: R12421-300)

14.3 ± 0.7

10 MIN.

88 ±

315

0010

5

12.4 ± 0.5

PHOTOCATHODE

PMT: R12421WITH HA TREATMENT

SIGNAL OUTPUTRG-174/U (BLACK)

-HV: SHIELD CABLE (RED)

MAGNETIC SHIELD CASE (t=0.2)WITH HEAT SHRINKABLE TUBE

P

K

Page 49: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

47

(Unit: mm)

TPMHA0313EC

(0 H6524

TPMHA0314EC

(2 H6613(1 H6612

TPMHA0315EC

TPMHA0312ED

*9 H6520

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C3

C2

C1

K

R1R2 to R11C1 to C3

: 510 kΩ: 330 kΩ: 0.01 μF

* TO MAGNETIC SHIELD CASE

-HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (GRAY)

PHOTOCATHODE

PMT: R1166WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.5 mm)

23.5 ± 0.5

19.3 ± 0.7

15 MIN.

130.

0 ±

0.8

1500

1 M

AX

.

SIGNAL OUTPUT: RG-174/U (BLACK)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C3

C2

C1

K

23.5 ± 0.5

19.3 ± 0.7

15 MIN.

PHOTOCATHODE

PMT: R1450WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.5 mm)

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (GRAY)

130.

0 ±

0.8

1500

1 M

AX

.

-HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

* TO MAGNETIC SHIELD CASE

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

R1R3

R2, R4 to R11C1 to C3

: 680 kΩ: 510 kΩ: 330 kΩ: 0.01 μF

-HV: SHIELD CABLE (RED)

SIGNAL OUTPUT: RG-174/U (BLACK)

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

-HV: SHIELD CABLE (RED)

P

C3

C2

C1

K

SIGNAL OUTPUT: RG-174/U (BLACK)

R1R2R3

R4, R6 to R11R5

C1 to C3

: 1 MΩ: 750 kΩ: 560 kΩ: 330 kΩ: 510 kΩ: 0.01 μF

* TO MAGNETICSHIELD CASE

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

THE H6613-01 IS A VARIANT OF H6613WITH A TERMINAL RESISTOR (50Ω).

PHOTOCATHODE

PMT: R2076WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.5 mm)

23.5 ± 0.5

18.7 ± 1.0

15 MIN.

130.

0 ±

0.8

1500

MIN

.

1 M

AX

.

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C3

C2

C1

K

23.5 ± 0.5

19.3 ± 0.7

15 MIN.

PHOTOCATHODE

PMT: R3478WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.5 mm)

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (GRAY)

130.

0 ±

0.8

1500

1 M

AX

. SIGNAL OUTPUT: RG-174/U (BLACK)

* TO MAGNETIC SHIELD CASE

-HV: SHIELD CABLE (GRAY)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

R1R2R3

R4, R6 to R11R5

C1 to C3

: 1 MΩ: 750 kΩ: 560 kΩ: 330 kΩ: 510 kΩ: 0.01 μF

Page 50: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

48

31.0 ± 0.5

26 ± 1

22 MIN.

120.

0 ±

0.8

1 M

AX

.

-HV: SHIELD CABLE (RED)

P

K

ANODE OUTPUT: RG-174/U (BLACK)

R17

R18

1500

MIN

.

R1, R2, R4, R11, R12R3, R5 to R10

R13, R14R15, R16

R17 to R19C1, C2

C3C4

: 300 kΩ: 200 kΩ: 360 kΩ: 330 kΩ: 51 Ω: 0.01 μF: 0.022 μF: 0.033 μF

C1

C2

C3

C4

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

DY9

R19DY10

ANODE OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (RED)

PMT: R7899-01 WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.8 mm)

PHOTOCATHODE

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

* TO MAGNETICSHIELD CASE

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

(4 H6533

(5 H6152-70

TPMHA0317ED

TPMHA0470EC

100.

0 ±

0.8

1500

10

5

1 M

AX

.

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY15

DY14

DY13

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P C5

C4

C3

C2

C1

C7

K

R21

R20

R19

R18

C6R22 R24

R23

SIGNAL OUTPUT: RG-174/U (BLACK)

: 330 kΩ: 1 MΩ: 51 Ω: 100 kΩ: 10 kΩ: 0.01 μF: 0.0047 μF

R1 to R17R18, R23

R19 to R21R22R24

C1 to C5C6, C7

+HV: SHIELD CABLE (GRAY)

31.0 ± 0.5

25.8 ± 0.7

17.5 MIN.

PMT: R5505-70WITH HA TREATMENT

PHOTOCATHODE

POM CASE

SIGNAL OUTPUT: RG-174/U (BLACK)

+HV: SHIELD CABLE (GRAY)

* HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

(6 H8643

TPMHA0514EB

(3 H8135

TPMHA0513EC

24.0 ± 0.5

19.3 ± 1.0

15 MIN.

60.0

± 0

.8

1 M

AX

.

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1-HV: SHIELD CABLE (RED)

P

C3

C2

C1

K

SIGNAL OUTPUT: RG-174/U (BLACK)

1500

MIN

.

R1R2 to R11C1 to C3

: 1 MΩ: 330 kΩ: 0.01 μF

-HV: RG-174/U (RED)

SIGNAL OUTPUT: RG-174/U (BLACK)

PHOTOCATHODE

PMT: R5611A WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.5 mm)

* TO MAGNETICSHIELD CASE

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C4

C3

C2

C1

K

R22

R21

R20

G

ACC

* TO MAGNETIC SHIELD CASE

-HV: SHIELD CABLE (GRAY)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

31.0 ± 0.5

26 ± 1

20 MIN.

120.

0 ±

0.8

1500

MIN

.

1 M

AX

.

-HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

PMT: R4998 (H6533)R5320 (H6610)

WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.8 mm)

PHOTOCATHODE

SIGNAL OUTPUT: RG-174/U (BLACK)

R1, R3, R19R2, R7 to R12,

R15 to R17R4

R5, R18R6, R14

R13R20 to R22

C1 to C3C4

: 430 kΩ

: 330 kΩ: 820 kΩ: 390 kΩ: 270 kΩ: 220 kΩ: 51 Ω: 0.022 μF: 0.033 μF

Page 51: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

49

TPMHA0318ED

(8 H7415

(9 H3178-51 H8409-70

TPMHA0320EC TPMHA0476EC

-HV

SIG

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C4

C3

C2

C1

K

R14

R15

C5

47.0 ± 0.5

39 ± 1

34 MIN.

PHOTOCATHODE

PMT: R580WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.8 mm)

162.

0 ±

0.8

1 M

AX

.

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

* TO MAGNETIC SHIELD CASE

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

R1, R10, R12R2 to R6, R13

R7R8R9

R11R14R15C1C2C3C4C5

: 300 kΩ: 150 kΩ: 180 kΩ: 220 kΩ: 330 kΩ: 240 kΩ: 51 Ω: 10 kΩ: 0.01 μF: 0.022 μF: 0.047 μF: 0.1 μF: 4700 pF

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

TPMHA0554EA

(7 H10580

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C3

C2

C1

K

R16

R15

R14

R1,R2R3R5

R4,R6 to R13R14 to R16

C1 to C3

: 430 kΩ: 470 kΩ: 510 kΩ: 300 kΩ: 51 Ω: 0.01 μF

* TO MAGNETIC SHIELD CASE

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: SHIELD CABLE (GRAY)

1500

MAGNETIC SHIELD CASE (t=0.8 mm)

130.

0 ±

0.8

1 M

AX

.

PMT: R6427 (H7415)R7056 (H7416)

WITH HA TREATMENT

PHOTOCATHODE

33.0 ± 0.5

29.0 ± 0.7

25 MIN.

-HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

R21

R20

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY19

DY18

DY17

DY16

DY15

DY14

DY13

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C5

C4

C3

C2

C1

K

R25

R24

R23

R22

R1 to R21R22, R28

R23 to R25R26R27

C1 to C5C6, C7

: 330 kΩ: 1 MΩ: 51 Ω: 10 kΩ: 100 kΩ: 0.01 μF: 0.0047 μF

P

C6C7R27 R26

R28

27 MIN.

45.0 ± 0.5

39 ± 1

80.0

± 0

.815

00

510

1 M

AX

.

PHOTOCATHODE

PMT: R7761-70WITH HA TREATMENT

POM CASE

+HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

* HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

SIGNAL OUTPUT: RG-174/U (BLACK)

+HV: SHIELD CABLE (GRAY)

100

-HV: SHIELD CABLE (RED)

* TO MAGNETICSHIELD CASE

SIGNAL OUTPUT: RG-174/U (BLACK) WITH BNC

-HV: SHIELD CABLE (RED) WITH SHV

PHOTOCATHODE

MAGNETIC SHIELD CASE (±0.8 mm)

PMT: R9800WITH HA TREATMENT

31.5 ± 0.5

25.4 ± 0.5

22 MIN.

120.

0 ±

0.8

1 M

AX

.15

00 M

IN.

AC

TIV

E V

OLT

AG

E D

IVID

ER

C3

C2

R9

R8

R7

R6

R5

R4

R3

R2

R1

C1

DY8

P

DY7

DY5

DY4

DY3

DY2

DY1

K

DY6

SIGNAL OUTPUT: RG-174/U (BLACK)

R1R2

R3, R4R5, R6

R7 to R9C1 to C3

: 1 MΩ: 200 kΩ: 470 kΩ: 300 kΩ: 51 Ω: 0.01 μF

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

Page 52: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

50

H7195

TPMHA0323ED

-HV

A1

A2

DY

R1, R25R2 to R4, R17 to R19

R5, R6, R8 to R13, R15R16, R20, R21

R7, R14R22

R23, R24C1C2C3C4C5C6C7

: 10 kΩ: 110 kΩ

: 100 kΩ: 160 kΩ: 51 Ω: 100 Ω: 470 pF: 0.022 μF: 0.047 μF: 0.1 μF: 0.22 μF: 0.47 μF: 0.01 μF

R21R20R19R18R17R16R15R14R13R12R11R10R9R8R7R6R5R4R3R2

DY12

DY11

DY10DY9DY8DY7DY6DY5DY4DY3DY2DY1

-HV: SHV-R

PC6

C5

C4

C3C2

K

R25

R24

R23

R22

R1

C1

G

C7

ANODE OUTPUT 2: BNC-R

DYNODE OUTPUT: BNC-R

ANODE OUTPUT 1: BNC-R

* TO MAGNETICSHIELD CASE

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

60.0 ± 0.5

53.0 ± 1.5

46 MIN.

PMT: R329WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.8 mm)

PHOTOCATHODE

- HV: SHV-R

ANODE OUTPUT 2: BNC-R

DYNODE 12 OUTPUT: BNC-R

ANODE OUTPUT 1: BNC-R

215

± 1

1 M

AX

.

102

H1949-50

TPMHA0325ED

103 H1949-51

TPMHA0326ED

-HV

A1

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

PC6

C5

C4

C3

C2

C1

R1, R4R2, R5

R3, R6 to R11, R17R12 to R16R18 to R20

R21C1 to C7

C8C9

C10C11

: 240 kΩ: 360 kΩ: 200 kΩ: 300 kΩ: 51 Ω: 10 kΩ: 0.01 μF: 0.022 μF: 0.033 μF: 0.01 μF: 470 pF

R20

R19

R18

G1

Acc C11

R21

C9

C8

C7

C10

K

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

60.0 ± 0.5

53.0 ± 1.5

46 MIN.

PMT: R1828-01 (H1949-51)R2059 (H3177-51)R4004 (H4022-51)

WITH HA TREATMENT

PHOTOCATHODE

MAGNETIC SHIELD CASE (t=0.8 mm)

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

235

± 1

1 M

AX

.

SIGNAL OUTPUT: BNC-R

-HV: SHV-R

* TO MAGNETIC SHIELD CASE

104

H6410

TPMHA0324ED

-HV

SIG

R1, R5R2, R10, R16

R3, R9R4, R6 to R8, R14, R18

R11, R13, R17R12, R15

R19R20, R21

R22C1C2C3C4C5C6

: 240 kΩ: 220 kΩ: 180 kΩ: 150 kΩ: 300 kΩ: 360 kΩ: 51 Ω: 100 Ω: 10 kΩ: 0.022 μF: 0.047 μF: 0.1 μF: 0.22 μF: 0.47 μF: 470 pF

R18R17R16R15R14R13R12R11R10R9R8

R7

R6R5R4R3R2R1

DY12

DY11

DY10DY9DY8DY7DY6DY5

DY4DY3DY2DY1

PC5

C4

C3

C2C1

R21

R20

R19

R22

C6G

SH

K

* MAGNETIC SHIELD IS CONNECTEDTO GND INSIDE OF THIS PRODUCT.

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

MAGNETIC SHIELD CASE (t=0.8 mm)

PMT: R329 (H6410)R5113 (H6522)R2256 (H6521)

WITH HA TREATMENT

PHOTOCATHODE

60.0 ± 0.5

53.0 ± 1.5

46 MIN.

200

± 1

1 M

AX

.

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

* TO MAGNETIC SHIELD CASE

101

60.0 ± 0.5

53.0 ± 1.5

46 MIN.

235

± 1

1 M

AX

.

-HV

A1

A2

DY

-HV: SHV-RANODE

OUTPUT 2: BNC-R

R1, R21R2, R5

R3, R7 to R12, R16R4, R6

R13, R14, R17R15

R18 to R20C1

C2 to C4, C10 to C12C5, C6

C7C8, C9

R17

DY12

-HV: SHV-R

PC7

K

ANODE OUTPUT 2: BNC-R

R21

R1

Acc

C11

ANODE OUTPUT 1: BNC-R

DYNODE OUTPUT: BNC-R

C10

G

C12

C1

DYNODE OUTPUT: BNC-R

ANODE OUTPUT 1: BNC-R

* TO MAGNETICSHIELD CASE

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

DY11DY10DY9DY8DY7DY6DY5DY4DY3DY2

DY1

R16R15R14R13R12R11R10R9R8R7R6R5

R4R3R2

R20R19R18

C6C5C4C3C2

C9C8

: 10 kΩ: 120 kΩ: 100 kΩ: 180 kΩ: 150 kΩ: 300 kΩ: 51 Ω: 470 pF: 0.01 μF: 0.022 μF: 0.033 μF: 4700 pF

PHOTOCATHODE

PMT: R1828-01 (H1949-50)

MAGNETIC SHIELD CASE (t=0.8 mm)

WITH HA TREATMENT

R2059 (H3177-50)R4004 (H4022-50)

Page 53: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

51

H6614-70

H6559 H6527

TPMHA0472EC

TPMHA0331EC TPMHA0332EF

R21

R20

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R8

R6

R5

R4

R3

R2

R1

DY19

DY18

DY17

DY16

DY15

DY14

DY13

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C5

C4

C3

C2

C1

K

R1 to R21R22, R29

R23 to R26R27R28

C1 to C5C6, C7

: 330 kΩ: 1 MΩ: 51 Ω: 10 kΩ: 100 kΩ: 0.01 μF: 0.0047 μF

R26

R25

R24

R23

R22

P

C6C7R28 R27

R29

* HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

+HV: SHIELD CABLE (GRAY)

SIGNAL OUTPUT: RG-174/U (BLACK)

LIGHT SHIELD STEM

POM CASE

PMT: R5924-70WITH HA TREATMENT

PHOTOCATHODE

60.0 ± 0.5

52 ± 1

39 MIN.

1500

105

801

MA

X.

+0 -1

SIGNAL OUTPUT: RG-174/U (BLACK)

+HV: SHIELD CABLE (GRAY)

-HV

SIG

R1, R5R2, R10, R16

R3, R9R4, R6 to R8, R14, R18

R11, R13, R17R12, R15

R19R20, R21

R22C1C2C3C4C5C6

: 240 kΩ: 220 kΩ: 180 kΩ: 150 kΩ: 300 kΩ: 360 kΩ: 51 Ω: 100 Ω: 10 kΩ: 0.022 μF: 0.047 μF: 0.1 μF: 0.22 μF: 0.47 μF: 470 pF

R18R17R16R15R14R13R12R11R10R9R8

R7

R6R5R4R3R2R1

DY12

DY11

DY10DY9DY8DY7DY6DY5

DY4DY3DY2DY1

-HV: SHV-R

PC5

C4

C3

C2C1

R21

R20

R19

R22

C6G

SH

K

SIGNAL OUTPUT: BNC-R

* TO MAGNETIC SHIELD CASE

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

70 ± 1

1 M

AX

.

40 ±

1

218

± 1

83 ± 1

77.0 ± 1.5

65 MIN.

PHOTOCATHODE

PMT: R6091WITH HA TREATMENT

MAGNETIC SHIELD CASE (t=0.8 mm)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

-HV

SIG

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY14

DY13

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C5

C4

C3

C2

C1

R1, R17R2R3R4R5

R6 to R13R14, R15

R16R18

R19, R20R21

C1C2C3C4C5C6

: 240 kΩ: 360 kΩ: 390 kΩ: 120 kΩ: 180 kΩ: 100 kΩ: 150 kΩ: 300 kΩ: 51 Ω: 100 Ω: 10 kΩ: 0.022 μF: 0.047 μF: 0.1 μF: 0.22 μF: 0.47 μF: 470 pF

R20

R19

R18

R21 -HV: SHV-R

C6G1

G2

K

H6527=Flat window, Borosilicate

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

* TO MAGNETIC SHIELD CASE

74 ± 0.5

MAGNETIC SHIELD CASE (t=0.8 mm)

PMT: R1250WITH HA TREATMENT

SOCKET ASSYHOUSING

BLACK TAPE

PHOTOCATHODE

77

120 MIN.

133 ± 2

142.0 ± 0.8

140

± 1

356

± 6

1 M

AX

.

56

259

± 2

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

SIGNAL OUTPUT: BNC-R

H2431-50

TPMHA0327EC

-HVSIG

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

C8

C6

C4

C3

C2

C1

R17

G

ACC

R1

C13

C12

C9

C7

C5

C10 C11

K

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

R1R2, R15

R3, R4, R13R5

R6, R16R7

R8 to R11R12R14R17

C1, C2C3 to C11C12, C13

C14

: 33 kΩ: 390 kΩ: 470 kΩ: 499 kΩ: 360 kΩ: 536 kΩ: 300 kΩ: 150 kΩ: 430 kΩ: 51 Ω: 4700 pF: 0.01 μF: 1000 pF: 2200 pF

C14

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

MAGNETIC SHIELD CASE (t=0.8 mm)

PMT: R2083 (H2431-50)R3377 (H3378-50)

WITH HA TREATMENT

PHOTOCATHODE

60.0 ± 0.5

53.0 ± 1.5

46 MIN.

200

± 1

1 M

AX

.

SIGNAL OUTPUT: BNC-R

-HV: SHV-R

* TO MAGNETIC SHIELD CASE

105 106

107 108

Page 54: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

52

500 700 1000 1500 2000 2500 3000

108

SUPPLY VOLTAGE (V)

GA

IN

107

106

105

104

103

102

R4177-06

R1635R2496

R647-01

R12421R12421-300

R4124

500 700 1000 1500 2000 2500 3000

108

SUPPLY VOLTAGE (V)

GA

IN

107

106

105

104

103

102

R5611A-01

R3991A-04

R4125

R1166 R1450

R3478

500 700 1000 1500 2000 2500 3000102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

R3998-02

R3998-100-02

R7111

R7525

R13449

R6427

● 10 mm (3/8") Dia. and TO-8 types● 13 mm (1/2") Dia. types

● 19 mm (3/4") Dia. types

TPMHB0963EA TPMHB0097EG

● 28 mm (1-1/8") Dia. types

TPMHB0100EF

● 25 mm (1") Dia. types

TPMHB0099EE

500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V)

GA

IN

107

106

105

104

103

102

108

R1924A

R8619 R4998

R7899-01

R1288A-06

R9800R9800-100

Typical gain characteristics

Page 55: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

53

500 700 1000 1500 2000 2500 3000102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

R9420

R3886A

R11102

R580

R13408

R9420-100

500 700 1000 1500 2000 2500 3500102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

3000

R331-05

R6041R6041-406R6041-506 R7725

R329-02

R1828-01

R1306

R2083

R7723R6231

R6231-100

● 38 mm (1-1/2") Dia. types

TPMHB0101EF

● 51 mm (2") Dia. types

TPMHB0858EB

● 51 mm (2") Dia. types● 60 mm (2.5") Dia. types

TPMHB0859EB

● 76 mm (3") Dia. types ● 80 mm Dia. types ● 90 mm (3.5") Dia. types● 102 mm (4") Dia. types

TPMHB0107EF

102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

500 700 1000 1500 2000 2500 3000

R2154-02

R7724

R4607A-06

R13089

R7724-100

R6232

500 700 1000 1500 2000 2500 3000102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

R12199

R1307

R11410R11065

R6091R10806R10233R6233R6235R6237R10806-100

R6233-100R10233-100

Page 56: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

54

104

SUPPLY VOLTAGE (V)

GA

IN

105

106

107

108

109

1010

500 700 1000 1500 2000 2500 3000

R5912-20R7081-20

R12860

TPMHB0657EC

● Metal package types ● Metal package types and assembly type

TPMHB0788EC TPMHB0789EC

● 127 mm (5"), 204 mm (8"), 254 mm (10") and 508 mm (20") Dia. types

TPMHB0860EB

500 700 1000 1500 2000 2500 3000103

SUPPLY VOLTAGE (V)

GA

IN

104

105

106

107

108

R6594

R877R877-100

R5912R5912-100R7081R7081-100

R11833-03R11833-100-03

R1250

102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

500 700 1000 1500 2000 2500 3000

R5900U-00-L16

H7546BH8804

H7260

H8711

H12700AH13700

H12700A-10

102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

500 700 1000 1500 2000 2500 3000

R11265

R7600U-00-M4

R8520-406R8520-506

R7600U

Page 57: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

55

● Square, Rectangular shape photomultipliers ● Hexagonal shape photomultipliers● 2π shape photomultipliers

TPMHB0966EATPMHB0965EA

● SBA / UBA / EGBA metal package types ● Fine mesh photomultipliers

TPMHB0854EB TPMHB0964EA

500 700 1000 1500 2000 2500 3000

108

SUPPLY VOLTAGE (V)

GA

IN

107

106

105

104

103

102

R6232

R10550

R8997

R6237

R1548-07

R2248

102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

500 700 1000 1500 2000 2500 3000

R6234R7373A-01

R8143

R6235

500 700 1000 1500 2000 2500 3000102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

R5924-70R7761-70

R5505-70

500 700 1000 1500 2000 2500 3000102

SUPPLY VOLTAGE (V)

GA

IN

103

104

105

106

107

108

R11265U-200R11265U-300

R11265U-100

R5900U-100-L16R5900U-200-L16

R7600U-100R7600U-200

R7600U-100-M4R7600U-200-M4R7600U-300R7600U-300-M4

Page 58: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

56

Voltage distribution ratiosInterstages for the dynodes of a PMT are supplied by a voltage divider network consisting of series resistors, as shown on the right page. The cathode ground scheme (1) is usually used in scintillation counting because it reduces noise resulting from glass scintillation. In fast-pulse light applications, use of the anode ground scheme (2) is suggested. Either scheme requires decoupling (charge-storage) capacitors connected to the last few stages of dynodes in order to maintain the dynode

voltage at a constant value during pulse duration. refer to section 11 and 12 on page 8 to 13 for further details.To free the user from the necessity of designing voltage divider and performing troublesome parts selection, Hamamatsu provides a variety of socket assemblies which enable sufficient performance to be derived from PMT's by making simple connections only.

Voltage distribution ratio

Acc: Grid (Accelerating electrode)

(Note 1)

<Symbols>K: Photocathode G: Grid F: Focusing electrodeDy: Dynode GR: Guard ring P: Anode Acc: Accelerating electrode

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K G1

1.511

1.51.51.52

1.51.51.5

11111111111

111111

1.21111

111111

1.51111

Dy711111121111

Dy8111111

3.32111

11111131111

1015.1111212

12.518.51413

15.512.7

11.521

1.5111

1.51

1.2

14.8—2——————0

11.3223444474

Numberof

stages

8

Voltagedistribution

No.q

w

e

r

t

y

u

i

o

!0

!1

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K G1.8 1 1 1

Acc1

Dy70.5 3

Dy82.5 19.11.24.81.3

stages8

No.!2

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K G1 1 1 1.5

Dy71

Dy81 1

Dy91 13.5113

stages9

No.!3

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K G1111

1.51.811

1.511

1.51

1.51.51

1.51.52

1111111111111111111

1111111111111111111

1111111111111111111

Dy71111111111

1.2111111

1.21

Dy81111111

1.211

1.5111211

1.51

11111

1.51

1.811

2.211131121

Dy91111131

3.611

3.6111

3.611

3.32

Dy100.50.5111

2.51

3.3113

0.7511

3.31131

10.512.51112

17.121.111.517.412.512

18.512.25

1313.521.413.514.520.516

1211

1.51.211

1.5111111

1.5111

—1.5—1

4.84.8—————————————

10.511

1.31.31.51.51.52223333444

stages

10

No.!4

!5

!6

!7

!8

!9

@0

@1

@2

@3

@4

@5

@6

@7

@8

@9

#0

#1

#2

Note 1: Acc should be connected to Dy7 except R4998.

ΣR

ΣR

ΣR

ΣR

Voltage distribution ratios

Page 59: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

57

Voltage distribution ratio

Schematic diagram of voltage divider networks(1) Cathode ground scheme (+HV) (2) Anode ground scheme (-HV)

TPMOC0043EB TPMOC0044EB

(Note 2)

(Note 2)

Voltage distribution ratios

Dy3 Dy4 Dy5 Dy6 P

Dy3 Dy4 Dy5 Dy6Dy2GK Dy14 2 2 1

Dy7(Acc)1

Dy81 1

Dy91Dy10

1P

303.5111.5stages

10No.#5

ΣR

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K G1 1 1 1

Dy71

Dy81 1

Dy91Dy10

1Dy11

1 131—2stages

11No.#6

ΣR

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K1 1 1 1

Dy71

Dy81 1

Dy91

Dy102

Dy11 Dy121 18.521.54

stages12

No.$8

ΣR

Dy3 Dy4 Dy5 Dy6 PDy2Dy1K11

11

11

11

Dy711

Dy811

11

Dy9—1

Dy10—1

Dy11 Dy1211

GR0.50.5

12.515

11

11.2

22.3

stages1012

No.%5

%6

ΣR

ΣRDy2G1 G3 G2K Dy10.170.17

0.850.85

1.51.5

11

Dy711

Dy811

11.2

Dy91

1.5

Dy101

2.113

12.4

18.723.9

00

0.180.18

88

Numberof

stages

10

Voltagedistribution

No.#3

#4

Dy2 Dy3 Dy4 Dy5 PDy1GK1.81.822

0.821

1.422

1.6

1111

0.8111111

11111111111

35.721.516

16.213.922

17.116.418

18.526.9

11111111111

Dy61111111111

1.2

Dy71.5111111111

1.5

Dy82.51111111112

Dy93.61.511111111

2.4

4.51.5111111113

8.631112

2.7122

3.9

Dy104

2.51

1.20.55

1.31113

Dy11 Dy121.21.222

1.32

1.611

1.51

32.8—————0——0

11.222

2.53

3.3444

4.3

12

#7

#8

#9

$0

$1

$2

$3

$4

$5

$6

$7

stagesNo.

Dy2 Dy3 Dy4 Dy5 PDy1GK1.81.8

11

11

11

Dy611

29.547.2

Dy71

1.2

Dy81

1.5

Dy912

12.8

1.54

Dy101.55.7

Dy11 Dy1238

Dy132.55

Dy141.21.2

7.57.5

2.52.5

14$9

%0

stagesNo.

Dy2 Dy3 Dy4 Dy5 P

ΣR

ΣR

ΣRG2Dy1K55

3.333.33

1.671.67

11

42.240.6

Dy61.21

Dy71.51

Dy82.21

Dy931

—1.2

—1.5

Dy10—2.2

Dy11 Dy12—3

Dy132.42.4

Dy140.60.6

G100

G33.43.4

00

16.811.3

1014

%1

%2

stagesNo.

Dy2 Dy3 Dy4 Dy5 P ΣRDy1K11

11

11

11

Dy611

Dy711

Dy811

Dy911

11

11

Dy1011

Dy11 Dy1211

Dy1311

Dy14—1

Dy15—1

Dy16—1

Dy17—1

Dy1811

1721

Dy1911

22

1519

%3

%4

stagesNo.

Note 2: Shield should be connected to Dy5.

R

DY.1

R

CATHODE

R R R R R R R R

DY.nANODE Cc

Rd

C C C C

+HV Rd: — 1 MΩCc: — 0.005 μF

R: 100 kΩ — 1 MΩC: 0.01 μF — 0.1 μF

DY.…

R

DY.1

R

CATHODE

DY.2…

R R R R R R R R

DY.nANODE

C C C C-HV R: 100 k — 1 MΩC: 0.01 μF — 0.1 μF

RL

Page 60: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

58

Quick reference for PMT socket assemblies

Tubediameter

AssemblytypeNo.

OutlineNo. Notes

Tube type No./

Voltagedistribution

ratio

Refe-rence

page forPMT

feature

2024202020202020202024242026

20

20

202020202020202022222222222222222222222424242422222222

SHV

SHVSHV

AWG22AWG22

SHVSHVSHV

AWG22AWG24

SHV

AWG22

SHV

SHVAWG22

SHV

SHV

AWG22SHV

AWG22

SHIELDCABLE

SHIELDCABLE

SHIELDCABLE

BNC

BNCBNC

RG-174/URG-174/U

BNCBNCBNC

RG-174/UAWG24

BNC

RG-174/U

BNC

BNCRG-174/U

BNC

BNC

RG-174/UBNC

RG-174/U

RG-174/U

RG-174/U

RG-174/U

-1500

-1500-1250-1250-1250-1800-1800-1800-1800-1750+2300

-1500

-1250

-2000-2000-1750-1250-1250-1750-1250-1250-1750-3000

-1500

+1500

-1500

+1500

-1250

-1250-1000-1000-1000-1000-1500-1700-1500-1250+2000

-1000

-1000

-1500-1500-1250-1000-1000-1500-1000-1000-1250-2500

-1000

+1000

-1000

+1000

6 µA is for total of 2 anodes.

Extended pulse linearcharacteristics

with shield case

-HV type

+HV type

-HV type

+HV type

e

t

!6

@3

@7

@0

@5

!0

@1

#0

%3

!3

@6

#0

#1

@3

@4

@3

#8

q

q

r

z

z

x

c

c

v

b

n

m

,

.

⁄0

⁄1

⁄2

⁄3

⁄4

⁄4

⁄5

⁄6

⁄7

⁄8

⁄9

⁄9

E1761-21

E1761-22E849-90E849-99E849-68E974-17E974-22E2253-05E974-19E2037-02E6133-04

E990-29

E2924-500

E2624-14E2624-04

E2183-500

E2183-501

E1198-07E2979-500

E1198-05

E1198-20

E1198-26

E1198-27

R1635R2248R2496R647-01R12421R4124R1166R1450R3478R4125R1548-07R5505-70R3998-02R3998-100-02

R1924A

R7111

R6427

R580R11102R3886A

R2154-02R1828-01

R1306R1307

R6231R6231-100R6232R6233R6233-100R6234R6235R6236R6237R10233R10233-100R10806R10806-100

10 mm(3/8")

13 mm(1/2")

19 mm(3/4")

25 mm(1")

25 mm(1")

28 mm(1-1/8")

28 mm(1-1/8")

38 mm(1-1/2")

51 mm(2")

51 mm(2")

60 mm(2.4")

76 mm(3")

90 mm(3.5")

102 mm(4")

Assembly characteristicsPMT characteristicsMaximum

ratingStandard

rating

(V)

Overall1

voltage

0.35

0.320.280.320.230.270.370.340.270.130.36

0.23

0.24

0.320.370.320.260.260.540.360.360.320.58

0.31

0.31

0.25

0.25

(mA)

Divider2

current(V)

Overallvoltage

H.Vinput

terminal

Signaloutput

terminal

Note:1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.2: The maximum average anode current is defined as 5 % of divider current.

E2624-14 without connector andflange, tapered circuit voltage

Page 61: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

59

-2700-2500

-2700-2500

-2000-2000

-2000

-1500

+1500

-1500

-3000

-2000

+900

-900

-900

-900

-1000

-1000

-1100

-2000

-1500

-1750-1750

-1750

-1250

+1250

-1250

-2000

-1500

+800

-800

-800

-800

-900

-900

-1000

Maximumrating

Standardrating

(V)

Overall1

voltage

0.5

0.42

0.450.38

0.5

0.32

0.32

0.32

0.68

0.36

0.036

0.3

0.3

0.34

0.33

0.34

0.29

(mA)

Divider2

current(V)

Overallvoltage

Note:1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained.2: The maximum average anode current is defined as 5 % of divider current.

Tubediameter

AssemblytypeNo.

OutlineNo. Notes

Tube type No./

Voltagedistribution

ratio

Refe-rence

page forPMT

feature

22222222222222

22

22

22

22

22

25

24

24

24

24

24

24

SHV

SHV

SHVSHV

SHV

SHIELDCABLE

SHIELDCABLE

SHV

SHV

SHV

SHIELDCABLE

SHIELDCABLE

SHIELDCABLE

SHIELDCABLE

SHIELDCABLE

SHIELDCABLE

AWG22

BNC

BNC

BNCBNC

BNC

RG-174/U

RG-174/U

BNC

BNC

BNC

SHIELDCABLE

RG-174/U

0.8D-QEV

0.8D-QEV

RG-174/U

RG-174/U

RG-174/U

$7

$4

$5

i

#2

!7

$9

%1

!5

@2

@2

!6

$1

$1

!4

E5859

E5859-01

E5859-11E5859-15

E5859-19

E1198-22

E1198-23

E6316-01

E7693

E7694-02

E13416

E5996

E7083

E6736

E11807

E11807-01

E10679-02

R329-02R6091R329-02R331-05R6091R7725R7723R7724R7724-100

R877R877-100

R1250

R5912

R7081

R8520-406R8520-506

R7600UR7600U-03R7600U-100R7600U-200R7600U-300R7600U-00-M4R7600U-100-M4R7600U-200-M4R7600U-300-M4R5900U-00-L16R5900U-100-L16R5900U-200-L16R11265UR11265U-100R11265U-200R11265UR11265U-100R11265U-200R9880U-110R9800U-210

51 mm(2")

76 mm(3")

127 mm(5")

204 mm(8")

254 mm(10")

26 mmsquare

type

30 mmsquare

type

16 mmTO-8

Assembly characteristicsPMT characteristics

H.Vinput

terminal

Signaloutput

terminal

22

23

24

25

20

20

20

20

20

26

27

28

29

29

30

shield case is available.+HV type (E5859-02) is available.

shield case is available.+HV type (E5859-03) is available.

shield case is available.-HV type

shield case is available.+HV type

-HV typewith rear panel connector

+HV type, (E7694-03) is available

Active base type (E6572) is available.

E11807 with tapered voltagedriver circuit.

SHV / BNC connector typeE10679-03 is available

21

21

Page 62: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

60

TACCA0075EB TACCA0076EC

TACCA0077ED

TACCA0210EB

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C3

C2

C1

P

K

7

8

6

9

4

11

3

12

2

13

10

5

R1R3

R2, R4 to R11C1 to C3

: 1 MΩ: 510 kΩ: 330 kΩ: 10 nF

SOCKETPIN No.PMT

SIGNAL OUTPUTRG-174/U (BLACK)

SIGNAL GND

POWER SUPPLY GNDAWG22 (BLACK)

-HVAWG22/TFE (VIOLET)

E1761-21(For R1635)

E1761-22(For R2496)

10.6 ± 0.2

50.0

± 0

.545

0 ±

10

HOUSING(INSULATOR)

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

SOCKET: E678-11N

3

11R1

K

R2

R3R4

DY1 2

R5DY2 10

R6DY3 3

R7DY4 9

R8DY5 4

R9

P

C1DY6 8

R10 C2DY7 5

R11 C3DY8 7

SIGNAL OUTPUT : RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

6PMT

SOCKETPIN No.

R1 to R11C1 to C3

: 330 kΩ: 10 nF

11R1

K

R2DY1 2

R4DY2 10

R3

R5DY3 3

R6DY4 9

R7DY5 4

R8

P

C1DY6 8

R9 C2DY7 5

R10 C3DY8 7

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

6

PMTSOCKETPIN No.

R1 to R4R5 to R10 C1 to C3

: 510 kΩ: 330 kΩ: 10 nF

13K

R4DY3 2

R6

DY4 10

R2DY1 1

R1

R3DY2 11

R7DY6 9

R5DY5 3

R8DY7 4

R9

P

DY8 8

R10 C2

C1DY9 5

R11 C3DY10 7

6SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (RED)SHV CONNECTOR

PMT SOCKETPIN No.

R1 to R11C1 to C3

: 330 kΩ: 10 nF

14.0 ± 0.3

45.0

± 0

.5

510

0.5

MA

X.

12.6

12.4

POTTINGCOMPOUND

HOUSING(INSULATOR)

450

+20

-0

E849-68(For R4124)

E849-99(For R12421)

14.0 ± 0.3

45.0

± 0

.545

0 ±

10

510

0.5

MA

X.

12.6

12.4

POTTINGCOMPOUND

HOUSING(INSULATOR)

Dimensional outline and circuit diagramsFor PMT socket assembliesz E1761-21, E1761-22

x E849-90

c E849-68, E849-99

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C3

C2

C1

P

K

6

7

5

8

3

10

2

11

1

13

9

4

R1 to R12C1 to C3

: 330 kΩ: 0.01 µF

SOCKETPIN No.PMT

SIGNAL OUTPUTRG-174/U (BLACK)

GNDAWG22 (BLACK)

-HVAWG22/TFE (VIOLET)

Page 63: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

61

TACCA0212EB TACCA0078EC

TACCA0079EB TACCA0230EB

TACCA0028EC TACCA0231EB

SIGNAL OUTPUT: RG-174/U (BLACK)

GND: AWG22 (BLACK)

R1R2 to R7

R8,R11 to R13R9, R10

R14 to R16C1 to C3

: 499 kΩ: 330 kΩ: 390 kΩ: 300 kΩ: 360 kΩ: 10 nF

17.4 ± 0.2

23.0 ± 0.5

43.0

± 0

.547

.5 ±

1.0

450

105

HOUSING(INSULATOR)

SOCKET: E678-12H

P

R15 C3

R16

R14DY10

R13

C2

6

K

R12

C1

R11DY9

R104

R9DY8

R87

DY7R7

3

DY6R6

8

DY5R5

2

DY4R4

9

DY3R3

1

DY2R2

10

DY1

R1

12

-HV: AWG22/TFE (VIOLET)

5

11

+20 -0

5

GND: AWG22 (BLACK)

SIGNAL OUTPUT: RG-174/U (BLACK)

-HV: AWG22 (VIOLET)

PMT SOCKETPIN No.

24 ± 0.5

30.0

± 0

.545

0 ±

10

2

21.9

2 R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C3

C2

C1

SIGNAL OUTPUT2: AWG24(RED)

: 2.7 MΩ: 680 kΩ: 1 MΩ: 10 nF

R1R2, R4 to R11

R3C1 to C3

-HV: AWG24/TFE (VIOLET)

P

K

8

7

9

6

10

11

5

12

4

13

3

14

2

17

POWER SUPPLY GND: AWG24(BLACK)

SOCKETPIN No.PMT

SIGNAL OUTPUT1: AWG24(YELLOW)

SIGNAL GND: AWG24(BLACK)

HOUSING(INSULATOR)

POTTINGCOMPOUND

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

C3

C2

C1

P

K

5

6

4

7

2

9

1

10

12

11

8

3

23.0 ± 0.5

47.5

± 1

.045

0 ±

10

43.0

± 0

.5

17.4 ± 0.2

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

R1R2 to R11C1 to C3

: 510 kΩ: 330 kΩ: 10 nF

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

SOCKETPIN No.PMT

POTTINGCOMPOUND

HOUSING(INSULATOR)

E974-17, -18 attaches BNC and SHV connector at the end of cables.

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

+HV: SHIELD CABLE (GRAY)SHV CONNECTOR

R1R2 to R18

R19R20, R21

R22 to R24C1 to C5

C6, C7

: 10 kΩ: 330 kΩ: 100 kΩ: 1 MΩ: 51 Ω: 10 nF: 4.7 nF

22.0 ± 0.5

24.0 ± 0.5

255

.0 ±

0.5

450

± 1

0

HOUSING(INSULATOR)

DY15

P

R24

R1

R20

R17 C49

R18 C5

R19 C7

C6

DY14R23

R16 C311

DY13R22

R15 C28

R21

K

DY12R14 C1

12

DY11R13

7

DY10R12

13

DY9R11

6

DY8R10

14

DY7R9

5

DY6R8

15

DY5R7

4

DY4R6

16

DY3R5

3

DY2R4

17

DY1R3

2

R2

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

+H.V: SHIELD CABLE (GRAY)SHV CONNECTOR

10

1

POTTINGCOMPOUND

PMT SOCKETPIN No.

v E974-17 b E974-22

n E2253-05

, E2037-02

m E974-19

. E6133-04

11K

DY2

12

R4DY3 1

R3

DY1R2

R1

R5DY4 9

R6DY5 2

R7DY6 8

R8

P

DY7 3

C3

R9 C1DY8 7

R10 C2DY9 4

5

R11DY10

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

10

6

PMTSOCKETPIN No.

R1R3

R2, R4 to R11C1 to C3

: 680 kΩ: 510 kΩ: 330 kΩ: 10 nF

21.0 ± 0.3

40.0

± 0

.5

POMHOUSING

POTTINGCOMPOUND

450

+20

-0

55.0

± 0

.5

HOUSING(INSULATOR)

11K

R6DY3 1

R8

DY4 9

R4DY1 12

R5DY2 10

R9DY6 8

R7DY5 2

R10DY7 3

P

DY8 7C2

R11 C3

C1

R1R2R3

6.2

5

POTTINGCOMPOUND

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

PMT SOCKETPIN No.

18.6+0 -0.4

R1R2R3

R4, R6 to R11R5

C1 to C3

: 1 MΩ: 750 kΩ: 560 kΩ: 330 kΩ: 510 kΩ: 10 nF

450

+20

-0

Page 64: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

62

: 1320 kΩ: 510 kΩ: 330 kΩ: 51 Ω: 10 nF: 4.7 nF

R1 R3

R2, R4 to R11R12 to R14

C1 to C3C4

13R1

K

R84

R9 C1

C4

9

R10 C25

R11 C3Dy10 8

Dy9

Dy8

Dy7R7

10Dy6R6

3Dy5R5

11Dy4R4

2Dy3R3

12Dy2R2

14Dy1

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

P

7

SIGNAL OUTPUT : RG-174/U (BLACK)BNC CONNECTOR

PMT SOCKETPIN No.

R14

R13

R12

28.0 ± 0.5

26.0 ± 0.3

44.0 ± 0.3

35.0 ± 0.3

30.0

± 0

.3

43.0

± 0

.5

7

450

± 1

0

2- 3.5

0.8

POTTINGCOMPOUND

HOUSING(INSULATOR)

49.0

± 0

.545

0 ±

10

105

4

13

K

9

R9 C3

C1

C2

R10 C45

R11 C5 C6Dy10 8

Dy9

Dy8R8

4Dy7R7

10Dy6R6

3Dy5R5

11Dy4R4

2Dy3R3

12R2

R114Dy1

Dy2

-HV : AWG22/TFE(VIOLET)

P

SIGNAL OUTPUT : RG-174/U (BLACK)

GND : AWG22 (BLACK)

25.2 ± 0.5

32.0 ± 0.57

PMT SOCKETPIN No.

R14

R13

R12HOUSING(INSULATOR)

POTTINGCOMPOUND

SIGNAL GND

R1R2, R4 to R6

R3, R8R7R9

R10R11

R12 to R14C1

C2, C3C4 to C6

: 800 kΩ: 200 kΩ: 300 kΩ: 240 kΩ: 400 kΩ: 660 kΩ: 600 kΩ: 51 Ω: 10 nF: 22 nF: 33 nF

34.0 ± 0.3

40.0

± 0

.545

0 ±

10

HOUSING(INSULATOR)

8.2

52.0 ± 0.5

POTTINGCOMPOUND

K

SOCKETPIN No.PMT

SIGNAL OUTPUT:RG-174/U (BLACK)BNC CONNECTOR

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

R1

C4

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

C3

C2

C1

P

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

6

7

5

8

4

9

3

10

2

11

1

12

R1R2

R3 to R12C1 to C3

C4

: 10 kΩ: 660 kΩ: 330 kΩ: 10 nF: 4.7 nF

12

K

R108

C5

R1

5

7

C4

Dy10

Dy9

Dy8R9

4Dy7R8

9Dy6R7

3Dy5R6

10Dy4R5

2Dy3R4

11Dy2R3

1Dy1R2

C2

C1

-HV: SHIELD CABLE (GRAY)SHV CONNECTOR

P

6

SIGNAL OUTPUT: RG-174/U (BLACK)BNC CONNECTOR

R13R14

C3R11R12

PMT SOCKETPIN No.

R15 R1R2, R11, R13R3 to R7, R14

R8R9

R10R12R15C1C2C3C4C5

: 10 kΩ: 300 kΩ: 150 kΩ: 180 kΩ: 220 kΩ: 330 kΩ: 240 kΩ: 51 Ω:10 nF: 22 nF: 47 nF: 100 nF: 4.7 nF

⁄2 E2624-14 ⁄3 E2624-04

⁄4 E2183-500, E2183-501

TACCA0082EC TACCA0084ED

TACCA0086ECTACCA0166EC

E2183-500 E2183-501

⁄1 E2924-500

TACCA0081EC

26.0 ± 0.3

43.0

± 0

.545

0 ±

10

28.0 ± 0.5

70.

8

35.0 ± 0.3

44.0 ± 0.3

30.0

± 0

.3

2- 3.5

1

K

R1111

R12 C2

C4

6

R13 C310Dy10

Dy9

Dy8R10

5Dy7R9

12Dy6R8

4Dy5R7

13Dy4R6

3Dy3R5

14Dy2R4

2Dy1R3

R2

R1

C1

-HVSHIELD CABLE (GRAY)SHV CONNECTOR

P

7SIGNAL OUTPUTRG-174/U (BLACK)BNC CONNECTOR

HOUSING(INSULATOR)

PMT SOCKETPIN No.

POTTINGCOMPOUND

R1 to R13C1 to C3

C4

: 330 kΩ: 10 nF: 4.7 nF

TACCA0215EC

14K

G

R4DY3

2

R6DY4

12

R2DY1

1R1

R3DY2

13

R7DY6

10

R5

DY5

3

R8DY7

5

R9

P

DY8

9

R10 C2

C1

DY9

6

R11 C38

7

R1R2 to R6,R8 to R11

R7C1 to C3

: 1 MΩ: 330 kΩ: 510 kΩ: 10 nF

26.0 ± 0.3

7

43.0

± 0

.5 0.8

450

± 1

0

28.0 ± 0.5

POTTINGCOMPOUND

HOUSING(INSULATOR)

PMT SOCKETPIN No.

SIGNAL OUTPUTRG-174/U (BLACK)

POWER SUPPLY GNDAWG22 (BLACK)

-HVAWG22/TFE (VIOLET)

SIGNAL GND

2- 3.5

44.0 ± 0.3

35.0 ± 0.3

30.0

± 0

.3

⁄0 E990-29

Page 65: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

63

The housing is internallyconnected to the GND.

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

C4

10

9

8

7

6

5

4

3

2

1

14

11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

P

56.0 ± 0.3

450

± 1

0

64.0 ± 0.3

38.0

± 0

.5

HOUSING(METAL)

POWER SUPPLY GNDAWG22 (BLACK)

SIGNAL OUTPUTRG-174/U (BLACK)

R1R2 to R11C1 to C3

C4

: 680 kΩ: 330 kΩ: 10 nF: 4.7 nF

-HVAWG22/TFE (VIOLET)

SIGNAL GNDSOCKETPIN No.

PMT

3-M2

62.0 ± 0.5

164.

0 ±

0.5

82.0

± 0

.5

11

-H.V : SHV-R

-H.V

SIG

19

20KG1

G2ACC

R116

C1

R1

13

7C4

C5 C8

C6 C9C11

12

8

11

DY7

DY10

DY12

DY11

DY9

DY8

DY6

DY5

R1014

R95

R815DY4

DY3

DY2

R73

R617

R52DY1

R4

R3

R2

C2

P10

C3R12

R13

R14

R15R16

R17R18

R19

R20

R21C7 C10

R1R2, R5

R3, R7 to R12, R18R4, R6

R13 to R17R19 to R21

C1C2 to C8, C11

C9C10

: 10 kΩ: 240 kΩ: 200 kΩ: 360 kΩ: 300 kΩ: 51 Ω: 470 pF: 10 nF: 22 nF: 33 nF

The housing is internallyconnected to the GND.

MAGNETICSHILD CASE

HOUSING(METAL)

SIGNALOUTPUT: BNC-R

PMT SOCKETPIN No.

SIGNAL OUTPUTBNC CONNECTOR

-HVSHV CONNECTOR

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

C4

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

G

P

56.0 ± 0.3

450

± 1

0

64.0 ± 0.3

38.0

± 0

.5

GNDAWG22 (BLACK)

SIGNAL OUTPUTRG-174/U (BLACK)

R1 to R10C1 to C3

C4

: 330 kΩ: 10 nF: 4.7 nF

-HVAWG22/TFE (VIOLET)

HOUSING(METAL)

The housing is internallyconnected to the GND.

8

7

6

5

4

3

2

1

13

14

11

SOCKETPIN No.PMT

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R11

C3

C2

C1

C4

C5

8

7

6

5

4

3

2

1

13

14

11

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

G

P

56.0 ± 0.3

450

± 1

0

64.0 ± 0.3

38.0

± 0

.5

+HVSHIELD CABLE (GRAY)

SIGNAL OUTPUTRG-174/U (BLACK)

R1 to R11C1 to C3

C4, C5

: 330 kΩ: 10 nF: 4.7 nF

The housing is internallyconnected to the GND.

HOUSING(METAL)

SOCKETPIN No.PMT SIGNAL GND

POWER SUPPLY GND

56.0 ± 0.3

450

± 1

0

64.0 ± 0.3

38.0

± 0

.5

HOUSING(METAL)

C4

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2 R1

C3

C2

C1

11

10

7

6

5

4

3

1

13

14

12

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

G

P

The housing is internallyconnected to the GND.

-HVSHIELD CABLE (GRAY)

POWER SUPPLY GND

R1R2, R3

R4 to R11C1 to C3

C4

: 10 kΩ: 680 kΩ: 330 kΩ: 10 nF: 4.7 nF

SIGNAL OUTPUTRG-174/U (BLACK)

SIGNAL GNDSOCKETPIN No.PMT

The housing is internallyconnected to the GND.

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R11R12

R13

C3

C2

C1

C4

C5

11

10

7

6

5

4

3

1

13

14

12

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

G

P

R1 to R2R3 to R11

R12R13

C1 to C3C4, C5

: 680 kΩ: 330 kΩ: 10 kΩ: 1 MΩ: 10 nF: 4.7 nF

+HVSHIELD CABLE (GRAY)

SIGNAL OUTPUTRG-174/U (BLACK)

SIGNAL GND

POWER SUPPLY GND

SOCKETPIN No.PMT

⁄5 E1198-07 ⁄6 E2979-500

⁄7 E1198-05 ⁄8 E1198-20

TACCA0220EB TACCA0093EB

TACCA0221EB TACCA0223EC

⁄9 E1198-26, E1198-27

TACCA0224EB TACCA0225EB

E1198-26 E1198-27

Page 66: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

64

E5859 taper bleeder circuit(For R329/R331-05/R6091)

E5859-01 standard bleeder circuit(For R329/R6091)

E5859-11(For R7725)

E5859-15(For R7723)

E5859-19(For R7724)

R1R2 to R6,R9 to R13

R7, R8R14 to R21,

R23, R24R22R25

R26,R27C1

C2,C3C4

: 10 kΩ

: 220 kΩ: 154 kΩ

: 110 kΩ: 0 Ω: 51 Ω: 100 Ω: 470 pF: 10 nF: 22 nF

Dy12

Dy11

Dy10

Dy9

Dy7

Dy6Dy5

Dy4Dy3

Dy2Dy1

P

G

K

Dy8

R1

C1

R23

R24

R27

R18R19

R25

R20

R21

R22

R26

R16

R17

R15

R14

R13

R11

R12

R10

R9

R8

R7

R6R5R4R3R2

C2

C3

C4

1

17

21

16

2

15

3

14

4

13

5

12

6

8

7

-HVSHV-R

SH 10

The housing is internallyconnected to the GND.

SIGNAL OUTPUTBNC-R

PMT SOCKETPIN No.

TACCA0176EC TACCA0178EC

TACCA0360EATACCA0359EA TACCA0361EA

58.0 ± 0.5

51.0 ± 0.4

60.0 ± 0.5

12.5

9

55.

0 ±

0.5

-HV:SHV-R

-H.V

SIG

3-M2(THREADED HOLESFOR INSTALLATIONOF MAGNETICSHIELD CASE)

HOUSING(METAL)

SIGNAL OUTPUT:BNC-R

E5859, E5859-01, E5859-11, E5859-15, E5859-19

R1R2, R12, R16, R17, R20, R21R3, R13, R18,

R19, R22 to R24R4, R5, R7, R8R6, R9 to R11,

R14, R15R25

R26, R27C1C2C3C4

C5 to C7

: 10 kΩ

: 180 kΩ

: 226 kΩ: 121 kΩ

: 150 kΩ: 51 kΩ: 100 Ω: 470 pF: 22 nF: 47 nF: 100 nF: 220 nF

Dy12

Dy11

Dy10

Dy9

Dy7

Dy6Dy5

Dy4Dy3

Dy2Dy1

P

G

K

Dy8

R1

C1

R23

R24

R27

R18R19

R25

R20

R21

R22

R26

R16

R17

R15

R14

R13

R11

R12

R10

R9

R8

R7

R6R5R4R3R2

C2

C3

C4

C5

C6 C7

1

17

21

16

2

15

3

14

4

13

5

12

6

8

7

-HVSHV-R

SH 10

The housing is internallyconnected to the GND.

SIGNAL OUTPUT: BNC-R

PMT SOCKETPIN No.

R1R2 to R9, R15, R16, R18, R20, R21, R23

R10 to R14, R17, R19, R22, R24

R25 to R27C1

C2, C3C4

: 10 kΩ

: 330 kΩ

: 0 Ω: 51 Ω: 470 pF: 10 nF: 22 nF

Dy8

Dy7

Dy6

Dy5

Dy4

Dy3

Dy2

Dy1

P

KR1

C1

R23

R24

R27

R18

R19

R25

R20

R21

R22

R26

R16

R17

R15

R14

R13

R11R12

R10

R9

R8R7

R6

R5

R4

R3

R2

C2

C3

C4

1

21

16

2

15

5

12

6

8

7

-HVSHV-R

SIGNAL OUTPUTBNC-R

CASE GND

PMT SOCKETPIN No.

R1R2 to R11, R20

R12, R13R14 to R19,

R21 to R24R25

R26, R27C1

C2, C3C4

: 10 kΩ: 220 kΩ: 0 Ω

: 110 kΩ: 51 Ω: 100 Ω: 470 pF: 10 nF: 22 nF

Dy10

Dy9

Dy8

Dy7

Dy5

Dy4

Dy3

Dy2

Dy1

P

K

Dy6

R1

C1

R23

R24

R27

R18

R19

R25

R20

R21

R22

R26

R16

R17

R15

R14

R13

R11R12

R10

R9

R8R7

R6

R5

R4

R3

R2

C2

C3

C4

1

21

16

2

15

3

13

5

12

6

8

7

-HVSHV-R

SIGNAL OUTPUTBNC-R

PMT SOCKETPIN No.

CASE GND

20

R1R2 to R13, R20

R14 to R19, R21 to R24

R25R26, R27

C1C2, C3

C4

: 10 kΩ: 220 kΩ

: 110 kΩ: 51 Ω: 100 Ω: 470 pF: 10 nF: 22 nF

Dy12

Dy11

Dy10

Dy9

Dy7

Dy6

Dy5

Dy4

Dy3

Dy2

Dy1

P

K

Dy8

R1

C1

R23

R24

R27

R18

R19

R25

R20

R21

R22

R26

R16

R17

R15

R14

R13

R11R12

R10

R9

R8R7

R6

R5

R4

R3

R2

C2

C3

C4

1

21

16

2

15

3

14

4

13

5

12

6

8

7

-HVSHV-R

SIGNAL OUTPUTBNC-R

PMT SOCKETPIN No.

CASE GND

Page 67: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

65

TACCA0089EB

E1198-22 E1198-23

TACCA0168EB TACCA0169EC

56.0 ± 0.3

450

± 1

0

64.0 ± 0.3

38.0

± 0

.5

HOUSING(METAL)

SIGNAL GND

POWER SUPPLY GND

SIGNAL OUTPUTRG-174/U (BLACK)

SOCKETPIN No.PMT

R1R2 to R13

C1 to C3C4

: 10 kΩ: 330 kΩ: 10 nF: 4.7 nF

R1

C4

-HVSHIELD CABLE (GRAY)

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

C3

C2

C1

11

10

9

8

7

6

5

4

3

2

1

13

14

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

G

P

* The housing is internally connected to the GND.

** High voltage shielded cable can be connected to a connector for RG-174/U.

SIGNAL GNDSIGNAL OUTPUTRG-174/U (BLACK)

P

K

SOCKETPIN No.

G

PMT

C4 R14

C5

C6

+HVSHIELD CABLE (GRAY)

POWER SUPPLY GNDDY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

11

10

9

8

7

6

5

4

3

2

1

13

14

C3

C2

C1

R1 to R12R13R14

C1 to C4C5, C6

: 330 kΩ: 1 MΩ: 10 kΩ: 10 nF: 4.7 nF

* The housing is internally connected to the GND.** High voltage shielded cable can be connected to

a connector for RG-174/U.

-HV : SHV-R

HOUSING(METAL)

THREADED HOLESFOR INSTALLATIONOF MAGNETICSHIELD CASE(e. g; E989-60 FOR R877

E989-61 FOR R878)

SIGNAL OUTPUT: BNC-R

-H.V

SIG

51.5

± 0

.5

64.0 ± 0.5

13

14K

G

R118

C4

R1

9

10C3

Dy10

Dy9

Dy8R10

7Dy7R9

6Dy6R8

5Dy5R7

4Dy4R6

3Dy3R5

2Dy2R4

1Dy1R3

R2

C1

-HV: SHV-R

P11

SIGNAL OUTPUT : BNC-R

C2R12

R13

PMT SOCKETPIN No.

TO AL HOUSING

Note: Magnetic shield case is available to order separately.

The housing is internallyconnected to the GND.

R1R2 to R13C1 to C3

C4

: 10 kΩ: 330 kΩ: 10 nF: 4.7 nF

E1198-22, E1198-2321

E6316-0122

Page 68: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

66

TACCA0234ED

TACCA0162ED TACCA0158EE

R1 to R3R4 to R11

R12 to R14R15

C1 to C3

: 330 kΩ: 220 kΩ: 51 Ω: 1 MΩ: 10 nF

DY10

30

24

23

22

21

20

19

7

6

5

4

1

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1K

C3P

POWER SUPPLY GND

C2

C1

R11

R9

R8

R7

R6

R5

R4

R3

R2

R1

R10

R14

R12

R15

R13

SIGNAL OUTPUTRG-174/U (BLACK)

-HVSHIELD CABLE (RED)

PMTSOCKETPIN No.

SIGNAL GND30.0 ± 0.5

30.0

± 0

.515

.0 ±

0.545

0 ±

10

PIN No.1

HOUSING(INSULATOR)

POTTINGCOMPOUND

30.0 ± 0.5

30.0

± 0

.515

.0 ±

0.5

450

± 1

0

PIN No.1

P4

P3

P1

GUIDE MARK

POTTINGCOMPUND

P2

-HV: SHIELD CABLE (RED)

R1 to R3R4 to R11

R12 to R14R15

C1 to C3

: 330 kΩ: 220 kΩ: 51 Ω: 1 MΩ: 10 nF

DY10

27

15

11

31

24

23

22

21

20

19

7

6

5

4

1

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1K

C3P4 P3 P2 P1

P4

P3

P2

P1

C2

C1

R11

R9

R8

R7

R6

R5

R4

R3

R2

R1

R10

R14

R12

R15

R13

SIGNAL OUTPUT: 0.8D-QEV (GRAY)

P1 to P4: SIGNAL OUTPUT0.8D-QEV (GRAY)

HOUSING(INSULATOR)

SIGNAL GND

POWER SUPPLY GND

-HV: SHIELD CABLE (RED)

PMTSOCKETPIN No.

26

10

24

8

2

18

31

15

32

16K

Dy10

Dy9

Dy8

Dy7

Dy6

Dy5

Dy4

Dy3

Dy2

Dy1

R7

R6

R5

R4

R3

R2

R1R15

R14

R13

R12

1213111972062152242332729

28

P16

P15

P14

P13

P12

P11

P10 P9

P8

P7

P6

P5

P4

P3

P2

P1

P16

P8

P1

-HV: SHIELD CABLE (RED)

R1 to R11R12 to R14

R15C1 to C3

: 220 kΩ: 51 Ω: 1 MΩ: 10 nF

30.0 ± 0.5

30.0

± 0

.5

Pin No.1

15.0

± 0

.545

0 ±

10

HOUSING(INSULATOR)

R11

R10

R9

R8

C3

C2

C1

17

PMT SOCKETPIN No.

POWER SUPPLY GND

SIGNAL GND

SIGANL OUTPUT: 0.8D-QEV (GRAY)

P15 P16 P14GUIDE MARKE

-HV: SHIELD CABLE (RED)P3 P1 P2

P13 P11 P9 P7 P5

P12P10P8P6P4

P1 to P16 : SIGNAL OUTPUT0.8D-QEV (GRAY)

E708327

E599626

E673628

TACCA0356EA

+H

V

SIG

Dy1

GR1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11R14

R12

C1

R13

K

Dy2

Dy3

Dy4

Dy5

Dy6

Dy7

Dy8

Dy9

Dy10C2

C3

C5

R15

R16

R17 R19

R18

C4

P

SIGNAL OUTPUT: RG-196A/U (WHITE)

+HV: RG-188A/U (WHITE)

R1, R13R2

R3 to R12R14 to R16

R17, R19R18

C1 to C3C4, C5

: 1 MΩ: 3 MΩ: 2 MΩ: 51 Ω: 10 kΩ: 100 kΩ: 22 nF: 10 nF

SIGNAL OUTPUTRG-196A/U (WHITE)

+HVRG-188A/U (WHITE)

LOCK TIE(TEFLON)

27.0 ± 0.5 9.2 ± 0.5

27.0

± 0

.510

515

00+

50 -0

PGA SOCKET(GLASS EPOXY)

DIVIDER PCB(GLASS EPOXY)

E1341625

TACCA0227EC TACCA0229EB

E769323 E7694-0224

19

20K

7

R1912

R208

R21 R18

R17

R16

R15

R14

C5

C4

C3

C2

C1

C6

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4R3

R2 R1

Dy14 11

Dy13

Dy12

Dy11

13Dy10

6Dy9

14Dy8

3Dy3

16Dy4

4Dy5

15Dy6

5Dy7

17Dy2

2Dy1

P

10

SIG

-H.V

G1

G2

R1R2, R18

R3R4R5R6

R7 to R14R15, R16

R17R19

R20, R21C1C2C3C4C5C6

: 10 kΩ: 240 kΩ: 360 kΩ: 390 kΩ: 120 kΩ: 180 kΩ: 100 kΩ: 150 kΩ: 300 kΩ: 51 Ω: 100 Ω: 22 nF: 47 nF: 100 nF: 220 nF: 470 nF: 0.47 nF

The housing is internallyconnected to the GND.

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

PMT SOCKETPIN No.

74.0 ± 0.5

100.

0 ±

0.5

-HV: SHV-R

HOUSING(METAL)

SIGNALOUTPUT: BNC-R

192

20K

R22

R23

R24 R21

R20

R19

R14

C3

C2

C1

C4

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2 R1

12

R15

Dy10

7Dy9

13Dy8

17Dy2

3Dy3

16Dy4

1Dy1

F1F2F3

P

8

R1R2 to R4R5, R18R6, R13

R7R8, R21R9, R16

R10, R12, R20R11

R14, R17R15R19

R22 to R24C1 to C3

C4

: 10 kΩ: 510 kΩ: 150 kΩ: 33 kΩ: 27 kΩ: 240 kΩ: 100 kΩ: 300 kΩ: 200 kΩ: 120 kΩ: 47 kΩ: 220 kΩ: 51 Ω: 10 nF: 0.47 nF

18

-HV: SHV-R

SIGNAL OUTPUT: BNC-R

PMT SOCKETPIN No.

74.0 ± 0.5

100.

0 ±

0.5

-HV: SHV-R

SIG

-H.V

HOUSING(METAL)

SIGNALOUTPUT: BNC-R

4Dy5R16

14Dy6R17

R185Dy7

CASE GND

Page 69: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

67

TACCA0314EA

TACCA0299EA TACCC0165EA

E11807 E11807-01

27

26

DY1

K

P

DY2

R2

R1R21

R18

R19

R20

R3

R4

25DY3R5

23DY4R6

22DY5R7

21DY6R8

14DY7R9

13DY8R10

12DY9R11

10DY10R12

9DY11R13 C1

C2

C3

8DY12

R14

R15

R16

R17

7

1 -HVSHIELD CABLE (RED)

SIGNAL OUTPUTRG-174/U (BLACK)

R1R2, R7 to R13

R3, R4R5, R6

R14 to R16R17

R18 to R20R21

C1 to C3

: 300 kΩ: 200 kΩ: 130 kΩ: 160 kΩ: 100 kΩ: 0 Ω: 51 Ω: 1 MΩ: 10 nF

SOCKETPIN No.

PMT PMT

27

26

DY1

K

P

DY2

R2

R1R21

R18

R19

R20

R3

R4

25DY3R5

23DY4R6

22DY5R7

21DY6R8

14DY7R9

13DY8R10

12DY9R11

10DY10R12

9DY11R13 C1

C2

C3

8DY12

R14

R15

R16

R17

7

1 -HVSHIELD CABLE (RED)

SIGNAL OUTPUTRG-174/U (BLACK)

R1R2, R14, R15

R3, R4R5 to R13R16, R17

R18 to R20R21

C1 to C3

: 300 kΩ: 200 kΩ: 120 kΩ: 150 kΩ: 100 kΩ: 51 Ω: 1 MΩ: 10 nF

SOCKETPIN No.

26.0

± 0

.545

0 ±

10

15.0

± 0

.510

5

26.0 ± 0.5

PIN No.1

POMHOUSING

POTTINGCOMPOUND

ORIENTATIONBY MARKING

NOTE: Don't touch socket holes while high voltage is supplied in circuit.

17.5+0.5 -0

0.5

25

105

24+

0.5

-045

0 ±

10

-HV: AWG22 (VIOLET)

HOUSING(INSULATOR)

POWER SUPPLY GND: AWG22 (BLACK)

SIGNAL OUTPUT: RG-174/U (BLACK)

GUIDE MARK

6

* E10679-02 with SHV / BNC connector type (E10679-03) is also available.

DY10

DY9

DY8

DY5

DY4

DY3

DY2

DY1

R11R13

R12 R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

P

K -HVAWG22/TFE(VIOLET)

11

12

10

1

9

2

DY6 8

DY7 3

7

4

6

5

SIGNAL OUTPUTRG-174/U (BLACK)

GNDAWG22 (BLACK)

R1 to R10R11

R12, R13C1 to C3

: 330 kΩ 5 % 1/8 W: 160 kΩ 5 % 1/8 W: 51 Ω 5 % 1/8 W: 0.01 µF, 200 V

MAXIMUM HIGH VOLTAGE = -1100 VDIVIDER CURRENT = 318 µA

‹0 E10679-02

E11807, E11807-0129

Page 70: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

68

4.3

9.5

10.5

11

3

3

9.5

40

47

58

15

17

2- 3.2

34

6.0

1.83

2.54

12.7

4.2

3.2

2.8

0.5

10.16

5.5

11

12.4

3

710

.5

24

18

2- 2.2

13

11

3

3.4

10

72.5

26

11

.6

30

35

44

19.1

9

25

2- 3.5

25.2

19.1

27.5

2

9.5

6.5

3.9

24.5

14

14

11

30

172

19.8

56

62

35

9

(23.

6)

28.6

13

6.7360

13

2-R4

2- 3.2

3.7

9.5

3.3

10.5

(8)

18

2

18

13

2

Dimensional outlinesFor E678 series socketsE678-11N E678-12A, E678-12R* E678-12L

E678-13FE678-13E

E678-14-03E678-14C

TACCA0043EA TACCA0009EB

E678-12V

TACCA0164EC

TACCA0047EA

TACCA0005EATACCA0013EB

TACCA0184EA

E678-14W

TACCA0200EATACCA0004EA

* Gold plating type

Page 71: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

(Unit: mm)

69

E678-15C E678-19JE678-17D

E678-19K E678-20B

E678-21C E678-32B

TACCA0201EA TACCA0046EC

60

40

40

5

12

42

6.5

12

45

50

TACCA0313EA

TACCA0203EA

TACCA0309EA

TACCA0066EC TACCA0094ED

50

60

40

4

45

25

11.5

40

5

C5.0

2.22 × 8=17.76

8.88

12

.7

22.5

6

2.22 × 9=19.98

8.88 11.1

22.9

5

26.2

(WIT

H G

AT

E)

+0

-0.3

(5.1

)3.

0 ±

0.1

5-R1.5

GATEPOSITION

R5 56

.8

19

51

54

136.

5

22.86

20.32

20.3

2

22.8

6

12.7

2.54

12.7

2.92

4.45

1.57

0.51

MATERIAL: Glass Epoxy

20

52.5

57.8

28

13

34

22

24

.0

18

.0

23

13

20

14

Page 72: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

70

Index by type No.

Type number Product Page Product PageType number

R329-02 ................... 51 mm (2") dia. PMT ......................... 22R331-05 ................... 51 mm (2") dia. PMT ......................... 22R580 ........................ 38 mm (1-1/2") dia. PMT ................... 20R647-01 ................... 13 mm (1/2") dia. PMT ...................... 20E678 SERIES .......... Socket ........................................ 68, 69R750 ........................ 19 mm (3/4") dia. PMT ...................... 21R760 ........................ 13 mm (1/2") dia. PMT ...................... 21R762 ........................ 19 mm (3/4") dia. PMT ...................... 21E849-68 ................... Socket assembly .............................. 58E849-90 ................... Socket assembly .............................. 58E849-99 ................... Socket assembly .............................. 58R877 ........................ 127 mm (5") dia. PMT ....................... 22R877-01 ................... 127 mm (5") dia. PMT ....................... 23R877-100 ................. 127 mm (5") dia. PMT (SBA type) .... 22R960 ........................ 13 mm (1/2") dia. PMT ...................... 21E974-17 ................... Socket assembly .............................. 58E974-19 ................... Socket assembly .............................. 58E974-22 ................... Socket assembly .............................. 58E990-29 ................... Socket assembly .............................. 58R1166 ...................... 19 mm (3/4") dia. PMT ...................... 20E1198 SERIES ......... Socket assembly ........................ 58, 59R1250 ...................... 127 mm (5") dia. PMT ....................... 22R1288A-04 ............... 25 mm (1") dia. PMT ......................... 21R1288A-06 ............... 25 mm (1") dia. PMT ......................... 20R1306 ...................... 51 mm (2") dia. PMT ......................... 22R1306-15 ................. 51 mm (2") dia. PMT ......................... 23R1307 ...................... 76 mm (3") dia. PMT ......................... 22R1307-07 ................. 76 mm (3") dia. PMT ......................... 23R1450 ...................... 19 mm (3/4") dia. PMT ...................... 20R1548-07 ................. 25 mm (1" Dual) square PMT ........... 24R1635 ...................... 10 mm (3/8") dia. PMT ...................... 20E1761-21 ................. Socket assembly .............................. 58E1761-22 ................. Socket assembly .............................. 58R1828-01 ................. 51 mm (2") dia. PMT ......................... 22R1924A .................... 25 mm (1") dia. PMT ......................... 20R1924A-01 ............... 25 mm (1") dia. PMT ......................... 21H1949-50 ................. Hybrid assembly ............................... 28H1949-51 ................. Hybrid assembly ............................... 28E2037-02 ................. Socket assembly .............................. 58R2059 ...................... 51 mm (2") dia. PMT ......................... 23R2076 ...................... 19 mm (3/4") dia. PMT ...................... 21R2083 ...................... 51 mm (2") dia. PMT ......................... 22R2154-02 ................. 51 mm (2") dia. PMT ......................... 22E2183-500 ............... Socket assembly .............................. 58E2183-501 ............... Socket assembly .............................. 58R2248 ...................... 10 mm (3/8") square PMT ................. 24E2253-05 ................. Socket assembly .............................. 58R2256-02 ................. 51 mm (2") dia. PMT ......................... 23H2431-50 ................. Hybrid assembly ............................... 28R2496 ...................... 10 mm (3/8") dia. PMT ...................... 20E2624-04 ................. Socket assembly .............................. 58E2624-14 ................. Socket assembly .............................. 58E2924-500 ............... Socket assembly .............................. 58E2979-500 ............... Socket assembly .............................. 58R3149 ...................... 51 mm (2") dia. PMT ......................... 23H3164-10 ................. Hybrid assembly ............................... 28H3165-10 ................. Hybrid assembly ............................... 28H3177-50 ................. Hybrid assembly ............................... 29H3178-51 ................. Hybrid assembly ............................... 28

R3377 ...................... 51 mm (2") dia. PMT ......................... 23R3478 ...................... 19 mm (3/4") dia. PMT ...................... 20R3479 ...................... 19 mm (3/4") dia. PMT ...................... 21H3695-10 ................. Hybrid assembly ............................... 28R3878 ...................... 10 mm (3/8") dia. PMT ...................... 21R3886A .................... 38 mm (1-1/2") dia. PMT ................... 20R3991A-04 .............. 19 mm (3/4") dia. PMT ...................... 20R3998-02 ................. 28 mm (1-1/8") dia. PMT ................... 20R3998-100-02 .......... 28 mm (1-1/8") dia. PMT (SBA type) .. 20R4004 ...................... 51 mm (2") dia. PMT ......................... 23R4124 ...................... 13 mm (1/2") dia. PMT ...................... 20R4125 ...................... 19 mm (3/4") dia. PMT ...................... 20R4141 ...................... 13 mm (1/2") dia. PMT ...................... 21R4177-04 ................. 13 mm (1/2") dia. PMT ...................... 21R4177-06 ................. 13 mm (1/2") dia. PMT ...................... 20R4607A-06 ............... 51 mm (2") dia. PMT ......................... 22R4998 ...................... 25 mm (1") dia. PMT ......................... 20R5113-02 ................. 51 mm (2") dia. PMT ......................... 23R5320 ...................... 25 mm (1") dia. PMT ......................... 21R5505-70 ................. Fine mesh PMT ................................ 24R5611A .................... 19 mm (3/4") dia. PMT ...................... 21R5611A-01 ............... 19 mm (3/4") dia. PMT ...................... 20E5859 SERIES ......... Socket assembly .............................. 59R5900U-00-L16 ....... Metal package PMT ......................... 24R5900U-100-L16 ....... Metal package PMT (SBA type) ....... 24R5900U-200-L16 ....... Metal package PMT (UBA type) ....... 24R5912 ...................... 204 mm (8") dia. PMT ....................... 22R5912-20 ................. 204 mm (8") dia. PMT ....................... 22R5912-100 ............... 204 mm (8") dia. PMT (SBA type) .... 22R5924-70 ................. Fine mesh PMT ................................ 24E5996 ...................... Socket assembly .............................. 59R6041 ...................... 51 mm (2") dia. PMT ......................... 22R6041-406 ............... 51 mm (2") dia. PMT ......................... 22R6041-506 ............... 51 mm (2") dia. PMT ......................... 22R6091 ...................... 76 mm (3") dia. PMT ......................... 22E6133-04 ................. Socket assembly .............................. 58H6152-70 ................. Hybrid assembly .............................. 28R6231 ...................... 51 mm (2") dia. PMT ......................... 22R6231-01 ................. 51 mm (2") dia. PMT ......................... 23R6231-100 ............... 51 mm (2") dia. PMT (SBA type) ...... 22R6232 ...................... 60 mm (2.5") dia. PMT ...................... 22R6232-01 ................. 60 mm (2.5") dia. PMT ...................... 23R6233 ...................... 76 mm (3") dia. PMT ......................... 22R6233-01 ................. 76 mm (3") dia. PMT ......................... 23R6233-100 ............... 76 mm (3") dia. PMT (SBA type) ...... 22R6234 ...................... 60 mm (2.5") hexagon PMT .............. 24R6234-01 ................. 60 mm (2.5") hexagon PMT .............. 25R6235 ...................... 76 mm (3") hexagon PMT ................. 24R6235-01 ................. 76 mm (3") hexagon PMT ................. 25R6236 ...................... 60 mm square PMT .......................... 24R6236-01 ................. 60 mm square PMT .......................... 25R6237 ...................... 76 mm (3") square PMT .................... 24R6237-01 ................. 76 mm (3") square PMT .................... 25E6316-01 ................. Socket assembly .............................. 59H6410 ...................... Hybrid assembly .............................. 28R6427 ...................... 28 mm (1-1/8") dia. PMT ................... 20H6520 ...................... Hybrid assembly .............................. 28H6524 ...................... Hybrid assembly .............................. 28H6527 ...................... Hybrid assembly .............................. 28

Page 73: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

71

Type number Type numberProduct Page

H6533 ...................... Hybrid assembly .............................. 28H6559 ...................... Hybrid assembly .............................. 28E6572 ...................... Socket assembly .............................. 59R6594 ...................... 127 mm (5") dia. PMT ....................... 22H6612 ...................... Hybrid assembly .............................. 28H6613 ...................... Hybrid assembly .............................. 28H6614-70 ................. Hybrid assembly .............................. 28E6736 ...................... Socket assembly .............................. 59R7056 ...................... 28 mm (1-1/8") dia. PMT ................... 21R7081 ...................... 254 mm (10") dia. PMT ..................... 22R7081-20 ................. 254 mm (10") dia. PMT ..................... 22R7081-100 ............... 254 mm (10") dia. PMT (SBA type) .... 22E7083 ...................... Socket assembly .............................. 59R7111 ...................... 28 mm (1-1/8") dia. PMT ................... 20H7195 ...................... Hybrid assembly ............................... 28H7260 ....................... Hybrid assembly ......................... 26H7260-100 ............... Hybrid assembly (SBA type) ............. 26H7260-200 ............... Hybrid assembly (UBA type) ............. 26R7373A-01 ............... 2π shape PMT .................................. 24H7415 ...................... Hybrid assembly ............................... 28R7525 ...................... 28 mm (1-1/8") dia. PMT ................... 20H7546B .................... Hybrid assembly ......................... 26H7546B-100 ............. Hybrid assembly (SBA type) ............. 26H7546B-200 ............. Hybrid assembly (UBA type) ............. 26H7546B-300 ............. Hybrid assembly (EGBA type) .......... 26R7600U ................... Metal package PMT ......................... 24R7600U-100 ............. Metal package PMT (SBA type) ........ 24R7600U-200 ............. Metal package PMT (UBA type) ........ 24R7600U-300 ............. Hybrid assembly (EGBA type) .......... 24R7600U-00-M4 ........ Metal package PMT ......................... 24R7600U-100-M4 ...... Metal package PMT (SBA type) ........ 24R7600U-200-M4 ...... Metal package PMT (UBA type) ........ 24R7600U-300-M4 ....... Hybrid assembly (EGBA type) .......... 24R7600U-03 ............... Metal package PMT ......................... 25E7693 ....................... Socket assembly .............................. 59E7694-02 .................. Socket assembly .............................. 59E7694-03 .................. Socket assembly .............................. 59R7723 ...................... 51 mm (2") dia. PMT ......................... 22R7724 ...................... 51 mm (2") dia. PMT ......................... 22R7724-100 ............... 51 mm (2") dia. PMT (SBA type) ....... 22R7725 ...................... 51 mm (2") dia. PMT ......................... 22R7761-70 ................. Fine mesh PMT ................................ 24R7899 ...................... 25 mm (1") dia. PMT ......................... 21R7899-01 ................. 25 mm (1") dia. PMT ......................... 20H8135 ...................... Hybrid assembly .............................. 28R8143 ...................... 2π shape PMT .................................. 24H8409-70 ................. Hybrid assembly .............................. 28R8520-406 ............... Metal package PMT ......................... 24R8520-506 ............... Metal package PMT ......................... 24R8619 ...................... 25 mm (1") dia. PMT ......................... 20H8643 ...................... Hybrid assembly ............................... 28H8711 ...................... Hybrid assembly ............................... 26H8711-100 ............... Hybrid assembly (SBA type) ............. 26H8711-200 ............... Hybrid assembly (UBA type) ............. 26H8711-300 ............... Hybrid assembly (EGBA type) .......... 26H8804 ...................... Hybrid assembly ............................... 26H8804-100 ............... Hybrid assembly (SBA type) ............. 26H8804-200 ............... Hybrid assembly (UBA type) ............. 26H8804-300 ............... Hybrid assembly (EGBA type) .......... 26

R8997 ...................... 38 mm (1-1/2") dia. PMT ................... 24R9420 ...................... 38 mm (1-1/2") dia. PMT ................... 20R9420-100 ............... 38 mm (1-1/2") dia. PMT (SBA type) ... 20R9800 ...................... 25 mm (1") dia. PMT ......................... 20R9800-100 ............... 25 mm (1") dia. PMT (SBA type) ...... 20R9800U-110 ............. Metal package PMT (SBA type) ....... 24R9800U-210 ............. Metal package PMT (UBA type) ....... 24R10233 .................... 90 mm (3.5") dia. PMT ...................... 22R10233-01 ............... 90 mm (3.5") dia. PMT ...................... 23R10233-100 ............. 90 mm (3.5") dia. PMT (SBA type) ... 22H10515B-100 ........... Hybrid assembly (SBA type) ............. 26H10515B-200 ........... Hybrid assembly (UBA type) ............. 26R10550 .................... 38 mm (1-1/2" quadrant) square PMT .... 24H10580 ..................... Hybrid assembly ............................... 28E10679-02 ................ Socket assembly .............................. 59R10806 .................... 102 mm (4") dia. PMT ....................... 22R10806-100 ............. 102 mm (4") dia. PMT (SBA type) .... 22R11065 .................... 76 mm (3") dia. PMT ......................... 22R11102 .................... 38 mm (1-1/2") dia. PMT ................... 20R11265U-100 ........... Metal package PMT (SBA type) ....... 24R11265U-200 ........... Metal package PMT (UBA type) ....... 24R11265U-300 ........... Metal package PMT (EGBA type) .... 24R11410 .................... 76 mm (3") dia. PMT ......................... 22E11807 .................... Socket assembly .............................. 59E11807-01 ............... Socket assembly .............................. 59R11833-03 ............... 127 mm (5") dia. PMT ..................... 22R11833-100-03 ........ 127 mm (5") dia. PMT (SBA type) .... 22H11934-100 ............. Hybrid assembly (SBA type) ............. 26H11934-200 ............. Hybrid assembly (UBA type) ............. 26H11934-300 ............. Hybrid assembly (EGBA type) .......... 26R12199 .................... 80 mm dia. PMT ............................... 22R12421 .................... 13 mm (1/2") dia. PMT ..................... 20R12421-03 ............... 13 mm (1/2") dia. PMT ..................... 21R12421-300 ............. 13 mm (1/2") dia. PMT (EGBA type) ... 20H12428-100 ............. Hybrid assembly (SBA type) ............. 26H12428-200 ............. Hybrid assembly (UBA type) ............. 26H12445-100 ............. Hybrid assembly (SBA type) ............. 26H12445-200 ............. Hybrid assembly (UBA type) ............. 26H12690 ..................... 13 mm (1/2") dia. PMT assembly ..... 28H12690-300 ............. 13 mm (1/2") dia. PMT assembly (EGBA type) ... 28H12700A .................. Hybrid assembly ............................... 26H12700A-10 ............. Hybrid assembly ............................... 26H12700A-03 ............. Hybrid assembly ............................... 27H12700B .................. Hybrid assembly ............................... 26H12700B-10 ............. Hybrid assembly ............................... 26R12860 .................... 508 mm (20") dia. PMT ..................... 22R13089 .................... 51 mm (2") dia. PMT ........................ 22H13226A-100 ........... Hybrid assembly (SBA type) ............. 26H13226A-200 ........... Hybrid assembly (UBA type) ............. 26R13408 .................... 38 mm (1-1/2") dia. PMT .................. 20E13416 .................... Socket assembly ............................... 59R13435 .................... 51 mm (2") dia. PMT ........................ 22R13449 .................... 28 mm (1-1/8") dia. PMT .................. 20R13478 .................... 25 mm (1") dia. PMT ........................ 20H13700 .................... Hybrid assembly ............................... 26H13700A-03 ............. Hybrid assembly ............................... 27H13974-00-1616 ...... Hybrid assembly ............................... 26H13974-03-1616 ...... Hybrid assembly ............................... 27

Product Page

Page 74: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

72

CAUTIONS AND WARRANTY

WARNING

PRECAUTIONS FOR USE

WARRANTY

Take sufficient care to avoid an electric shock hazardA high voltage used in photomultiplier tube opera-tion may present a shock hazard. Photomultiplier tubes should be installed and handled only by qualified personnel that have been instructed in handling of high voltages. Designs of equipment utilizing these devices should incorporate appropri-

ate interlocks to protect the operator and service personnel.The metal housing of the Metal Package PMT R8520-406 and R8520-506 and R11065 series and R11410 series are connected to the photocathode (potential) so that it becomes a high voltage potential when the product is operated at a negative high voltage (anode grounded).

HIGHVOLTAGE

● Handle tubes with extreme carePhotomultiplier tubes have evacuated glass envelopes. Allowing the glass to be scratched or to be subjected to shock can cause cracks. Extreme care should be taken in handling, especially for tubes with graded sealing of synthetic silica.

● Keep faceplate and base cleanDo not touch the faceplate and base with bare hands. Dirt and fingerprints on the faceplate cause loss of transmittance and dirt the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol.

● Do not expose to strong lightDirect sunlight and other strong illumination may cause damage the Photocathode. They must not be allowed to strike the photocathode, even when the tube is not operated.

● Handling of tubes with a glass baseA glass base (also called button stem) is less rugged than a plastic base, so care should be taken in handling this type of

tube. For example, when fabricating the voltage-divider circuit, solder the divider resistors to socket lugs while the tube is inserted in the socket.

● Cooling of tubesWhen cooling a photomultiplier tube, the photocathode section is usually cooled. However, if you suppose that the base is also cooled down to -30 °C or below, please consult our sales office in advance.

● Helium permeationhelium will permeate through the glass bulb, leading to an increase in noise. avoid operating or storing tubes in an environment where helium is present. Helium permeation through silica glass is especially large.

Data and specifications listed in this catalog are subject to change due to product improvement and other factors. before specifying any of the types in your production equipment, please consult our sales office.

Hamamatsu photomultiplier tubes and related products are warranted to the original purchaser for a period of 12 months after delivery. The warranty is limited to repair or replacement of a defective product due to defects in workmanship or mate-rials used in its manufacture.However, even if within the warranty period the warranty shall

not apply to failures or damages caused by misoperation, mishandling, modification or accidents such as natural or man-made disasters.The customer should inspect and test all products as soon as they are delivered.

Page 75: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

73

Typical photocathode spectral response and emission spectrum of scintillators

TPMHB0342EE

A: Bialkali photocathode (Borosilicate glass)B: Bialkali photocathode (UV glass)C: Bialkali photocathode (Silica glass)D: Bialkali photocathodeE: High temp. bialkali photocathodeF: Super bialkaliG: Ultra bialkaliH: Extended green bialkaliI: Low temp. (down to -110 °C) bialkali photocathodeJ: Low temp. (down to -186 °C) bialkali photocathode

0

100

WAVELENGTH (nm)

QU

AN

TU

M E

FF

ICIE

NC

Y (

%)

8060

40

20

100.1R

ELA

TIV

E IN

TE

NS

ITY

(%

)

100

10

1

700100 200 300 400 500 600

BaF2

LaBr3

Nal (Tl)

LSOCsI (Tl)

BGO

D

G

H

A

B

C

I F

J E

Page 76: PHOTOMULTIPLIER TUBES AND ASSEMBLIES...photoelectrons by the external photoelectric effect. The conver-sion efficiency, that is photocathode sensitivity, varies with the wavelength

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, JapanTelephone: (81)539/62-5248, Fax: (81)539/62-2205

Main ProductsElectron TubesPhotomultiplier TubesPhotomultiplier Tube ModulesMicrochannel PlatesImage IntensifiersXenon Lamps / Mercury Xenon LampsDeuterium LampsLight Source Applied ProductsLaser Applied ProductsMicrofocus X-ray SourcesX-ray Imaging Devices

Opto-semiconductorsSi photodiodesAPDPhoto ICImage sensorsPSDInfrared detectorsLEDOptical communication devicesAutomotive devicesX-ray flat panel sensorsMini-spectrometersOpto-semiconductor modules

Imaging and Processing SystemsCameras / Image Processing Measuring SystemsX-ray ProductsLife Science SystemsMedical SystemsSemiconductor Failure Analysis SystemsFPD / LED Characteristic Evaluation SystemsSpectroscopic and Optical Measurement Systems

Laser ProductsSemiconductor lasersApplied products of semiconductor lasersSolid state lasers

Sales Offices

Information in this catalog is

believed to be reliable. However,

no responsibility is assumed for

possible inaccuracies or omission.

Specifications are subject to

change without notice. No patent

rights are granted to any of the

circuits described herein.

© 2017 Hamamatsu Photonics K.K.

Quality, technology and service are part of every product.

REVISED APR. 2017

Swiss OfficeDornacherplatz 7 4500 Solothurn, SwitzerlandTelephone: (41)32-625-60-60, Fax: (41)32-625-60-61E-mail: [email protected]

Belgian OfficeAxisparc Technology, rue Andre Dumont 7 1435Mont-Saint-Guibert, BelgiumTelephone: (32)10 45 63 34, Fax: (32)10 45 63 67E-mail: [email protected]

Spanish OfficeC. Argenters, 4 edif 2 Parque Tecnológico del Vallés08290 Cerdanyola (Barcelona), SpainTelephone: (34)93 582 44 30, Fax: (34)93 582 44 31E-mail: [email protected]

Germany, Denmark, The Netherlands, Poland:HAMAMATSU PHOTONICS DEUTSCHLAND GmbHMain OfficeArzbergerstr. 10, D-82211 Herrsching am Ammersee, GermanyTelephone: (49)8152-375-0, Fax: (49)8152-265-8E-mail: [email protected]

Danish OfficeLautruphøj 1-3, DK-2750 Ballerup, DenmarkTelephone: (45)70-20-93-69, Fax: (45)44-20-99-10Email: [email protected]

Netherlands OfficeTelevisieweg 2, NL-1322 AC Almere, The NetherlandsTelephone: (31)36-5405384, Fax: (31)36-5244948E-mail: [email protected]

Poland Office02-525 Warsaw, 8 St. A. Boboli Str., PolandTelephone: (48)22-646-0016, Fax: (48)22-646-0018E-mail: [email protected]

North Europe and CIS:HAMAMATSU PHOTONICS NORDEN ABMain OfficeTorshamnsgatan 35 16440 Kista, SwedenTelephone: (46)8-509 031 00, Fax: (46)8-509 031 01E-mail: [email protected]

Russian Office11, Christoprudny Boulevard, Building 1, Office 114,101000, Moscow, RussiaTelephone: (7)495 258 85 18, Fax: (7)495 258 85 19E-mail: [email protected]

Italy:HAMAMATSU PHOTONICS ITALIA S.r.l.Main OfficeStrada della Moia, 1 int. 6, 20020 Arese (Milano), ItalyTelephone: (39)02-935-81-733, Fax: (39)02-935-81-741E-mail: [email protected]

Rome OfficeViale Cesare Pavese, 435, 00144 Roma, ItalyTelephone: (39)06-50513454, Fax: (39)02-935-81-741E-mail: [email protected]

Japan:HAMAMATSU PHOTONICS K.K.325-6, Sunayama-cho, Naka-ku,Hamamatsu City, Shizuoka Pref. 430-8587, JapanTelephone: (81)53-452-2141, Fax: (81)53-456-7889E-mail: [email protected]

China:HAMAMATSU PHOTONICS (CHINA) Co., Ltd.Main Office1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, ChinaTelephone: (86)10-6586-6006, Fax: (86)10-6586-2866E-mail: [email protected]

Shanghai Branch4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, ChinaTelephone: (86)21-6089-7018, Fax: (86)21-6089-7017

Taiwan:HAMAMATSU PHOTONICS TAIWAN Co., Ltd.Main Office8F-3, No.158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C.Telephone: (886)03-659-0080, Fax: (886)07-811-7238E-mail: [email protected]

Kaohsiung OfficeNo.6, Central 6th Road, K.E.P.Z. Kaohsiung 806, Taiwan R.O.C.Telephone: (886)07-262-0736, Fax: (886)07-811-7238

U.S.A.:HAMAMATSU CORPORATIONMain Office360 Foothill Road, Bridgewater, NJ 08807, U.S.A.Telephone: (1)908-231-0960, Fax: (1)908-231-1218E-mail: [email protected]

California Office2875 Moorpark Ave. San Jose, CA 95128, U.S.A.Telephone: (1)408-261-2022, Fax: (1)408-261-2522E-mail: [email protected]

Chicago Office4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A.Telephone: (1)847-825-6046, Fax: (1)847-825-2189E-mail: [email protected]

Boston Office20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A.Telephone: (1)617-536-9900, Fax: (1)617-536-9901E-mail: [email protected]

United Kingdom:HAMAMATSU PHOTONICS UK LimitedMain Office2 Howard Court, 10 Tewin Road, Welwyn Garden City,Hertfordshire AL7 1BW, UKTelephone: (44)1707-294888, Fax: (44)1707-325777E-mail: [email protected]

South Africa Office:9 Beukes Avenue, Highway Gardens, Edenvale, 1609, South AfricaTelephone/Fax: (27)11-609-0367

France, Portugal, Belgium, Switzerland, Spain:HAMAMATSU PHOTONICS FRANCE S.A.R.L.Main Office19, Rue du Saule Trapu Parc du Moulin de Massy,91882 Massy Cedex, FranceTelephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10E-mail: [email protected]

TPMZ0003E01APR. 2017 IP(2000)