80
7/21/2019 Photolithography Part1 http://slidepdf.com/reader/full/photolithography-part1 1/80 ENSC-E131 NanoFabrication and NanoAnalysis Lithography Jiangdong (JD) Deng, Ph.D

Photolithography Part1

Embed Size (px)

DESCRIPTION

Photolithography Process

Citation preview

Page 1: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 1/80

ENSC-E131 NanoFabrication and NanoAnalysis

Lithography

Jiangdong (JD) Deng, Ph.D

Page 2: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 2/80

9/26/2011 Jiangdong Deng 2

Photolithography (Talk 1) -

 Fundamentals, Processes

• Overview of Photolithography

 –  Micro/Nano fabrication processes

 –  Basic steps of photolithography

• Fundamentals of photolithography – Photomask 

 – UV exposure (light source, exposure optics, equipment) – Photoresist and related processes

• Resolution Limits and Profile Control

Page 3: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 3/80

9/26/2011 Jiangdong Deng 3

Photolithography (Talk 2)

Advanced Lithography for Nanofabrication –  E-beam lithography

 –  Imprint Lithography

 –  X-ray Lithography

 –  Focus Ion-beam (FIB) Lithography

 – SPM lithography

Page 4: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 4/80

Page 5: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 5/80

5

Trend of Nanofabrication

Page 6: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 6/80

Metrology

6

Thin Films

(Photo)-lithography

Cleaning

Front-End

Processes

EtchIon

Implantation

Planarization

Test & Back End

DesignWafer 

Preparation

Design

Wafer Preparation

- Material Growth, cutting, polishing Front-end Processes

- LPCVD, MOCVD, MBE, ALD, wafer-bonding

Lithography (photo-, E-Beam, FIB…)

Etch- RIE, wet etching,

Cleaning- Wet, plasma, O-zone

Thin Films

- PVD, PECVD, ALD, LPCVD Ion Implantation

Planarization- Spin coating, CVD,

Test and Back-end- Dicing/cleaver, Wire bonding, assembly

Metrology

Micro/Nano Fabrication Processes

Page 7: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 7/80

9/26/2011 Jiangdong Deng 7

• Photo-litho-graphy: light-stone-

writing

• Photolithography is a technique that is

used to define the shape of nano/micro-

machined structures on a wafer 

 – Purpose: Transfer same circuit patterns

onto a large number of wafers.

• Key role in Nanofabrication

 –  Critical dimension generations

• Major Concerns in Photolithography

 –   Resolution

 –   Profile control 

 –  Overlay accuracy

 –   Process latitude

Photolithography

•• 3 key parts/components in3 key parts/components inphotolithographyphotolithography

•• MaskMask

•• PhotoresistPhotoresist

•• UV exposure systemUV exposure system

Page 8: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 8/80

Photolithography used for Pattern Formation

Beginning of Integrated Circuits in 1959

Kilby (TI) and Noyce (Fairchild Semiconductors)

Substrate

Film deposition Photoresist application

Deposited Film

 Photoresist

Exposure

Development Etching  Resist removal

Mask 

Etch mask 

Light

• Basic lithography process

which is central to today’s

chip fabrication.

• Sensitive to light

• Durable in etching

Page 9: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 9/80

9/26/2011 Jiangdong Deng 9

8 Steps in Photolithography

8) Developinspect

5) Post-exposurebake (option)

6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignment

and Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

•Photoresist and Process

•PhotoMask

•UV Exposure

Ph li h h Ph i l

Page 10: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 10/80

9/26/2011 Jiangdong Deng

• Resolution

• Contrast (profile control)

• Sensitivity

• Viscosity

• Adhesion• Etch resistance

• Surface tension

• Surface roughness• Storage and handling

• Contaminants and particles

•Photoresist and Process

•PhotoMask

•UV Exposure

10

Photolithography Physical

Characteristics

Page 11: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 11/80

9/26/2011 Jiangdong Deng 11

8) Developinspect

5) Post-exposurebake (option)

6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignment

and Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Photolithography Processes

Ph li h h (T lk 1)

Page 12: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 12/80

9/26/2011 Jiangdong Deng 12

Photolithography (Talk 1) -

 Fundamentals, Basic Process

• Overview of Photolithography

 –  Micro/Nano fabrication processes –  Basic steps of photolithography

• Fundamentals of photolithography

- Photomask  –  UV exposure (light source, exposure optics, equipment)

 –  Photoresist and related processes

• Photolithography limits

• Pattern profile control in Photolithography

Page 13: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 13/80

9/26/2011 Jiangdong Deng 13

Photomasks

• Master patterns that will be transferred to wafers

• Transparent substrate coated with patterned, UV-opaque material

• Types: – Laser-plotting on plastic film (cheapest)

 – Cr on soda lime glass

 – Cr on quartz glass (most expensive, needed for deep UV litho)

• Polarity: – “light-field” = mostly clear, drawn feature = opaque

 – “dark-field” = mostly opaque, drawn feature = clear 

Page 14: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 14/80

9/26/2011 Jiangdong Deng 14

Photomasks

Mask MaterialsWriting

Method

Smallest

Feature

Pattern

QualityPrice Vendors Others

Hard' MaskCr on glass

plate (Soda-

lime or Quartz )

Laser Writing, or

E-beam

Lithography

(EBL)

1um (EBL

can reach

sub-um)

Smooth

edge

expensive

($80/hour

in CNS)

CNS,

Advance

Reproductions

good for

alignment

Transparent

FilmInk on plastic

film

High-precision

laser printer (5k -

20k dpi)

>10umRough

edge

cheap

(<$35)

Outputcity,Advance

Reproductions

not good for

alignment

Two Types of Photomasks in CNS

I t f M k O l

Page 15: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 15/80

9/26/2011 Jiangdong Deng 15

Importance of Mask Overlay

Accuracy

PMOSFET NMOSFET

Cross section of CMOS inverter 

Top view of CMOS inverter 

The masking layers

determine the accuracy by

which subsequent

processes can be

performed.

The photoresist mask

pattern prepares individual

layers for proper

placement, orientation, and

size of structures to be

etched or implanted.

Small sizes and low

tolerances do not providemuch room for error. Figure 13.4

Page 16: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 16/80

9/26/2011 Jiangdong Deng 16

Alignment Marks

2nd Mask

1st Mask

2nd mask layer 

1st mask layer 

RA, Reticle alignment marks, L/R

GA, Wafer global alignment marks,

L/R

FA, Wafer fine alignment marks, L/R

+ +

++

RAL

RAR

+ GA

+ FAL

+ FAR

+ GAR

+ GAL

Notch, coarsealignment

FAL

FAR

FAL/R +

+FAL/R

+

For 2ndmask

+From

1stmask

           {

Ph t lith h (T lk 1)

Page 17: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 17/80

9/26/2011 Jiangdong Deng 17

Photolithography (Talk 1) -

 Fundamentals, Basic Process

• Overview of Photolithography

 –  Micro/Nano fabrication processes

 –  Basic steps of photolithography

• Fundamentals of photolithography

- Photomask  – UV exposure (light source, exposure optics, equipment) –  Photoresist and related processes

• Resolution limits

• Pattern profile control in Photolithography

Wavelengths of Exposure

Page 18: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 18/80

9/26/2011 Jiangdong Deng 18

UV

Wavelength

(nm)

Wavelength

NameUV Emission Source Energy (eV)

436 g-line Mercury arc lamp 2.84

405 h-line Mercury arc lamp 3.1

365 i-line Mercury arc lamp 3.4

248Deep UV

(DUV)

Mercury arc lamp or

Krypton Fluoride (KrF)

excimer laser4.96

193Deep UV

(DUV)

Argon Fluoride (ArF) excimer

laser

6.42

157Vacuum UV

(VUV)Fluorine (F2) excimer laser

7.9

13.4EUV (Extreme

UV, soft-X-ray)

Plasma from Xe gas excited by

high power laser

92.6

0.5 X-Ray X-ray 2480

0.062 Electron 20 keV

0.012 Ion 100 keV

Decreasing feature sizes requires shorter λ.

Wavelengths of Exposure

Sources

Light source:

Page 19: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 19/80

Spectrum image from http://zeiss-campus.magnet.fsu.edu/

I H G

Light source:

Mercury Arc Lamp

Th B i E M h d

Page 20: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 20/80

9/26/2011 Jiangdong Deng 20

2b

Three Basic Exposure Methods

1:1 Exposure 1:1 Exposure ~5:1 Exposure

K 1,2

~0.3-0.9

Resolution (b):

d, the thickness of photoresist, s, the gap of mask-resit, k~3

Light Profile Comparisons of

Page 21: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 21/80

9/26/2011 Jiangdong Deng 21

Light Profile Comparisons of

three exposure modes

b

Contact/Proximity exposure: Fresnel diffraction (near-field)

Projection exposure: Frounhoffer diffraction (far-field)

Comparisons of three exposure

Page 22: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 22/80

9/26/2011 Jiangdong Deng 22

Comparisons of three exposure

modes

Exposure System Advantage Disadvantage Application

High resolution (Near-filed)Mask contamination anddamage

R&D

Low cost (<200K) Sensitive to wafer bowing

High throughput Defects impact

Proximity Low mask/samplecontamination

Poor resolution R&D

Hight resolution

Low mask contamination Expensive (>$5M)

High throughput (50 wafer/h)

Contact

ProjectionDominates inproduction

Page 23: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 23/80

9/26/2011 Jiangdong Deng 23

Exposure Equipments

• Contact/Proximity Aligner

• Direct write lithography (Heidelburg, DWL66)

• Scanning Projection Aligner (scanner)

• Step-and-Repeat Aligner (stepper, production tool)• Step-and Scan System

Contact/Proximity Aligner Systems

Page 24: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 24/80

9/26/2011 Jiangdong Deng 24

Contact/Proximity Aligner Systems

in CNS

Suss-MJB4 Suss-MA6

Suss-MJB3

AB-M

Illuminator 

Alignmentscope (split

vision)

Mask

Wafer 

Vacuumchuck

Mask stage

(X, Y , Z ,θ

Wafer stage

(X, Y, Z,θ

Mercuryarc lamp

Page 25: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 25/80

Heidelburg, DWL66Heidelburg, DWL66

Wafer stepper / wafer scanner Wafer stepper / wafer scanner 

Exposure Procedure

Page 26: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 26/80

9/26/2011 Jiangdong Deng 26

p

(Contact Mask Aligner)

Mask loading

Wafer loading

WEC contacting

Separation

Alignment

Exposure Contacting

Alignment/contact

Checking

Exposure

NO

 Yes

Unload wafer/mask

• WEC- Wedge Error Compensation,

-to make the sample surfaceconformably contact the mask without

‘wedge’.

• Exposure Contact Control

•Proximity•Soft-contact

•Hard Contact

•Vacuum Contact

• Alignment/Contact Check•Shadow effect

Two Keys for a goodexposure:

1, Right exposure dosage

2. Good contact!!!

SU-8 Photolithography

Page 27: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 27/80

9/26/2011 Jiangdong Deng 27

g p y

Process Conditions

Jiangdong Deng, “Soft-Lithography-summary-2-1-06-user-meeting-02”, SLF at Harvard CNS

Photolithography (Talk 1) -

Page 28: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 28/80

9/26/2011 Jiangdong Deng 28

Photolithography (Talk 1)

 Fundamentals, Basic Process

• Overview of Photolithography

 –  Micro/Nano fabrication processes –  Basic steps of photolithography

• Fundamentals of photolithography

 –  Photomask  –  UV exposure (light source, exposure optics, equipment)

 – **Photoresist and related processes

• Lithography limits and Profile Control

Photoresist Basic

Page 29: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 29/80

9/26/2011 Jiangdong Deng 29

-Positive tone:

•Exposure increases solubi lity

•Low molecular-weight (<10,000) polymer•Pre-cross linked before exposure. exposure

weakens polymer by rupture or scission of polymer

chains

•Mask image is same as wafer image

•Typical Resist, Shipley 1800, AZ series

-Negative tone

•Exposure decreases solubil ity

•High molecular-weight (~65,000) polymer 

•Exposure causes cross-linking of polymer chains

•Wafer image is opposite of mask image

•Typical Resist, SU-8,

(Positive and Negative resist)

Components of Conventional

Page 30: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 30/80

9/26/2011 Jiangdong Deng 30

Additives:•chemicals that control specific

aspects of resist material

Solvent:•gives resist its flowcharacteristics

•PGMEA (Propylene Glycol MethylEther Acetate-C6H12O3))

Sensitizers: (inhibitor, PAC)•photosensitive component of

the resist material

Resin:

•mix of polymers used as binder;

•gives resist mechanical andchemical properties

p

Photoresist

Positive Photoresist

Page 31: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 31/80

9/26/2011 Jiangdong Deng 31

-(DNQ-novolak resist)

Resin in photoresist (positive)

W.S. Deforest, ‘Photoressit’, McGraw Hill (1975)

Photo Chemical Reaction in P-PR

Page 32: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 32/80

9/26/2011 Jiangdong Deng 32

(DNQ-novolak resist)

Photo Reaction in P-PR 

Page 33: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 33/80

9/26/2011 Jiangdong Deng 33

(DNQ-novolak resist)

Photo Reaction in Positive resist

DiazoNaphtoQuinone

(DNQ)- sulfonate• The position of SO3-R

determine the

photoreaction wavelength

(I,g,h line)

• Lower solubility

Indene Carboxylic Acid

• Higher solubility (1000times higher) in alkaline

than DNQsulfonate

Release N2,

absorpt H2O,

Photo Recation in Negative PR 

Page 34: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 34/80

9/26/2011 Jiangdong Deng 34

(KTFR resist)

Sensitizer,-bis arylazide…

Sensitizer reacts with light.

-Exposure

-releasing N2 and

-very active

Polymer(resin)-sensitizer-

cross link

-Post exposure baking (PEB)

- Higher insolubility

KTFR – Kodak Thin Film Resist,

-invented in 1957, dominated in the early years of semiconductor

Cyclized poly-isoprene

Photoresist Processes

Page 35: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 35/80

9/26/2011 Jiangdong Deng 35

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Photoresist Processes

Surface Preparation

Page 36: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 36/80

9/26/2011 Jiangdong Deng 36

Surface Preparation

• Cleaning:

- Remove any contaminants on the wafers prior to photoresist coating

• Dusts/particles, oil, residue, grease, wax…

• Cleaning approaches: solvent cleaning, TCA (1,1,1-trichloroethane), TCE

(trichloroethylene), Piranha cleaning (H2SO4 & H2O2), RCA (I, II), acid-

 based Nanostriper, O2 plasma…

• Dehydration:

 – remove water prior to priming and coating

• 200 C hotplate >5 min, or 15 min 80C oven

• Priming:

 – form a polar (electrostatic) surface to isolate moisture adhesion on

wafer surface and

 – Increase the adhesion between wafers and photoresist coating layer 

Surface Preparation

Page 37: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 37/80

9/26/2011 Jiangdong Deng 37

• For Si, SiO2, and other dielectric material: – primers form bonds with surface and produce a polar

(electrostatic) surface

 – most are based upon siloxane linkages (Si-O-Si)• 1,1,1,3,3,3-hexamethyldisilazane (HMDS), (CH3)3SiNHSi(CH3)3

• trichlorophenylsilane (TCPS), C6H5SiCl3

• bistrimethylsilylacetamide (BSA), (CH3)3SiNCH3COSi(CH3)3

• For GaAs and other III-V materials: – GaAs already has a polar surface

• monazoline C

• trichlorobenzene

• xylene

• Priming approach:

1) Vapor coating (Industry)

2) Spin-coating (R&D, 2000rpm for 20s)

-Surface Priming (1)

Surface Preparation

S f (2)

Page 38: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 38/80

9/26/2011 Jiangdong Deng 38

HMDS adhesion promotion on SiO2

-Surface Priming (2)

Surface tension (dyne/cm) H2O on surface (molecule/um^2)

Pre-HMDS 78 >35

Post-HMDS 21 <1

Photoresist Processes

Page 39: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 39/80

9/26/2011 Jiangdong Deng 39

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Photoresist Processes

PR Spin Coat

Page 40: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 40/80

9/26/2011 Jiangdong Deng

Process Summary

40

:• Wafer is held onto vacuum chuck

• Typical coating steps: Dispensing (low speed ~500rpm for

4-10s) Level out (high speed-1000-to

5000rpm, 30-60s)

• Quality measures:

 –  thickness –  uniformity –  particles and defects

Vacuum chuck

Spindle

connected to

spin motor 

To vacuumpump

Photoresistdispenser 

Time

Speed

dispensing

Spin

down

Level out

p

SU-8 2000 Photoresist Spin Curve

Page 41: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 41/80

9/26/2011 Jiangdong Deng 41

SU 8 2000 Photoresist Spin Curve

0

50

100

150

200

250

300

350

500 1000 1500 2000 2500 3000 3500

   T   h   i  c   k  n  e  s  s   (  u  m   )

Coating Speed (RPM)

Su-8 Spin Curve (MicroChem and CNS)

2100-CNS

2100-MicroChem

2050-CNS2050-MicroChem

2025-CNS

2025-MicroChem

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

500 1000 1500 2000 2500 3000 3500

   T   h   i  c   k  n  e  s  s   (  u  m   )

Coating Speed (RPM)

SU-8 Spin Curve (MicroChem and CNS-LISE)

2015-CNS

2015-MicroChem2010-CNS

2010-MicroChem

2005-CNS

2005-MicroChem

-Resist coating performance depends on:

a) Solvent Concentration, b) Speed control, c) Coating environment

(air flow, T, Huminity), d) surface conditions (adhesion, energy…)

Photoresist Processes

Page 42: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 42/80

9/26/2011 Jiangdong Deng 42

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Photoresist Processes

Soft baking

Page 43: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 43/80

9/26/2011 Jiangdong Deng 43

• Drives Off Most of Solvent in Photoresist

 – For positive resist, pre-crosslink happens between resin and sensitizer

• Impacts to post fabrication processes

 – Photoresist-to-Wafer Adhesion

 – Thermal stress within PR-film

 – Resist Uniformity on Wafer 

 – Etching rate and Linewidth Control During Development

• Typical Bake Temperatures are 90 to 115°C

 – Shipley 1800, 115°C; SU-8, 65/95 °C

 – Baking time (>2min) varies with the thickness

 – On a Hot Plate (better uniformity than oven baking)

Photoresist Processes

Page 44: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 44/80

9/26/2011 Jiangdong Deng 44

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Post-Exposure Bake (PEB)

Page 45: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 45/80

9/26/2011 Jiangdong Deng 45

p ( )

• Required for negative PR (like SU-8), to ensure

cross-link in the resist• Typical Temperatures 90 to 110°C on a hot

plate

 – SU-8, 65/95 °C

Photoresist Processes

Page 46: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 46/80

9/26/2011 Jiangdong Deng 46

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Photoresist Development

Page 47: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 47/80

9/26/2011 Jiangdong Deng 47

Process Summary:

• Soluble areas of photoresistare dissolved by developerchemical

• Developer:

• For Positive Resist(Shipley 1800) KOH (CD-351),

NaOH (CD-30), or 

(CH3)4NOH (TMAH, CD-26,

MF319) Time: 30-90s

• For negative resist (SU-8) PGMEA (SU-8 developer,

or BTS-220) Time: 1-20min

Vacuum chuck

Spindle

connected to

spin motor 

To vacuumpump

Developdispenser 

•Spinning option ( bath option in CNS)

p

Photoresist Processes

Page 48: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 48/80

9/26/2011 Jiangdong Deng 48

8) Developinspect5) Post-exposurebake (option) 6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Hard Bake

Page 49: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 49/80

9/26/2011 Jiangdong Deng 49

• An Optional Post-Development Thermal Bake to

 – Evaporate Remaining Solvent

 – Stabilize and harden the developed photoresist

• Impacts to the post processes

 – Improve Resist-to-Wafer Adhesion

 – Improve the resistance for dry or wet etching – Improve the edge roughness due to plastic flowing

 – Not easy to be removed, thus not good for lift-off process

 – May cause extra thermal stress• Higher Temperature than Soft Bake, for >5min

 – Shipley 1800, 140-160°C

 – SU-8, 150°C

Photoresist Processes

Page 50: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 50/80

9/26/2011 Jiangdong Deng 50

8) Developinspect

5) Post-exposurebake (option)

6) Develop 7) Hard bake(option)

UV Light

Mask

 

4) Alignmentand Exposure

Resist

2) Spin coat 3) Soft bake1) Surface preparation

HMDS

Inspection

Page 51: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 51/80

9/26/2011 Jiangdong Deng 51

Resist liftoff 

• Inspect to Verify a Quality Pattern

 – Identify Quality Problems (Defects)

 – Characterize the Performance of the Photolithography Process

 – Prevents Passing Defects to Other Areas

• Etch

• Implant

 – Rework Mis-processed or Defective Resist-coated Wafers

Photolithography (Talk 1) -

Fundamentals Basic Process

Page 52: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 52/80

9/26/2011 Jiangdong Deng 52

• Overview of Photolithography

 –  Micro/Nano fabrication processes –  Basic steps of photolithography

• Fundamentals of photolithography

- Photoresist and related processes

- Photomask 

 – UV exposure (light source, exposure optics, equipment)

• Resolution limits

• Pattern profile control in Photolithography

 Fundamentals, Basic Process

Resolution Limit and Profile Control

Page 53: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 53/80

9/26/2011 Jiangdong Deng 53

Linewidth Space

Thickness

Substrate

Photoresist

Three Dimensional Pattern in Photoresist

Criterias for ‘good photolithography’

- Line/space size -Profile control - Etching resistance

- Adhesion -Sidewall roughness - Surface tension- Uniformity -Defects

Exposure Systems

Page 54: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 54/80

9/26/2011 Jiangdong Deng 54

2b

1:1 Exposure 1:1 Exposure ~5:1 Exposure

K 1,2

~0.2-0.8Resolution (2b):

d, the thickness of photoresist, s, the gap of mask-resit, k~3

Photolithography-Diffraction

Page 55: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 55/80

g p y

• At smaller dimensions,

diffraction effectsdominate

• If the aperture is on the

order of λ, the lightspreads out after passing

through the aperture. (The

smaller the aperture, the

more it spreads out.)

Photolithography-NA

j ti t

Page 56: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 56/80

-projection system

NA-Numerical Aperture, represents

the light collected by the condenser

or objective lens

•If we want to image the

aperture on an image

plane (resist), we cancollect the light using a

lens and focus it on the

image plane.•But the finite diameter

of the lens means some

information is lost(higher spatial

frequency components).

Photolithography-Diffraction

projection system

Page 57: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 57/80

• Image formed by a small

circular aperture (Airy disk)

as an example

• Image by a point source

forms a circle with diameter1.22λf/d surrounded by

diffraction rings (airy

 pattern)

-projection system

Photolithography-Diffraction

projection system

Page 58: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 58/80

-projection system

• Rayleigh suggested that areasonable criterion forresolution (b = distance betweenA and B) is that the centralmaximum of one point sourcelies at the first minimum of theAiry pattern of the other point (b

= diameter of circle)• The numerical aperture (NA) of

a lens represents the ability ofthe lens to collect diffracted lightand is given by NA = n sin α inthis expression n is the index ofrefraction of the mediumsurrounding the lens and α is theacceptance angle of the lens ( n= 1 for air)

 NA f n

 f 

 f b

  λ 

α 

λ λ  61.0

)sin2(

22.122.1===

Reyleigh Resolution:

Practical resolution:

 NAk b  λ 

•= 1 (0.25< k1 <0.8)

Photolithography Resolution

projection system

Page 59: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 59/80

-projection system

• Three ways to improveresolution bmin

 – Reduce wavelength

 – Increase NA

 – Reduce k 1

 NAk b  λ 

•= 1min

Electromagnetic Spectrum

Page 60: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 60/80

9/26/2011 Jiangdong Deng 60

Visible

Radio wavesMicro-wavesInfraredGamma rays UVX-rays

f (Hz) 10 10 10101010101010 10 4681012141622 1820

 

(m) 420-2-4-6-8-14 -10-1210 10 10101010101010 10

365 436405248193157

g hi DUVDUVVUV  (nm)

Common UV wavelengths used in optical lithography.

Decreasing feature sizes requires shorter λ.

Wavelengths of ExposureSources

Page 61: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 61/80

9/26/2011 Jiangdong Deng 61

UVWavelength

(nm)

WavelengthName

UV Emission Source Energy (eV)

436 g-line Mercury arc lamp 2.84

405 h-line Mercury arc lamp 3.1

365 i-line Mercury arc lamp 3.4

248Deep UV

(DUV)

Mercury arc lamp or

Krypton Fluoride (KrF)

excimer laser4.96

193Deep UV

(DUV)

Argon Fluoride (ArF) excimer

laser

6.42

157Vacuum UV

(VUV)Fluorine (F2) excimer laser

7.9

13.4EUV (Extreme

UV, soft-X-ray)

Plasma from Xe gas excited by

high power laser

92.6

0.5 X-Ray X-ray 2480

0.062 Electron 20 keV

0.012 Ion 100 keV

Decreasing feature sizes requires shorter λ.

Photolithography-λ

Page 62: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 62/80

Photolithography λ

Photolithography-NA

Page 63: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 63/80

• Increasing NA

 – Improvements in lens

design.• In the mid eighties,

 NA ~0.4,

• In 2000, for 248nmexposure systems, NA> 0.8.

• Now, for 193nm (ArFsystem), 0.93 is possible in the air 

 – Immerse into the high

index medium (n>1,water n=1.47@193nm)

Photolithography-Immersion Litho

Page 64: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 64/80

52nm in the air!52nm in the air!

Photolithography-DOF

-projection system

Page 65: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 65/80

projection system

DOFDOF--Depth of FocusDepth of Focus

The range over which there are clear optical images

+

-

Photoresist

Film

Depth of focusCenter of focus

Lens2)(5.0~  NA DOF 

  λ 

  λ ΝΑ R DOF365 nm 0.45 486 nm 901 nm

365 nm 0.60 365 nm 507 nm

193 nm 0.45 257 nm 476 nm

193 nm 0.60 193 nm 268 nm

Why need to meet DOF Requirement?

Photolithography-DOF

Page 66: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 66/80

• The defocus tolerance (DOF)

• Much bigger issue in miniaturization

science than in ICs

 A small aperture (NA) was used to ensure

the foreground stones were as sharp as the

ones in the distance.

What you need here is a use a telephoto

lens at its widest aperture.

How about contact/proximity system ?

Page 67: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 67/80

9/26/2011 Jiangdong Deng 67

2b

1:1 Exposure 1:1 Exposure ~5:1 Exposure

K 1,2

~0.2-0.8Resolution (2b):

d, the thickness of photoresist, s, the gap of mask-resit, k~3

Light Profile Comparisons ofthree exposure modes

Page 68: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 68/80

9/26/2011 Jiangdong Deng 68

b

Contact/Proximity exposure: Fresnel diffraction (near-field)

Projection exposure: Frounhofer diffraction (far-filed)

Light intensity profile

 – contact/proximity system

Page 69: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 69/80

9/26/2011 Jiangdong Deng 69

Resolution Limit and Profile Control – Mask-resist Gap

Page 70: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 70/80

9/26/2011 Jiangdong Deng 70

Gap between mask and resist

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60   T   h  e  o  r  e   t   i  c  a   l   M  a  x .   R

  e  s  o   l  u   t   i  o  n   (  u  m   )

Effective Mask-resist Gap (um)

Resoulution for Contact/ Proximity Exposure

I-line, 365nm

H-line, 405nm

G-line, 435nm

Effective mask-resist gap:

gd sb   λ λ  5.1)5.0(5.1 =+=

d sg 5.0+=

Resolution for

Contact/proximity

exposure:

d, the thickness of photoresist,

s, the gap of mask-resit,

Resolution Limit and Profile Control- PR Contrast (1)

Page 71: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 71/80

Mask

P-PR

- γ , Photoresist Contrast.

- E0- disolusion dose, Ef - Resist sensitivity, 100% solution dose

- Ideal: a) E0 ~Ef  step function, γ~ ∞, b) Ef  small

- Reality, γ ~ 2-8

Mask

N-PR

IntensityIntensity

Exposure Dose (mW/cm2)= Lamp Intensity (mJ/cm2) x exposure timeExposure Dose (mW/cm2)= Lamp Intensity (mJ/cm2) x exposure time (s)(s)

Resolution Limit and Profile Control- PR Contrast (2)

Page 72: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 72/80

9/26/2011 Jiangdong Deng 72

Ideal Exposure - Ideal Resist Real Exposure - Ideal Resist

maskmask

Resolution Limit and Profile Control- PR Contrast (3)

Page 73: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 73/80

9/26/2011 Jiangdong Deng 73

Real Exposure - Real Resist (positive)

P-PR

mask

γ↓ D↑

N-PR

Su-8-2025

Resolution Limit and Profile Control- Light Reflections Effects (1)

Page 74: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 74/80

9/26/2011 Jiangdong Deng 74

Polysilicon

Substrate

STISTI

UV exposure light

Mask

Exposedphotoresist

Unexposed

photoresist

Notched photoresist

Edgediffraction

Surfacereflection

Resolution Limit and Profile Control- Light Reflections Effects (2)

Page 75: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 75/80

9/26/2011 Jiangdong Deng 75

Planarization

Trick: Planarrization

Resolution Limit and Profile Control- Standwave Effects

Page 76: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 76/80

9/26/2011 Jiangdong Deng 76

Standing waves cause non-

uniform exposure along thethickness of the photoresist film.

Incident wave

Reflected wave

PhotoresistFilm

Substrate

Solution Trick: B-ARC (Bottom Anti-Reflection Coating)

polymer type, dielectric multilayer…

Resolution Limit and Profile ControlSummary

Page 77: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 77/80

9/26/2011 Jiangdong Deng 77

•Challenge Photolitho process:High resolution, with

High aspect ratio (>5:1), andDense patterns

•Keys to ‘good exposure’

1)Right photoresist (type, contrast, thickness)2)Right Dosage

Thickness, substrate, feature size and density

3)Good contact!!! (for contact/proximity system)Uniform PR film, particle/defect control, pre-patterns,

right exposure contact control…

Photolithography Track System

Page 78: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 78/80

9/26/2011 Jiangdong Deng 78

Automated Wafer Track forPhotolithography

Page 79: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 79/80

9/26/2011 Jiangdong Deng 79

Wafer Transfer System

Load station Transfer station

Vaporprime

Resistcoat

Develop andRinse

Edge-beadremoval

Softbake

Coolplate

Coolplate

Hardbake

Wafer stepper(Alignment/Exposure

system)

Illuminatoroptics

Excimer laser(193 nm ArF )

Step and Scan Exposure System

Page 80: Photolithography Part1

7/21/2019 Photolithography Part1

http://slidepdf.com/reader/full/photolithography-part1 80/80

9/26/2011 Jiangdong Deng 80

Beam line

Operatorconsole

4:1 Reduction

lensNA = 0.45 to 0.6

Wafer transportsystem

Reticle stage

uto-alignment system

Wafer stage

Reticle library(SMIF pod interface)