22
Philip Jackson and Martin Russell Philip Jackson and Martin Russell Electronic Electrical and Computer Engineering Models of speech Models of speech dynamics in a dynamics in a segmental-HMM segmental-HMM recognizer using recognizer using intermediate linear intermediate linear representations representations http://web.bham.ac.uk/p.jackson/ balthasar/

Philip Jackson and Martin Russell Electronic Electrical and Computer Engineering Models of speech dynamics in a segmental-HMM recognizer using intermediate

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Philip Jackson and Martin RussellPhilip Jackson and Martin Russell

Electronic Electrical and Computer Engineering

Models of speech Models of speech dynamics in a segmental-dynamics in a segmental-

HMM recognizer using HMM recognizer using intermediate linear intermediate linear

representationsrepresentations

http://web.bham.ac.uk/p.jackson/balthasar/

Speech dynamics into ASR

INTRODUCTIONINTRODUCTION

Conventional model

INTRODUCTIONINTRODUCTION

1

acoustic observations

HMM

acoustic PDF

1 11 1 2 3 42 2222 3 33 4 4 42

Linear-trajectory model

INTRODUCTIONINTRODUCTION

2 3 41

W

acoustic observations

articulatory-to-

intermediate layer

segmental HMM

acoustic PDF

acoustic mapping

Multi-level Segmental HMM

• segmental finite-state process

• intermediate “articulatory” layer– linear trajectories

• mapping required– linear transformation– radial basis function network

INTRODUCTIONINTRODUCTION

Estimation of linear mapping

Matched sequences andT1x

YXW

,1Ty

YWXD min

THEORYTHEORY

Linear-trajectory equations

Defined as:

,iii ttt cmf

THEORYTHEORY

21 t

tif

t

ic

Training the model parameters

For optimal least-squares estimates (acoustic domain):

,s

11

)(1

ˆi

i

t

tti t

Tyc

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tti

tt

tttym

THEORYTHEORY

midpoint

slope

11

)(1

ˆi

i

t

ttki tW

Tyc

THEORYTHEORY

midpoint

slope

For optimal least-squares estimates (articulatory domain):

,s

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tt k

itt

tttW ym

Training the model parameters

11

)(1

ˆi

i

t

ttikii tDWD

Tyc

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tt iki

itt

tttDWD ym

THEORYTHEORY

midpoint

slope

For optimal maximum-likelihood estimates (articulatory domain):

,s

Training the model parameters

Tests on MOCHA

• S. British English, at 16kHz (Wrench, 2000)

– MFCC13 acoustic features, incl. zero’th

– articulatory x- & y-coords from 7 EMA coils– PCA9+Lx: first nine articulatory modes plus

the laryngograph log energy

METHODMETHOD

MOCHA baseline performance

53

54

55

56

ID_0 ID_1

Mappings

Acc

ura

cy (

%)

RESULTSRESULTS

• Constant-trajectory SHMM (ID_0)• Linear-trajectory SHMM (ID_1)

Performance across mappings

53

54

55

56

ID_0 A (1) B (2) C (6) D (10) E (10) F (49) ID_1

Mappings

Acc

ura

cy (

%)

RESULTSRESULTS

Phone categorisation

No. Description

A 1 all data

B 2 silence; speech

C 6 linguistic categories: silence/stop; vowel; liquid; nasal; fricative; affricate

D 10 as (Deng and Ma, 2000):silence; vowel; liquid; nasal; UV fric; /s,ch/; V fric; /z,jh/; UV stop; V stop

E 10 discrete articulatory regions

F 49 silence; individual phonesMETHODMETHOD

Tests on TIMIT

• N. American English, at 8kHz

– MFCC13 acoustic features, incl. zero’th

a) F1-3: formants F1, F2 and F3, estimated by Holmes formant tracker

b) F1-3+BE5: five band energies added

c) PFS12: synthesiser control parameters

METHODMETHOD

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 ID_1

Features

TIMIT baseline performance

• Constant-trajectory SHMM (ID_0)• Linear-trajectory SHMM (ID_1)

RESULTSRESULTS

Performance across feature sets

RESULTSRESULTS

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 (a) F3 (b) F3+BE5 (c) PFS12 ID_1

Features

Performance across groupings

RESULTSRESULTS

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 A (1) B (2) C (6) D (10) E (10) F (49) ID_1

Mappings

Results across groupings

RESULTSRESULTS

ID_0

A(1

)

B(2

)

C(6

)

D(1

0)

E(1

0)

F(4

9)

ID_1

60

61

62

63

64

65

66

Acc

ura

cy (

%)

Mappings

(a) F3

(b) F3+BE5

(c) PFS12

Model visualisation

Originalacousticdata

Constant-trajectorymodel

Linear-trajectorymodel (c,F)

DISCUSSIONDISCUSSION

Conclusions• Developed framework for speech

dynamics in an intermediate space• Linear traj. + piecewise linear mapping

bounded by performance of linear traj. in acoustic space

• Near optimal performance achieved– For more than 3 formant parameters– For 6 or more linear mappings

• Formants and articulatory parameters gave qualitatively similar results

• What next?

SUMMARYSUMMARY

• Complete experiments with lang. model• Include segment duration models• Derive pseudo-articulatory

representations by unsupervised (embedded) training

• Implement non-linear mapping (i.e., RBF)

• Further information:– here and now– [email protected]– web.bham.ac.uk/p.jackson/balthasar

SUMMARYSUMMARY

Further work