45
Phenomenology with sterile neutrinos Joachim Kopp Fermilab, February 2012 Fermilab based on work done in collaboration with Evgeny Akhmedov, Roni Harnik, Boris Kayser, Pedro Machado, Michele Maltoni, Thomas Schwetz Joachim Kopp Phenomenology with sterile neutrinos 1

Phenomenology with sterile neutrinos - Fermilabhome.fnal.gov/~jkopp/pdf/snu.pdf · Joachim Kopp Phenomenology with sterile neutrinos 5. ... I Simulate mock e ... Test compatibility

Embed Size (px)

Citation preview

Phenomenology with sterile neutrinos

Joachim Kopp

Fermilab, February 2012

Fermilab

based on work done in collaboration withEvgeny Akhmedov, Roni Harnik, Boris Kayser,

Pedro Machado, Michele Maltoni, Thomas Schwetz

Joachim Kopp Phenomenology with sterile neutrinos 1

Outline

1 Theoretical and experimental motivation

2 Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Joachim Kopp Phenomenology with sterile neutrinos 2

Outline

1 Theoretical and experimental motivation

2 Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Joachim Kopp Phenomenology with sterile neutrinos 3

Theoretical motivationStandard Model singlet fermions are a very generic feature of “newphysics” models

I Leftovers of extended gauge multiplets (e.g. GUT multiplets) (typically heavy)I Dark matter (keV . . . TeV or above)

Neutrino–singlet mixing is one of the allowed “portals” between the SMand a hidden sector.SM singlet fermions can live at any mass scale

I Here: Focus on O(eV) sterile neutrinos (accessible to oscillationexperiments)

I Motivated experimentally

Typical Lagrangian:

Lmass ⊃ Yν LH∗NR + ms νsNR +12

M NcRNR + h.c.

⇒ mass mixing between active and sterile neutrinos

Joachim Kopp Phenomenology with sterile neutrinos 4

Experimental signatures of sterile neutrinos

Disappearance of active neutrinos (e.g. νe → νs oscillations)Anomalous transitions Appearance among active neutrinos(e.g. νµ → νs → νe)Oscillation length Losc = 4πE/∆m2

41 different from SM expectation(typically shorter)

Notation: ∆m2jk = m2

j −m2k ; m4,5: mostly sterile, m1,2,3: mostly active

Joachim Kopp Phenomenology with sterile neutrinos 5

Experimental motivation 1: The Gallium anomaly

Intense radioactive νe sources (51Cr and 37Ar) have been deployed in theGALLEX and SAGE solar neutrino detectorsNeutrino detection via 71Ga + νe → 71Ge + e−

Result: Measurements consistently lower than expectation (2.7σ)

Giunti Laveder arXiv:1005.4599, arXiv:1006.3244Mention et al. Moriond 2011 talk

Question: How well are efficiencies of the radiochemical methodunderstood?

Joachim Kopp Phenomenology with sterile neutrinos 6

Experimental motivation 2: LSND and MiniBooNE

Joachim Kopp Phenomenology with sterile neutrinos 7

other

p(ν_

e,e

+)n

p(ν_

µ→ν

_

e,e

+)n

L/Eν (meters/MeV)

Beam

Excess

Beam Excess

0

2.5

5

7.5

10

12.5

15

17.5

0.4 0.6 0.8 1 1.2 1.4

LSND νe

(GeV)QEνE

Even

ts / M

eV

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2

2.5

3

Dataµ from eν

+ from Keν

0 from Ke

ν

misid 0πγ N→ ∆

dirtother

Total Background

1.5 3.

MiniBooNE νe

MiniBooNE νe

LSND:I νe appearance in νµ beam from

stopped pion source (3σ)

MiniBooNE:I No significant νe or νe excess in the

LSND-preferred regionI but νe consistent with LSNDI Low-E excess not understood

Experimental motivation 3: The reactor anomaly

Recent reevaluation of expected reactor νe flux is ∼ 3.5% higher thanprevious prediction Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687

Method: Use measured β-spectra from 238U, 235U, 241Pu fission at ILLand convert to νe spectrum (for single β-decay: Eν = Q − Ee)

Problem: Requires knowledge of Q-values for all contributing decays.→ take from nuclear databases where available, fit to data otherwiseCross check:

I Simulate mock e− spectra using few well-understood β-decaysI Reconstruct νe spectrum using old method: Result is 3% too lowI Reconstruct νe spectrum using new method: Result is exact.

Possible problem: Poorly understood effects in nuclei with large log ftHuber arXiv:1106.0687

Joachim Kopp Phenomenology with sterile neutrinos 8

The reactor anti-neutrino anomaly

Have short-baseline reactor experiments observed a νe deficit?

NO

BS/(

NE

XP) p

red

,new

Distance to Reactor (m)

Bugey−

4

RO

VN

O91

Bugey−

3

Bugey−

3

Bugey−

3 G

oesgen−

I

Goesgen−

II

Goesgen−

III

ILL

Kra

snoyars

k−

I

Kra

snoyars

k−

II

Kra

snoyars

k−

III

SR

P−

I

SR

P−

II

RO

VN

O88−

1I

RO

VN

O88−

2I

RO

VN

O88−

1S

RO

VN

O88−

2S

RO

VN

O88−

3S

Palo

Verd

e

CH

OO

Z

101

102

103

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Mention et al. arXiv:1101.2755

red = old reactor νe flux predictionblue = new reactor νe flux prediction

Joachim Kopp Phenomenology with sterile neutrinos 9

Sterile neutrino oscillations

Idea:Introduce extra neutrino flavor νs, mixing with the active onesνe → νs oscillations explain Gallium anomalyνe → νs oscillations explain reactor anomaly(_ )ν µ →

(_ )ν s →

(_ )ν e oscillations explain LSND + MiniBooNE

Joachim Kopp Phenomenology with sterile neutrinos 10

A 3+1 model: 3 active neutrinos + 1 sterile neutrino

Short baseline: Standard oscillations ineffective (∆m221, ∆m2

31 too small)Add extra (sterile) neutrinoFit shows: 3+1 neutrino scheme does not work well

JK Maltoni Schwetz 1103.4570 and work in progresssee also Giunti Laveder 1107.1452 and 1109.4033; Mention et al. 1101.2755; Karagiorgi et al. 0906.1997 and 1110.3735

10-3 10-2 10-1

10-1

100

101

sin 2 2Θ

Dm2

LSND

MB Ν

otherexps

Hw�oMINOSL

otherexps

LSND + MB Ν

90%, 99% CL, 2 dof

10-3 10-2 10-1

10-1

100

101

sin 2 2Θ

Dm2

disappearance

appearance

90%, 99% CL, 2 dof

“other exps” = NOMAD, KARMEN, MB ν, SBL reactors, CDHS, atmospheric ν, MINOSθ = effective mixing angle for

(_ )ν µ →

(_ )ν s →

(_ )ν e oscillations

Joachim Kopp Phenomenology with sterile neutrinos 11

Global fit in a 5-flavor scheme

Check if more than one sterile neutrino improves the fit:

10-1 100 10110-1

100

101

Dm 41 @eV2D

Dm51@eV2D

90%, 95%, 99%, 99.73%

3+2

1+3+1

ø

ø

JK Maltoni Schwetz 1103.4570 and work in progress

Joachim Kopp Phenomenology with sterile neutrinos 12

Global fit in a 5-flavor scheme (2)

|∆m241| |Ue4| |Uµ4| |∆m2

51| |Ue5| |Uµ5| δ/π χ2/dof

3+1 0.48 0.14 0.23 255.5/2523+2 1.10 0.14 0.11 0.82 0.13 0.12 -0.31 245.2/247

1+3+1 0.48 0.13 0.12 0.90 0.15 0.15 0.62 241.6/247

LSND+MB(ν) vs rest appearance vs disapp.old new old new

χ2PG,3+1/dof 27.3/2 25.8/2 15.7/2 14.2/2PG3+1 1.2× 10−6 2.5× 10−6 3.9× 10−4 8.2× 10−4

χ2PG,3+2/dof 30.0/5 24.8/5 24.7/4 19.5/4PG3+2 1.5× 10−5 1.5× 10−4 5.7× 10−5 6.1× 10−4

χ2PG,1+3+1/dof 24.9/5 21.2/5 19.6/4 10.7/4PG1+3+1 1.5× 10−4 7.5× 10−4 6.0× 10−3 3.1× 10−2

Parameter goodness of fit: Test compatibility of 2 data setsby comparing global χ2

min to χ2min for separate fits

Joachim Kopp Phenomenology with sterile neutrinos 13

Sterile neutrinos in cosmology

Models with one or several O(eV) sterile neutrinos are constrained bycomsology:

Sum of neutrino masses

∑mν . 0.5 eV

# of relativistic species

Nν > 3 mildly preferred

Hamann Hannestad Raffelt Tamborra Wong, arXiv:1006:5276

Ways out:Even more relativistic degrees of freedomDark energy equation of state parameter w < −1Neutrino chemical potential

Hamann Hannestad Raffelt Wong, arXiv:1108.4136

Suppressed production of sterile neutrinos in the early universefor instance by coupling to a Majoron field

Bento Berezhiani, hep-ph/0108064

Joachim Kopp Phenomenology with sterile neutrinos 14

Global fits — take home message

Substantial tension in the global fit.

Is one (or all) of the positive results not due toneutrino oscillations?Is one (or several) of the null results wrong?Are there more than 2 sterile flavors?Are there sterile neutrinos plus something else?

Joachim Kopp Phenomenology with sterile neutrinos 15

Outline

1 Theoretical and experimental motivation

2 Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Joachim Kopp Phenomenology with sterile neutrinos 16

The standard lore on neutrino oscillations

Diagonalization of the mass terms of the charged leptons and neutrinos gives

L ⊃ − g√2

(eαLγµUαjνjL) W−

µ + diag. mass terms + h.c.

(flavor eigenstates: α = e, µ, τ , mass eigenstates: j = 1,2,3)

Assume, at time t = 0 and location ~x = 0, a flavour eigenstate

|ν(0,0)〉 = |να〉 =∑

i

U∗αj |νj〉

is produced. At time t , location ~x it has evolved into

|ν(t)〉 =∑

i

U∗αje

−iEj t+i~pj~x |νi〉

Oscillation probability: (Loscjk = 4πE/∆m2

jk )

P(να → νβ) =˛〈νβ |ν(t)〉

˛2=

Xj,k

U∗αjUβjUαk U∗

βk e−i(Ej−Ek )t+i(~pj−~pk )~x

Joachim Kopp Phenomenology with sterile neutrinos 17

The standard lore on neutrino oscillations (2)

In the two-flavor approximation (working in one dimension and assumingt = x ≡ L):

P(να → νβ) =∑j,k

U∗αjUβjUαk U∗

βk e−i(Ej−Ek )t+i(~pj−~pk )~x

=∑j,k

U∗αjUβjUαk U∗

βk exp[− 2πi

LLosc

jk

]

' sin2 2θ sin2 ∆m2L4E

(θ = mixing angle, ∆m2 = m22 −m2

1, α 6= β)

Joachim Kopp Phenomenology with sterile neutrinos 18

Going beyond the standard approach

Questions not answered by the standard approach:How does the Heisenberg uncertainty on Ej , ~pj (σE , σp � ∆m2/2E) dueto localization of the source and detector affect oscillations?How heavy can a sterile neutrino be before it can no longer interfere withthe active neutrinos?Is the neutrino kinematically entangled with its interaction partners (e.g.the muon in π → µν)?. . .

Joachim Kopp Phenomenology with sterile neutrinos 19

Neutrino wave packets

One consistent solution: Feynman diagram approach to neutrino oscillations

ν

Pi(q)

Pf (k)

Di(q′)

Df (k′)

Akhmedov Cohen Beuthe Cardall Giunti GlashowGrimus Jacob Kayser Keister Kiers Kim JKLee Ligeti Lindner Nussinov Polyzou Rich SachsStockinger Smirnov Weiss, . . .

Treat external particles as (Gaussian) wave packets:

initial state final state

Production vertex φPi(~x1 − ~xP)e−iEPi t1 φPf (~x1 − ~xP)e+iEPf t1

Detection vertex φDi(~x2 − ~xD)e−iEDi t2 φDf (~x2 − ~xD)e+iEDf t2

Joachim Kopp Phenomenology with sterile neutrinos 20

Transition amplitude

iAαβ =

Zd3x1 dt1

Zd3x2 dt2 φPi(~x1 − ~xP)e−iEPi t1 φPf (~x1 − ~xP)e+iEPf t1

× φDi(~x2 − ~xD)e−iEDi t2 φDf (~x2 − ~xD)e+iEDf t2

×X

j

MPMDU∗αjUβk

Zd4p

(2π)4 e−ip0(t2−t1)+i~p(~x2−~x1) i(/p + mj)

p20 − ~p2 −m2

j + iε.

(assuming φPi , φPf , φDi , φDf to be spinors)

dt1 dt2-integrals → energy-conserving δ functions → p0-integral triviald3x1 d3x2-integrals can be evaluated if wave packets are Gaussiand3p-integral: Use Grimus-Stockinger theorem (limit of propagator forlarge L = |~xD − ~xS|): W. Grimus, P. Stockinger, Phys. Rev. D54 (1996) 3414, hep-ph/9603430∫

d3pψ(~p) ei~p~L

A− ~p2 + iε|~L|→∞−−−−→ −2π2

Lψ(√

A~LL )ei

√AL +O(L−

32 ).

Joachim Kopp Phenomenology with sterile neutrinos 21

Oscillation probability

Pαβ(L) ∝∑j,k

U∗αjUαk U∗

βk Uβj exp[− 2πi

LLosc

jk−

(L

Lcohjk

)2

−(∆m2

jk )2

32σ2mE2 − 2π2ξ2

(σx

Loscjk

)2

−(m2

j + m2k )2

32σ2mE2

],

see e.g. Beuthe hep-ph/0109119Five terms:Oscillation (Losc

jk = 4πE/∆m2jk )

Decoherence during propagation (see below)Decoherence at production/detection (see below)Localization: Typically requires size of neutrino wave packet σx smallerthan oscillation length (ξ = process-dependent parameter, can also be ∼ 0)

Approximate conservation of average energies/momenta

Joachim Kopp Phenomenology with sterile neutrinos 22

Oscillation probability

Pαβ(L) ∝∑j,k

U∗αjUαk U∗

βk Uβj exp[− 2πi

LLosc

jk−

(L

Lcohjk

)2

−(∆m2

jk )2

32σ2mE2 − 2π2ξ2

(σx

Loscjk

)2

−(m2

j + m2k )2

32σ2mE2

],

see e.g. Beuthe hep-ph/0109119

In two-flavor approximation, for not too large L and mj , mk , the well knownformula

P(να → νβ) = sin2 2θ sin2 ∆m2L4E

, ∆m2 = m22 −m2

1

is approximately recovered.

Joachim Kopp Phenomenology with sterile neutrinos 22

Decoherence due to wave packet separation

The neutrino’s mass eigenstate components separate spatially due totheir different group velocities

Pαβ(L) ∝ exp[−

(L

Lcohjk

)2]= exp

[−

( L ∆m2jk

4√

2σxE2

)2]Decoherence happens faster for short neutrino wave packets (small σx ),large ∆m2, or low energy (→ larger velocity difference)σx is an effective wave packet size which depends on the localization ofthe production process (Prod) and the detection process (Det)

σ2x = σ2

x,Prod + σ2x,Det

(spatially delocalized detection process can restore coherence even if masseigenstates are already separated)The difficult part: Estimate σx,Prod, σx,Det

Joachim Kopp Phenomenology with sterile neutrinos 23

Wave packet decoherence in the NuMI beamIn the NuMI beam

I 10−9 cm � σx . 10 cmlower limit: interatomic distance scaleupper limit: timing resolution of experimental electronics

I E ∼ 5 GeVI ∆m2

31 = 2.4× 10−3 eV2

Coherence length

Lcohjk = 4

√2σxE2/∆m2

jk

' 6× 105 light years(

σx

10 cm

)(E

5 GeV

)2(2.4× 10−3 eV2

∆m2jk

)

. . . not relevant experimentally

Note: For supernova neutrinos (smaller σx , lower E), Lcoh is very relevant

Joachim Kopp Phenomenology with sterile neutrinos 24

Decoherene in neutrino production and detection

Pαβ(L) ∝ exp[−

(∆m2jk )2

32σ2mE2

]

This term accounts for two effects:I If the neutrino’s parent particle (here: the pion) travels a long distance

(> Losc) while decaying, oscillations are averaged out.I If the experimental energy- and momentum resolutions are sufficient to

determine the neutrino mass kinematically, oscillations will vanish.

In the NuMI beam, the first effect dominates and precludes active–sterileoscillations for

∆m241 & 30 eV2

Joachim Kopp Phenomenology with sterile neutrinos 25

Outline

1 Theoretical and experimental motivation

2 Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Joachim Kopp Phenomenology with sterile neutrinos 26

Neutrinos and direct dark matter detection

Solar and atmospheric neutrinos are a well-known background to futuredirect dark matter searches see e.g. Gütlein et al. arXiv:1003.5530

ææ

æ

ææææææææææææææææææææææææææææææææææ

10-1 100 101 102 103 10410-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100101102

Erec HkeVL

coun

ts�N

A�k

eV�y

ear

electron recoil

DAMA

Borexino

XENON100 e-

CoGeNT

pp7Be

13N 15Opep

8B17F

hepSM total rateComponents

10-4 10-3 10-2 10-1 100 10110-2

10-1

100

101

102

103

104

105

106

107

108

Erec HkeVL

coun

ts�to

n�ke

V�y

ear

Nuclear recoil - Ge

pp7Be

13N 15Opep

8B

17F

hep

CoGeNT

CDMS-II

SM total rateComponents

If low-energy neutrino interactions are enhanced by new physics, thisbackground can be significantly enhanced→ Possible explanation of DM anomalies?

Pospelov arXiv:1103.3261, Harnik JK Machado (work in progress)

Joachim Kopp Phenomenology with sterile neutrinos 27

Enhanced neutrino scattering at low energies

Introduce new light (1 eV . . . 1 GeV) force mediator A′, e.g. a B − L gaugeboson, with small couplings g′

Differential neutrino scattering cross section on target particle T(electron or atomic nucleus):

dσνe

dEr∼ g′4mT

(M2A′ + 2Er mT )2

, Er = recoil energy

I Enhanced at low Er for light A′

I Negligible compared to SM scattering (∼ g4mT /M4W ) at energies probed in

dedicated neutrino experiments

Joachim Kopp Phenomenology with sterile neutrinos 28

Enhanced neutrino scattering at low energies

Introduce new light (1 eV . . . 1 GeV) force mediator A′, e.g. a B − L gaugeboson, with small couplings g′

æ

æ

æ

æ æææææææææææææææææææææææææææææææææ

10-1 100 101 102 10310-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Erec HkeVL

coun

ts�N

A�k

eV�y

ear

electron recoil

DAMA

Borexino

XENON100 e-

CoGeNT

Standard model

B

C

DA

Line MA¢ gegΝ

A ΜΝ = 0.32 ´ 10-10ΜB

B 10 keV 4 ´ 10-12

C 50 keV 4 ´ 10-12

D 250 keV 6 ´ 10-12

B, C, D: U(1)B−L boson B: U(1)B−L boson

Joachim Kopp Phenomenology with sterile neutrinos 28

Enhanced neutrino scattering at low energies

Introduce new light (1 eV . . . 1 GeV) force mediator A′, e.g. a B − L gaugeboson, with small couplings g′

æ

æ

æ

æ æææææææææææææææææææææææææææææææææ

10-1 100 101 102 10310-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Erec HkeVL

coun

ts�N

A�k

eV�y

ear

electron recoil

DAMA

Borexino

XENON100 e-

CoGeNT

Standard model

B

C

DA

Line MA¢ gegΝ

A ΜΝ = 0.32 ´ 10-10ΜB

B 10 keV 4 ´ 10-12

C 50 keV 4 ´ 10-12

D 250 keV 6 ´ 10-12

B, C, D: U(1)B−L boson B: U(1)B−L bosonA: ν magnetic moment

Joachim Kopp Phenomenology with sterile neutrinos 28

Enhanced neutrino scattering at low energies

Introduce new light (1 eV . . . 1 GeV) force mediator A′, e.g. a B − L gaugeboson, with small couplings g′

æ

æ

æ

æ æææææææææææææææææææææææææææææææææ

10-1 100 101 102 10310-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Erec HkeVL

coun

ts�N

A�k

eV�y

ear

electron recoil

DAMA

Borexino

XENON100 e-

CoGeNT

Standard model

B

C

DA

Line MA¢ gegΝ

A ΜΝ = 0.32 ´ 10-10ΜB

B 10 keV 4 ´ 10-12

C 50 keV 4 ´ 10-12

D 250 keV 6 ´ 10-12

B, C, D: U(1)B−L boson B: U(1)B−L bosonA: ν magnetic moment C, D: kinetically mixed U(1)′ + sterile ν

Joachim Kopp Phenomenology with sterile neutrinos 28

Constraints on light gauge bosons

10-24 10-21 10-18 10-15 10-12 10-9 10-6 10-3 110-16

10-14

10-12

10-10

10-8

10-6

10-4

10-210-24 10-21 10-18 10-15 10-12 10-9 10-6 10-3 1

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

mA'HGeVL

g

targetfixed

Hg-2LΜ

Hg-2Le

U

SN1987A

Atomic PhysicsCMB Atomic Physics

Fifth Force Old

Star

s

Old Stars,energy loss via Ν's

Sun

CAST

effLSW

Borexino

Harnik JK Machado (work in progress)

most limits taken from compilations by Jaeckel, Redondo, Ringwald;Bjorken, Essig, Schuster, Toro;

and Bordag, Klimchitskaya, Mohideen, Mostepanenko

Joachim Kopp Phenomenology with sterile neutrinos 29

U(1)B−L gauge boson

Neutrino model building with a light A′ gauge boson

A rich toolbox of possibilities:Different types of gauge bosons:

I Gauged B − LI A “dark photon” coupled to SM particles via kinetic mixingI Gauged baryon numberI . . .

Sterile neutrinos νs:I A′ can couple more strongly to νs than to SM particles

(e.g. νs carries U(1)′ charge, SM particles couple only through small kinetic mixing)I O(keV–MeV) sterile neutrinos make it easier to avoid certain bounds

Neutrino magnetic moments:I Magnetic moment interactions also enhanced at low energy

Joachim Kopp Phenomenology with sterile neutrinos 30

Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can showseasonal modulation:

The Earth–Sun distance: Solar neutrino flux peaks in winter.Active–sterile neutrino oscillations: For oscillation lengths . 1 AU, sterileneutrino appearance depends on the time of year.

Harnik JK Machado, work in progress

Joachim Kopp Phenomenology with sterile neutrinos 31

Temporal modulation of neutrino signals (2)

Sterile neutrino absorption: For strong νs–A′ couplings and not-too-weakA′–SM couplings, sterile neutrino cannot traverse the Earth.→ lower flux at night. And nights are longer in winter.Earth matter effects: An MSW-type resonance can lead to modified fluxof certain neutrino flavors at night. And nights are longer in winter.Direction-dependent detection efficiencies: If channeling effects areimportant, detection rates depend on the position of the Sun.

Harnik JK Machado, work in progress

Joachim Kopp Phenomenology with sterile neutrinos 32

Outline

1 Theoretical and experimental motivation

2 Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Joachim Kopp Phenomenology with sterile neutrinos 33

ConclusionsLight sterile neutrinos are well motivated experimentally and theoretically

I Two 3σ effects, several 2σ hintsI But: In the simplest models, severe tension with null results

Sterile neutrinos are a testing ground for the quantum mechanics ofneutrino oscillationsRich and interesting neutrino phenomenology in dark matter detectors

I Enhanced ν–e and ν–N scattering rates at low energyI Huge model-building toolbox: Various types of light gauge bosons, sterile

neutrinos at different mass scales, magnetic moments, . . .I Daily, semi-annual, and annual modulation signals possible

Joachim Kopp Phenomenology with sterile neutrinos 34

Thank you!

Experimental situation

Cl 95%

Ga 95%

νµ↔ν

τ

νe↔ν

X

100

10–3

∆m

2 [

eV

2]

10–12

10–9

10–6

102 100 10–2 10–4

tan2θ

CHOOZ

Bugey

CHORUS NOMAD

CHORUS

KA

RM

EN

2

νe↔ν

τ

NOMAD

νe↔ν

µ

CDHSW

NOMAD

KamLAND

95%

SNO

95% Super-K

95%

all solar 95%

http://hitoshi.berkeley.edu/neutrino

SuperK 90/99%

All limits are at 90%CL

unless otherwise noted

LSND 90/99%

MiniBooNE

K2KMINOS

“Atmospheric oscillations:”

νµ → ντ oscillations

∆m2 = (2.50+0.090.16 )× 10−3 eV2

Confirmed by Super-K, K2K, MINOS,T2K

“Solar oscillations:”νe → νµ, ντ oscillations

∆m2 = (7.59+0.200.18 )× 10−5 eV2

Confirmed by solar neutrino detectorsand KamLAND

Anomalous effects:LSND: ∆m2 & 0.1 eV2

Reactor anomaly: ∆m2 & few× 0.1 eV2

MiniBoone?Gallium anomaly?

Plot: Hitoshi Murayama, global fit: Schwetz Tórtola Valle 1108.1376

Joachim Kopp Phenomenology with sterile neutrinos 36

Fit to reactor anti-neutrino data in a 3+1 model

Assume 3 active neutrinos + 1 sterile neutrino(→ νe can oscillate into sterile neutrinos)

H

10-2

10-1

100

sin22θ

react

10-1

100

101

∆m

2 41 [e

V2]

90%, 99% CL (2 dof)

curves: old fluxescolors: new fluxes

JK Maltoni Schwetz 1103.4570 and work in progress

θreact = effective mixing angle for νe → νs oscillations

Joachim Kopp Phenomenology with sterile neutrinos 37

Our fitting procedure

Atmospheric neutrinos: Eight classes of events: Sub-GeV e, µ(p < 400 GeV/c), Sub-GeV e, µ (p > 400 GeV/c), Multi-GeV e, µ,Upward stopping µ, upward throughgoing µ, 10 zenith angle bins eachMINOS: Include NC and CC disappearance search(based on 1001.0336 and Neutrino 2010 talk by P. Vahle)

Reactor experiments: Bugey 3 (incl. spectrum), Bugey 4, Chooz (incl.spectrum), Goesgen 1–3, ILL, Krasnoyarsk 1–3, Palo Verde, RovnoSBL νe appearance experiments: LSND, KARMEN, MiniBooNE (ν (2010)and ν data, consider only E > 475 MeV, i.e. low-E excess in νe samplenot included)Gallium anomaly not includedSBL νµ disappearance experiments: CDHS, NOMADAll codes reproduce the individual fits from the respective experiments.

JK Maltoni Schwetz 1103.4570 and work in progress

Joachim Kopp Phenomenology with sterile neutrinos 38

The Grimus-Stockinger theorem

Let ψ(~p) be a three times continuously differentiable function on R3, such thatψ itself and all its first and second derivatives decrease at least like 1/|~p|2 for|~p| → ∞. Then, for any real number A > 0,∫

d3pψ(~p) ei~p~L

A− ~p2 + iε|~L|→∞−−−−→ −2π2

Lψ(√

A~LL )ei

√AL +O(L−

32 ).

⇒ Quantification of requirement of on-shellness for large L = |~L|.

W. Grimus, P. Stockinger, Phys. Rev. D54 (1996) 3414, hep-ph/9603430

Joachim Kopp Phenomenology with sterile neutrinos 39

Neutrino wave packets in a long-baseline experiment

Consider neutrino production via π → µν in the NuMI beam.Length of proton, pion, muon, neutrino wave packets:

1 fm � σx,Prod . 10 cm

(localization of particle in accelerator: ∼ 1 ns×c)

Joachim Kopp Phenomenology with sterile neutrinos 40

Neutrino wave packets in a long-baseline experiment

Consider neutrino production via π → µν in the NuMI beam.Length of proton, pion, muon, neutrino wave packets:

1 fm � σx,Prod . 10 cm

(localization of particle in accelerator: ∼ 1 ns×c)

Uncertainties in neutrino detection are much smaller:Interaction vertex localized to ∼1–10 Å.Duration of detection process: . 1 ns ∼ 10 cm(typical time resolution of detector electronics)

⇒ Spatial/Temporal uncertainty of ν detection process:

σx,Det < 10 cm

Length of neutrino wave packet

⇒ σx =√σ2

x,Prod + σ2x,Det . 10 cm

Joachim Kopp Phenomenology with sterile neutrinos 40