40
Bronnikov Algorithms Phase problem and the Radon transform Andrei V. Bronnikov Bronnikov Algorithms The Netherlands

Phase problem and the Radon transform - European ...€¦ · Phase problem and the Radon transform ... X-ray source. Bronnikov Algorithms ... is the counterpart of the Fourier slice

  • Upload
    hadieu

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Bronnikov Algorithms

Phase problem and the Radon transform

Andrei V. Bronnikov

Bronnikov Algorithms The Netherlands

Bronnikov Algorithms

• The Radon transform and applications• Inverse problem of phase-contrast CT• Fundamental theorem• Image reconstruction algorithms• Phantom studies• Experimental data

Bronnikov Algorithms

The Radon transform (J. Radon, 1917)

Object

Projectionθ

dlffsLine

s ∫=),(

θθ

s

Bronnikov Algorithms

The inverse 3D (Radon) transform (H.A. Lorentz, 1905)

θ

ωs

ωθωθπ

ddsfs

f ),,(ˆ4

12

2

2 ∂∂−

= ∫∫

Bronnikov Algorithms

Applications

• Medical imaging• Laboratory animals

• Materials research• Non-destructive testing• Reverse engineering• Geophysics

Bronnikov Algorithms

Principle of x-ray tomography

Detector plane

Object

θ

f

g

X-ray source

Bronnikov Algorithms

Fourier slice theorem

),(ˆ),(ˆ vugvuf θθθ =

Fourier transform in the central plane Fourier transform in the central plane is the Fourier transform of the is the Fourier transform of the projectionprojection

Detector plane

Object f

θg

Bronnikov Algorithms

1D Filtering

θθ

π

dgqf ∫ ∗=0

Backprojection

Image reconstruction

•• Filling up the Fourier spaceFilling up the Fourier space

•• Filtered backprojection:Filtered backprojection:

Bronnikov Algorithms

Density reconstruction; non-planar orbits(Bronnikov, 1995-2002)

Bronnikov Algorithms

Wavelet-based contrast enhancement

Original image Processed imageOriginal image Processed image

Bronnikov and Duifhuis, 1998

Bronnikov Algorithms

Contrast-enhanced imaging

X-ray images of the rat cerebellum

Absorption contrast Phase contrast

A. Momose, T. Takeda, Y. Itai and K. Hirao, Nature Medicine, 2, 473-475 (1996).

Bronnikov Algorithms

Phase-contrast imaging

•• Coherent xCoherent x--raysrays

•• Microfocus tubeMicrofocus tube

Bronnikov Algorithms

Phase-contrast CT vs. absorption-contrast CT ( ESRF )

Bronnikov Algorithms

Insect knee E=18 KeVInsect knee E=18 KeVSnigirev et al, ESRFSnigirev et al, ESRF

Bronnikov Algorithms

Problems

•• the lack of the the lack of the linear linear theory comparable to theory comparable to that of conventional absorptionthat of conventional absorption--based CTbased CT

•• no quantitative solution (only edges of the no quantitative solution (only edges of the objects are reconstructed)objects are reconstructed)

•• huge amount of highhuge amount of high--resolution dataresolution data

Bronnikov Algorithms

Goals

•• to develop an accurate and practical to develop an accurate and practical mathematical tool for quantitative phasemathematical tool for quantitative phase--contrast image reconstructioncontrast image reconstruction

•• to suggest the fastest image reconstruction to suggest the fastest image reconstruction algorithm for phasealgorithm for phase--contrast CTcontrast CT

Bronnikov Algorithms

Inverse problem of phase-contrast tomography

πθθ <≤0),,( from),,(find 321 yxIxxxf z

- find the phase from intensity- invert Radon transform to reconstruct the object

• Phase retrieval (holographic) approach(Cloetens et al 1999):

• Reconstruction formula (CT approach):- a straightforward linear relation between the intensity and the object function

Bronnikov Algorithms

Phase retrieval

• Nonlinear iterative methods (Gershberg, Saxton 1972; Fienup, 1982)

• Linear TIE method (Gureyev et al, 2004)

• Linear Wigner transform (Maier, Preobrazshenski 1990; Raymer et al 1994)

Bronnikov Algorithms

Wigner transform

∫∞

∞−

′− ′′

+′

−= xdexxVxxVxW xizzz

ξπξ 2* )2

()2

(),(

)()0()(),(),( 0*

00 xVxVxWzxIWignerInversetransformRadon

ϕξ ⇒⇒⇒

Bronnikov Algorithms

Radon-Wigner transform

),()(),(0 zxIdxdxzxxW =′′−−′∫ ∫∞

∞−

∞−

ξξδξ

ξ

x'

zarctan =θ

),(0 ξxW ′

),( zxI

Bronnikov Algorithms

Implementation (Bronnikov et al 1991)

function Wigner discrete theof samples ofnumber -n

2 planesdetection ofNumber nπ≥

zDetector positions

Object

)()0()(),(),( 0*

00 xVxVxWzxIWignerInversetransformRadon

ϕξ ⇒⇒⇒

Bronnikov Algorithms

Inverse problem of phase-contrast tomography

πθθ <≤0),,( from),,(find 321 yxIxxxf z

- find the phase from intensity- invert Radon transform to reconstruct the object- multiple detector positions along the beam

•• Phase retrieval (holographic) approach:Phase retrieval (holographic) approach:

- a straightforward linear relation between the intensity and the object function- single detector position

•• Reconstruction formula (CT approach):Reconstruction formula (CT approach):

Bronnikov Algorithms

Mathematical model: the Fresnel propagator

Bronnikov Algorithms

Theoretical background),(),(2

1

),( yxiyxeyxT θθ ϕµθ

+−= Transmission functionTransmission function

iUyxTyxU ),(),( θθ = WavefieldWavefield

πθθθ <≤∗∗= 0,),( 2UhyxI zz FresnelFresnel propagationpropagation

0, →∂∂

∂∂

yxθθ µµ ConditionsConditions2Dd <λ

∇−= ),(

21),( 20 yxdIyxId

θθθ ϕπλ Intensity equationIntensity equation

Bronnikov Algorithms

Radon transforms2D transform (lines) 3D transform (planes)2D transform (lines) 3D transform (planes)

dlffsLine

s ∫=),(

ωω σ

ωθωθ dff

sPlanes ∫=

),,(,,

ˆ

θ

ωssω

Bronnikov Algorithms

Fundamental theorem (Bronnikov 2002)

Second derivative of 3D Radon transform Second derivative of 3D Radon transform of the object is proportional to 2D Radon of the object is proportional to 2D Radon transform of the phasetransform of the phase--contrast projectioncontrast projection

Detector plane

Object

),(ˆ1),,(ˆ2

2

ωωθ θ sgd

sfs

−=

∂∂

2Dd <λ

f

g

d

Bronnikov Algorithms

Inversion formula (Bronnikov 1999)

3D backprojection of the 2D Radon 3D backprojection of the 2D Radon transform of the phasetransform of the phase--contrast projectioncontrast projection

Object

ωθωπ

ωθωθπ θ ddsg

dddsf

sf ),(ˆ

41),,(ˆ

41

22

2

2 ∫∫∫∫ =∂∂−

=

f

g

d

θ

ω

Bronnikov Algorithms

FBP algorithm (Bronnikov 1999, 2002)

2D FilteringBackprojection

θπ θ

π

dgqd

f ∫ ∗∗=0

241

θ

Bronnikov Algorithms

Analytical filter function (Bronnikov 1999, 2002)

θπ θ

π

dgqd

f ∫ ∗∗=0

241

22 yxy

q+

=

MTF of the 2D filter:MTF of the 2D filter:22 ηξ

ξ+

=Q

Bronnikov Algorithms

Implementation

•• FFTFFT--based linear filteringbased linear filtering•• 2D parallel2D parallel--beam backpojectionbeam backpojection•• FBP structure (parallelization)FBP structure (parallelization)•• Hardware accelerationHardware acceleration

The fastest algorithm possible

Bronnikov Algorithms

Phase objectPhase object

θπ θ

π

dgqd

f ∫ ∗∗=0

2411/),( −= i

d IIyxg θθ

Object

NearNear--field intensityfield intensity ReconstructionReconstructiondIθ

DetectorDetector

zd

θ

Bronnikov Algorithms

Phantom studies: polystyrene spherePhantom studies: polystyrene sphere

3D computer phantom3D computer phantom

d d = 2.5 cm= 2.5 cm

λ = 0.1 nm, ∆ = 1 µm

3D reconstruction3D reconstruction

PhasePhase--contrast contrast projectionsprojections

Bronnikov Algorithms

Quantification and the limits of the linear Quantification and the limits of the linear approximationapproximation

d = d = 2.5 cm 1.51.5 < d < < d < 20 cm2.5 cm 20 cm

Bronnikov Algorithms

Stability to noiseStability to noise

0%0% 1%1% 2%2% 5%5%

Bronnikov Algorithms

Mixed phase and amplitude objectMixed phase and amplitude object

Absorption function Absorption function µµ/2/2 Phase function Phase function ϕϕ

),(),(21

),( yxiyxeyxT ϕµ +−=

Bronnikov Algorithms

Mixed phase and amplitude objectMixed phase and amplitude object

θπ θ

π

dgqd

f ∫ ∗∗=0

2411/),( 0 −= θθθ IIyxg d

θ

0θI

Object

dIθ

ReconstructionReconstructionz

d

Contact intensity NearContact intensity Near--field intensityfield intensity

Bronnikov Algorithms

Comparison with heuristic methodsComparison with heuristic methods(Anastasio(Anastasio et al, PMB 2003)et al, PMB 2003)

BPBackprojection “Absorption” FBP

“Absorption” LFBP Bronnikov method

Bronnikov Algorithms

Polypropylene foamPolypropylene foam((Schena et al; ElettraSchena et al; Elettra, 2004), 2004)

Conventional FPB Bronnikov method

Bronnikov Algorithms

Polyethylene tube with polymer fibers Polyethylene tube with polymer fibers (Groso and Stampanoni(Groso and Stampanoni; SLS, 2005); SLS, 2005)

721 projections; 15 cm distance sample detector; Energy=13.5 keVPixel size 1.75 microns

Bronnikov Algorithms

SummarySummary

•• A fundamental theorem has been proved. This A fundamental theorem has been proved. This is the counterpart of the Fourier slice theorem is the counterpart of the Fourier slice theorem used in absorptionused in absorption--based CTbased CT

•• A fast image reconstruction algorithm has been A fast image reconstruction algorithm has been implemented in the form of filtered implemented in the form of filtered backprojectionbackprojection (FBP)(FBP)