21
1 Phase equilibria: solubility limit Introduction Solutions – solid solutions, single phase Mixtures – more than one phase Solubility Limit: Max concentration for which only a single phase solution occurs. Question: What is the solubility limit at 20°C? Answer: 65 wt% sugar. If C o < 65 wt% sugar: syrup If C o > 65 wt% sugar: syrup + sugar. 65 Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) 0 20 40 60 80 100 C o =Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit L (liquid) + S (solid sugar) 20 40 60 80 10 0 Pure Water Adapted from Fig. 9.1, Callister 7e.

Phase equilibria: solubility limit · Phase equilibria: solubility limit Introduction –Solutions – solid solutions, single phase –Mixtures – more than one phase • Solubility

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Phase equilibria: solubility limit

    Introduction– Solutions – solid solutions, single phase– Mixtures – more than one phase

    • Solubility Limit: Max concentration for which only a single phase solution occurs.

    Question: What is the solubility limit at 20°C?

    Answer: 65 wt% sugar. If Co < 65 wt% sugar: syrup If Co > 65 wt% sugar: syrup + sugar. 65

    Sucrose/Water Phase Diagram

    Pure

    Su

    gar

    Tem

    pera

    ture

    (°C

    )

    0 20 40 60 80 100Co =Composition (wt% sugar)

    L (liquid solution

    i.e., syrup)

    Solubility Limit L

    (liquid) +

    S

    (solid sugar)20

    40

    60

    80

    10 0

    Pure

    W

    ater

    Adapted from Fig. 9.1,Callister 7e.

  • 2

    Components and phases

    • Components: The elements or compounds which are present in the mixture (e.g., Al and Cu)• Phases: The physically and chemically distinct material regions that result (e.g., α and β).

    Aluminum-CopperAlloy

    α (darker

    phase)

    β (lighter

    phase)

    Adapted fromchapter-openingphotograph,Chapter 9,Callister 3e.

  • 3

    Phase diagrams

    • Indicate phases as function of T, Co, and P.• For this course: -binary systems: just 2 components. -independent variables: T and Co (P = 1 atm is almost always used).

    • PhaseDiagramfor Cu-Nisystem

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from PhaseDiagrams of Binary Nickel Alloys, P. Nash(Ed.), ASM International, Materials Park,OH (1991).

    • 2 phases:

    L (liquid)α (FCC solid solution)

    • 3 phase fields: LL + αα

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    1400

    1500

    1600T(°C)

    L (liquid)

    α

    (FCC solid

    solution)

    L + αliqu

    idus

    solidu

    s

  • 4

    Phase diagrams

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    1400

    1500

    1600T(°C)

    L (liquid)

    α

    (FCC solid solution)

    L + α

    liquidu

    s

    solidu

    s

    Cu-Niphase

    diagram

    • Rule 1: If we know T and Co, then we know: --the # and types of phases present.

    • Examples:A(1100°C, 60): 1 phase: α

    B (1250°C, 35): 2 phases: L + α

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from PhaseDiagrams of Binary Nickel Alloys, P. Nash(Ed.), ASM International, Materials Park,OH, 1991).

    B (1

    250°

    C,3

    5) A(1100°C,60)

  • 5

    Phase diagrams

    wt% Ni20

    1200

    1300

    T(°C)

    L (liquid)

    α

    (solid)L + α

    liquidus

    solidus

    30 40 50

    L + α

    Cu-Nisystem

    • Rule 2: If we know T and Co, then we know: --the composition of each phase.

    • Examples:T A

    A

    35C o

    32C L

    At TA = 1320°C:

    Only Liquid (L) C L = C o ( = 35 wt% Ni)

    At TB = 1250°C:

    Both α and L C L = C liquidus ( = 32 wt% Ni here)

    C α = C solidus ( = 43 wt% Ni here)

    At TD = 1190°C:

    Only Solid ( α ) C α = C o ( = 35 wt% Ni)

    C o = 35 wt% Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASMInternational, Materials Park, OH, 1991.)

    BT B

    DT D

    tie line

    4C α

    3

  • 6

    Phase diagrams

    • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%).

    • Examples:

    At TA : Only Liquid (L)

    W L = 100 wt%, W α = 0At TD : Only Solid (α )

    W L = 0, Wα = 100 wt%

    C o = 35 wt% Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagrams ofBinary Nickel Alloys, P. Nash (Ed.), ASMInternational, Materials Park, OH, 1991.)

    wt% Ni20

    1200

    1300

    T(°C)

    L (liquid)

    α

    (solid)L + α

    liquidus

    solidus

    30 40 50

    L + α

    Cu-Nisystem

    T AA

    35C o

    32C L

    BT B

    DT D

    tie line

    4C α

    3

    R S

    At TB : Both α and L

    % 733243

    3543wt=

    !

    !=

    = 27 wt%

    WL =S

    R + S

    Wα =R

    R + S

  • 7

    The lever rule

    Tie line – connects the phases in equilibrium with each other - essentially anisotherm

    How much of each phase? Think of it as a lever (teeter-totter)

    ML Mα

    R S

    RMSML!=!"

    L

    L

    LL

    L

    LCC

    CC

    SR

    RW

    CC

    CC

    SR

    S

    MM

    MW

    !

    !=

    +=

    !

    !=

    +=

    +=

    "

    "

    "

    "

    "

    00

    wt% Ni

    20

    1200

    1300

    T(°C)

    L (liquid)

    α

    (solid)L + α

    liquidus

    solidus

    30 40 50

    L + α

    BT B

    tie line

    CoCL Cα

    SR

    Adapted from Fig. 9.3(b),Callister 7e.

  • 8

    Cooling

    wt% Ni20

    1200

    1300

    30 40 501100

    L (liquid)

    α (solid)

    L + α

    L + α

    T(°C)

    A

    35Co

    L: 35wt%NiCu-Ni

    system

    • Phase diagram: Cu-Ni system.

    • System is: --binary i.e., 2 components: Cu and Ni. --isomorphous i.e., complete solubility of one component in another; α phase field extends from 0 to 100 wt% Ni.

    Adapted from Fig. 9.4,Callister 7e.

    • Consider Co = 35 wt%Ni.

    46354332

    α: 43 wt% Ni

    L: 32 wt% Ni

    L: 24 wt% Niα: 36 wt% Ni

    Bα: 46 wt% NiL: 35 wt% Ni

    C

    D

    E

    24 36

  • 9

    Binary eutectic systems

    : Min. melting TE

    2 componentshas a special compositionwith a min. melting T.

    Adapted from Fig. 9.7,Callister 7e.

    • Eutectic transitionL(CE) α(CαE) + β(CβE)

    • 3 single phase regions (L, α, β )

    • Limited solubility: α : mostly Cu

    β : mostly Ag

    • TE : No liquid below TE

    • CE

    composition

    Ex.: Cu-Ag system

    Cu-Agsystem

    L (liquid)

    α L + α L+β β

    α + β

    Co , wt% Ag20 40 60 80 1000

    200

    1200T(°C)

    400

    600

    800

    1000

    CE

    TE 8.0 71.9 91.2779°C

  • 10

    Binary eutectic systems

    L+αL+β

    α+ β

    200

    T(°C)

    18.3

    C, wt% Sn20 60 80 1000

    300

    100

    L (liquid)

    α183°C

    61.9 97.8β

    • For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... --the phases present:

    Pb-Snsystem

    α + β

    --compositions of phases:

    CO = 40 wt% Sn

    --the relative amount of each phase:

    150

    40Co

    11Cα

    99Cβ

    SR

    Cα = 11 wt% Sn

    Cβ = 99 wt% Sn

    W α =Cβ - COCβ - Cα

    =99 - 4099 - 11

    =5988

    = 67 wt%

    SR+S

    =

    W β =CO - CαCβ - Cα

    =RR+S

    =29

    88= 33 wt%=

    40 - 1199 - 11

    Adapted from Fig. 9.8,Callister 7e.

  • 11

    Binary eutectic systems

    L+β

    α+ β

    200

    T(°C)

    C, wt% Sn20 60 80 1000

    300

    100

    L (liquid)

    α β

    L+ α

    183°C

    • For a 40 wt% Sn-60 wt% Pb alloy at 200°C, find... --the phases present:

    Pb-Snsystem

    Adapted from Fig. 9.8,Callister 7e.

    α + L

    --compositions of phases:

    CO = 40 wt% Sn

    --the relative amount of each phase:

    W α =CL - COCL - Cα

    =46 - 40

    46 - 17

    = 6

    29= 21 wt%

    W L =CO - CαCL - Cα

    =23

    29= 79 wt%

    40Co

    46CL

    17Cα

    220SR

    Cα = 17 wt% SnCL = 46 wt% Sn

  • 12

    Microstructures in eutectic systems

    • Co < 2 wt% Sn• Result: --at extreme ends --polycrystal of α grains i.e., only one solid phase.

    Adapted from Fig. 9.11,Callister 7e.

    0

    L+ α200

    T(°C)

    Co, wt% Sn10

    2

    20Co

    300

    100

    L

    α

    30

    α+β

    400

    (room T solubility limit)

    TE(Pb-SnSystem)

    αL

    L: Co wt% Sn

    α: Co wt% Sn

  • 13

    Microstructures in eutectic systems

    • 2 wt% Sn < Co < 18.3 wt% Sn• Result:

    Initially liquid + α then α alone finally two phases

    α polycrystal fine β-phase inclusions

    Adapted from Fig. 9.12,Callister 7e.

    Pb-Snsystem

    L + α

    200

    T(°C)

    Co , wt% Sn10

    18.3

    200Co

    300

    100

    L

    α

    30

    α+ β

    400

    (sol. limit at TE)

    TE

    2(sol. limit at Troom)

    L: Co wt% Sn

    αβ

    α: Co wt% Sn

  • 14

    Microstructures in eutectic systems

    • Co = CE• Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

    Adapted from Fig. 9.13,Callister 7e.

    Adapted from Fig. 9.14, Callister 7e.160 µm

    Micrograph of Pb-Sn eutectic microstructure

    Pb-Snsystem

    L + β

    α + β

    200

    T(°C)

    C, wt% Sn20 60 80 1000

    300

    100

    L

    α β

    L+ α183°C

    40

    TE

    18.3

    α: 18.3 wt%Sn

    97.8

    β: 97.8 wt% Sn

    CE61.9

    L: Co wt% Sn

  • 15

    Microstructures in eutectic systems

    • 18.3 wt% Sn < Co < 61.9 wt% Sn• Result: α crystals and a eutectic microstructure

    18.3 61.9

    SR

    97.8

    SR

    primary αeutectic α

    eutectic β

    WL = (1- W α ) = 50 wt%

    C α = 18.3 wt% Sn

    CL = 61.9 wt% SnS

    R + SW α = = 50 wt%

    • Just above TE :

    • Just below TE :

    C α = 18.3 wt% Sn

    C β = 97.8 wt% SnS

    R + SW α = = 73 wt%

    W β = 27 wt%Adapted from Fig. 9.16,Callister 7e.

    Pb-Snsystem

    L+β200

    T(°C)

    Co, wt% Sn

    20 60 80 1000

    300

    100

    L

    α β

    L+α

    40

    α+β

    TE

    L: Co wt% Sn LαLα

  • 16

    Hypoeutectic & hypereutectic

    L+αL+β

    α+β

    200

    Co, wt% Sn20 60 80 1000

    300

    100

    L

    α β

    TE

    40

    (Pb-Sn System)

    Adapted from Fig. 9.8,Callister 7e. (Fig. 9.8adapted from Binary PhaseDiagrams, 2nd ed., Vol. 3,T.B. Massalski (Editor-in-Chief), ASM International,Materials Park, OH, 1990.)

    160 µmeutectic micro-constituent

    Adapted from Fig. 9.14,Callister 7e.

    hypereutectic: (illustration only)

    β

    ββ

    ββ

    β

    Adapted from Fig. 9.17,Callister 7e. (Illustrationonly)

    (Figs. 9.14 and 9.17from MetalsHandbook, 9th ed.,Vol. 9,Metallography andMicrostructures,American Society forMetals, MaterialsPark, OH, 1985.)

    175 µm

    α

    α

    α

    αα

    α

    hypoeutectic: Co = 50 wt% Sn

    Adapted fromFig. 9.17, Callister 7e.

    T(°C)

    61.9eutectic

    eutectic: Co = 61.9 wt% Sn

  • 17

    Intermetallic compounds

    Mg2Pb

    Note: intermetallic compound forms a line - not an area - because stoichiometry (i.e.composition) is exact.

    Adapted fromFig. 9.20, Callister 7e.

  • 18

    Peritectic & eutectoid

    • Cu-Zn Phase diagram

    Adapted fromFig. 9.21, Callister 7e.

    Eutectoid transition δ γ + ε

    Peritectic transition γ + L δ

  • 19

    Fe-C phase diagram

    • 2 important

    points

    -Eutectoid (B):

    γ ⇒ α + Fe3C

    -Eutectic (A):

    L ⇒ γ + Fe3C

    Adapted from Fig. 9.24,Callister 7e.

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ+Fe3C

    α+Fe3C

    α+ γ

    L+Fe3C

    δ

    (Fe) Co, wt% C

    1148°C

    T(°C)

    α 727°C = Teutectoid

    ASR

    4.30Result: Pearlite = alternating layers of α and Fe3C phases

    120 µm

    (Adapted from Fig. 9.27, Callister 7e.)

    γ γγγ

    R S

    0.76

    Ceu

    tect

    oid

    B

    Fe3C (cementite-hard)α (ferrite-soft)

  • 20

    Hypoeutectoid steel

    Adapted from Figs. 9.24and 9.29,Callister 7e.(Fig. 9.24 adapted fromBinary Alloy PhaseDiagrams, 2nd ed., Vol.1, T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ + Fe3C

    α + Fe3C

    L+Fe3C

    δ

    (Fe) Co , wt% C

    1148°C

    T(°C)

    α727°C

    (Fe-C System)

    C0

    0.76

    Adapted from Fig. 9.30,Callister 7e.proeutectoid ferritepearlite

    100 µm Hypoeutectoidsteel

    R S

    α

    wα =S/(R+S)wFe3C =(1-wα)

    wpearlite = wγpearlite

    r s

    wα =s/(r+s)wγ =(1- wα)

    γγ γ

    γαα

    α

    γγγ γ

    γ γγγ

  • 21

    Hypereutectoid steel

    Fe3C

    (cem

    entit

    e)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    γ (austenite)

    γ+L

    γ +Fe3C

    α +Fe3C

    L+Fe3C

    δ

    (Fe) Co , wt%C

    1148°C

    T(°C)

    α

    Adapted from Figs. 9.24and 9.32,Callister 7e.(Fig. 9.24 adapted fromBinary Alloy PhaseDiagrams, 2nd ed., Vol.1, T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    (Fe-C System)

    0.76

    Co

    Adapted from Fig. 9.33,Callister 7e.

    proeutectoid Fe3C

    60 µmHypereutectoid steel

    pearlite

    R S

    wα =S/(R+S)wFe3C =(1-wα)

    wpearlite = wγpearlite

    sr

    wFe3C =r/(r+s)wγ =(1-w Fe3C)

    Fe3C

    γγγ γ

    γγγ γ

    γγγ γ