88
Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre- taceous dykes in the central North China Craton: implications for magma genesis and gold metallogeny Qing Li, M. Santosh, Sheng-Rong Li, Ju-Quan Zhang PII: S0169-1368(14)00342-4 DOI: doi: 10.1016/j.oregeorev.2014.11.015 Reference: OREGEO 1390 To appear in: Ore Geology Reviews Received date: 1 September 2014 Revised date: 9 November 2014 Accepted date: 11 November 2014 Please cite this article as: Li, Qing, Santosh, M., Li, Sheng-Rong, Zhang, Ju-Quan, Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes in the central North China Craton: implications for magma genesis and gold metallogeny, Ore Geology Reviews (2014), doi: 10.1016/j.oregeorev.2014.11.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

�������� ����� ��

Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton: implications for magmagenesis and gold metallogeny

Qing Li, M. Santosh, Sheng-Rong Li, Ju-Quan Zhang

PII: S0169-1368(14)00342-4DOI: doi: 10.1016/j.oregeorev.2014.11.015Reference: OREGEO 1390

To appear in: Ore Geology Reviews

Received date: 1 September 2014Revised date: 9 November 2014Accepted date: 11 November 2014

Please cite this article as: Li, Qing, Santosh, M., Li, Sheng-Rong, Zhang, Ju-Quan,Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes inthe central North China Craton: implications for magma genesis and gold metallogeny,Ore Geology Reviews (2014), doi: 10.1016/j.oregeorev.2014.11.015

This is a PDF file of an unedited manuscript that has been accepted for publication.As a service to our customers we are providing this early version of the manuscript.The manuscript will undergo copyediting, typesetting, and review of the resulting proofbefore it is published in its final form. Please note that during the production processerrors may be discovered which could affect the content, and all legal disclaimers thatapply to the journal pertain.

Page 2: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 1

Petrology, geochemistry and zircon U-Pb and Lu-Hf

isotopes of the Cretaceous dykes in the central North

China Craton: implications for magma genesis and gold

metallogeny

Qing Lia,c, M. Santoshb.c*, Sheng-Rong Lia,c, Ju-Quan Zhanga,c

aState Key Laboratory of Geological Processes and Mineral Resources,

China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China.

bState Key Laboratory of Continental Dynamics, Department of Geology,

Northwest University, Xi'an 710069, China.

cSchool of Earth Science and Resources, China University of

Geosciences, 29 Xueyuan Road, Beijing 100083, China.

*Corresponding author Email address: [email protected].

Abstract

The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that

amalgamates the Western and Eastern Blocks of the North China Craton

(NCC), witnessed extensive magmatism and metallogeny during Mesozoic,

associated with intraplate tectonics and differential destruction of the cratonic

lithosphere. Here we investigate a suite of porphyry dykes surrounding the

Mapeng batholith in the Fuping Complex within the TNCO in relation to the

Mesozoic gold and molybdenum mineralization. The major element chemistry

of these dykes show a range of SiO2 (57.92 to 69.47 wt %), Na2O (3.20 to

4.77 wt %), K2O (3.12 to 4.60 wt %) and MgO (0.51 to 3.67 wt %), together

Page 3: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 2

with high concentration of LREE and LILE, and relatively low contents of

HREE and HFSE. The rocks display (La/Yb)N=13.53–48.11, negative Nb, Ta,

Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The

mineralogy and geochemistry of the porphyry dykes indicate the rocks to be

high-K calc-alkaline, and I-type, with adakitic features similar to those of the

adjacent Mapeng batholith. The source magma for these rocks was derived

from a mixture of reworked ancient continent crust and juvenile mantle

materials. The zircon U-Pb data from these rocks show ages in the range of

124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng

intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes

represent capture from the basement rocks during melting. The zircon Lu-Hf

isotopic compositions show negative εHf(t) values varying from -27.8 to -11.3,

with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf

crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the

Mesozoic magmatism and associated metallogeny involved substantial

recycling of ancient basement rocks of the NCC. We present an integrated

model to evaluate the genesis of the porphyry systems and their relation to

mineralization. We envisage that these dykes probably acted as stoppers

(impermeable barriers) that prevented the leakage and run-off of the ore-

bearing fluids, and played a key role in concentrating the gold and

molybdenum mineralization.

Key words:

Cretaceous dykes; Petrology; Geochemistry; Zircon U-Pb geochronology and

Hf isotopes; Gold metallogeny

Page 4: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 3

1. Introduction

In the North China Craton (NCC), Mesozoic magmatism is intrinsically

linked to lithospheric destruction, and has long being recognized to be an

important key for understanding the geodynamic processes (e.g., Deng et al.,

2004; Hou et al., 2004; Luo et al., 2006; Menzies et al., 1993; Mo et al., 2006;

Pirajno et al., 2011; Zhang et al., 2011). Extensive dyke swarms associated

with this magmatic activity are often observed to be closely related to the gold

and polymetallic mineralization in the NCC (e.g., Guo et al., 2013; Zhai and

Santosh, 2013; Q.Y. Yang et al., 2014; Ma et al., 2014). In the Bangong-

Nujiang suture zone in the Tibetan Plateau, many granodiorite porphyry dykes

are related with gold deposits (Li et al., 2005), whereas in the Southern Lhasa

terrane of the Tibetan Plateau, granitic porphyry dykes are closely related with

molybdenum deposits (Li et al, 2008; Hou et al., 2004). In the Central Asian

Orogenic belt, granitic dykes are associated with Pb-Zn deposits in the

Daxinganling region (Li and Santosh, 2014), whereas dioritic porphyry and

granodioritic porphyry dykes are of importance to the gold mineralization in

the northeastern Heilongjiang Province and the northern Xinjiang Autonomous

Region (Li et al., 2014b). In the northern margin of the Tarim Plate, gold

mineralization is found to be related with granitic dykes (Li et al., 2014). ),

Large scale Mesozoic magmatism considerably destroyed the cratonic

architecture of the NCC, a major Precambrian nucleus in Asia (e.g., Chen et

al., 2009; Gao et al., 2009; Li and Santosh, 2014; Zhai et al., 2002; Zhang,

2009; Zhang et al., 2011; Zheng and Wu, 2009; Zheng, 2009; Zhu and Zheng,

2009; Zhu et al., 2011a, 2011b). Magma tectonics and geodynamic settings of

metallic mineralization, including gold and iron deposits, have been used in

several studies to evaluate the link between Mesozoic metallogenic events in

the margins of the NCC with the lithospheric thinning and craton destruction

(e.g., Chen et al., 2007; Fan and Menzies, 1992; Goldfarb and Santosh, 2014;

Page 5: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 4

Guo et al., 2013, 2014; Hu et al., 2009; Li et al. 2013a, 2014a; Li et al.,2013b;

Li et al.,2013c; Li and Santosh, 2014; Mao et al., 2005; Menzies et al., 1993;

Sun et al., 2014; Wang et al., 2014; Yang et al., 2003; Yang et al., 2013; Yang

and Santosh, 2014; Zhang et al., 2012). The major metallogenic systems in

the NCC include the Archean BIF system, Paleoproterozoic Cu–Pb–Zn and

Mg–boron–graphite systems, Mesoproterozoic REE–Fe–Pb–Zn system,

Paleozoic orogenic Cu–Mo system, and the Mesozoic intracontinental Au and

Ag-Pb-Zn-Mo system as summarized by Zhai and Santosh (2013). Li and

Santosh (2014) considered that the multiple magmatic events and

metallogeny coincided by the boundaries of the micro-blocks and the margins

of the NCC which served as weak zones for craton destruction and

mineralization.

It has been noted that the extensive gold mineralization in the NCC,

including those in the Jiaodong Peninsula (southeastern margin of the NCC),

the Xiaoqinling region (southern margin of the NCC) and the Jibei region

(northern margin of the NCC), is prominently linked with dyke swarms (Li and

Santosh, 2014). These dykes range in composition from diabasic to granitic,

including lamprophyre, doleritic and dioritic porphyry, and granodioritic

porphyry. The geochemistry and petrogenesis of these dykes have been the

focus of several previous studies (e.g., Bi et al., 2011; Cheng et al., 1998; Sun

et al., 2000; Hu et al., 2001; Guo et al., 2004; Yang et al., 2004). The

relationship among the basement rocks, plutons and various types of dykes is

important to understand the genesis of the gold and other metallic

mineralization in these regions.

Dyke swarms related to metallogeny are found not only in the margins of

the NCC, but also in the central regions in the Hanxing region, Fuping -

Hengshan region and Laiyuan region, where the dykes are of significance to

iron, gold and copper metallogeneses (Li et al., 2013a; 2014a; Li et al., 2013b;

Li and Santosh, 2014; Shen et al., 2013; 2014; Dong et al., 2013). In this

paper, we present the petrology, geochemistry and zircon U-Pb and Lu-Hf

Page 6: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 5

isotopes on a suite of dykes surrounding the Mapeng batholith in the Fuping

region of the Taihang Mountains, in the central part of the NCC along the

Trans-North China Orogen (TNCO) which is considered as a Paleoproterozoic

suture along which the Eastern and Western Blocks of the NCC were

amalgamated (Zhao et al., 2001a, 2007, 2010; Santosh, 2010; Santosh et al.,

2013). Based on the results, we evaluate the geochemical characteristics of

the rocks, their timing and geodynamic setting, and the source characteristics

and relationship between the dykes and the metallogeny.

2. Geological background

The NCC as one of the oldest and largest cratons in the East Asia,

preserves ca. 2.5-3.8Ga Archean core, and covers an area of over 300,000

km2 (Zhai, 2014; Zhai and Santosh, 2011; Zhao and Zhai, 2013). The history

of early crustal growth, amalgamation of micro-continents, rifting – subduction

– accretion – collision and cratonization from late Neoarchean through

Paleoproterozoic are well preserved in the NCC (Santosh et al., 2012, 2013;

Zhao et al., 2002, 2011; Zhai and Santosh, 2011). The early Precambrian

evolution history of the NCC has been addressed in several studies (Chen et

al., 2009; Kusky et al., 2007; Santosh et al., 2006, 2007, 2008, 2009; Tam et

al., 2011; Trap et al., 2007, 2008; Zhai, 2011; Zhai and Santosh, 2011; Zhao

et al., 2003, 2005, 2006, 2009; Yang and Santosh, 2014). The NCC went

through a major stage of continental growth at ca. 2.7 Ga, with amalgamation

of micro-blocks at ca. 2.5 Ga (Zhai, 2011; Zhai and Santosh, 2011). Three

major Precambrian tectonic cycles have been recognized: (1) Neoarchean

crustal growth and stabilization, (2) Paleoproterozoic rifting–subduction–

accretion–collision, (3) Late Paleoproterozoic–Neoproterozoic multistage

rifting. During the Paleozoic, orogenesis occurred at the margins of the craton

(Zhai and Santosh, 2011; Zhang et al., 2012). The NCC was finally stabilized

Page 7: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 6

in late Paleoproterozoic at 1.85 Ga, and much of the craton remained stable

up to Mesozoic (Chen et al., 2009; Zhai and Santosh, 2011, 2013).

Extensional tectonics associated with lithosphere thinning and

decratonization is the major event in the NCC during Mesozoic since the

north-ward subduction of the Paleozoic Tethyan ocean and the south-ward

subduction of the Late Paleozoic Paleo-Asian ocean and collision with the

NCC. The collision of the NCC with the Yangtze Craton in South China Block

in Triassic, the Early Mesozoic closure of Paleo-Asian ocean and Okhotsk

ocean that formed the Central Asian Orogenic Belt in the north, and the

Mesozoic–Cenozoic subduction of Pacific plate from the eastern part of the

craton are well studied (Chen et al., 2009; Guo et al., 2013; Tang et al., 2013).

However, the timing, duration, mechanism and geodynamic setting of the

destruction of the NCC’s lithosphere have been debated (Yang et al., 2012a;

Yang et al., 2012b; Gao et al., 2002, 2009; Yang et al., 2012b; Li et al., 2001;

Lu et al., 2006; Tang et al., 2013; Tian and Zhao, 2011; Tian et al., 2009; Xu

and Zhao, 2009; Xu et al., 2009; Zhang et al., 2013).

The magmatism in the NCC attained its peak during the Cretaceous

period and is represented by a wide range of felsic and mafic igneous rocks,

distributed mainly in the Yanshan Mountains, Taihang Mountains, as well as

in the Jiaodong and Luxi regions in the central and eastern parts of the craton.

Examples include the Mapeng granitic batholith in the Taihang Mountains and

the Sunzhuang dioritic pluton in the Heshan Mountains emplaced at ca. 130

Ma (Li et al. 2013a, 2014a), and the Guojialing granodiorite in the

northwestern Jiaodong and Sanfoshan granite emplaced in the Early

Cretaceous epoch (117-129 Ma, Yang et al. 2012a; Guo et al.2013; Li et al.,

2014c).

The intracontinental Au and Ag-Pb-Zn-Mo system forms part of a series

of metallogenic events in the NCC (Zhai and Santosh, 2013). Among these,

Page 8: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 7

the major gold provinces are in the Jiaodong peninsula, the Xiaoqinling region

and the Jibei region (Goldfarb and Santosh, 2014; Khomich et al., 2014), and

are dominantly distributed along the central domains of the eastern, southern

and northern margins of the craton (Li et al., 2014). Apart from the gold

deposits located along the margins of the NCC, some large scale gold

deposits are also found in the interior of the NCC. These include the Shihu

and Xishimen gold deposits at the central domain of the Taihang Mountains

(our study area) (Li et al., 2013a; Li et al., 2013b) and Yixingzhai gold deposit

at the northern domain of the Taihang Mountains (Li et al., 2014a). In western

part of the Tan-Lu fault zone, the Guilaizhuang cryptoexplosive breccia type

gold deposit and the Yinan skarn type gold deposit have also been proved to

be large scale deposits (Guo et al., 2013; Mao et al., 2005). The southern and

northern margins of the NCC are the main locations of large molybdenum

deposits. Recently, a molybdenum deposit in northern Taihang Mountains

within the central NCC is prospected as a large scale one (Li et al., 2014). A

number of copper deposits occur in the western and northeastern margins of

the NCC, and some small scale copper deposits are scattered in the other

margins and in the cratonic interior (Zhao et al.,2006b). A number of large and

middle scale Pb-Zn-(Ag) deposits occur in the northern margin, within the

central segment of the southern margin and the interior region in the Taihang

Mountains (Zhao et al., 2006c; Li and Santosh, 2014).

The present study area is located within the Fuping complex. The

basement rocks here are dominantly Precambrian surpracrustal units, TTG

(tonalite-trondhjemite-granodiorite) gneisses and amphibolites. The meta-

supracrustal units include the Songjiakou Formation and Yuanfang Formation

of the Early- to Meso- Neoarchean Fuping Group dominated by garnet –

orthopyroxene – clinopyroxene – hornblende granulite, hornblende gneiss and

minor magnetite-quartzite (BIF). The TTG suite comprises the Fangli

granodioritic – quartz monzonitic gneiss, the Caishuzhuang granitic gneiss,

Page 9: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 8

and the Dashiyu granodioritic gneiss, together with the Chejiangou

amphibolitic dykes and Gangnan granitic gneiss (Fig. 2). The Neoarchean

tectonic event generated major W-E trending folds, superimposed by NW-SE,

NE-SW and NNE-SSW trending faults developed during the Mesozoic.

Intermediate - felsic intrusive rocks, such as the Mapeng and Chiwawu, and

NNE and NNW trending granodioritic porphyry dykes are the dominant

geological records of the Jurassic to Cretaceous magmatism in the area (Fig.

2). The Mapeng granitoid, exposed around an area of 64.5 km2, is mainly

composed of medium-grained quartz monzodiorite, coarse grained

granodiorite, and porphyritic monzogranite from the outer to inner zones.

Zircon LA-ICP-MS U-Pb dating of this batholith and the intermediate dykes

show a major Mesozoic magmatic event at 130 Ma (Li et al., 2013a).

The major mineralization associated with the Mapeng batholith is the

Shihu and Xishimen quartz vein type gold deposits (Li et al., 2013b). In

addition, several molybdenum, lead-zinc and silver deposits of different scales

were also recently discovered around the batholith, including the Qiubodong

explosive breccia-type silver deposit (Sun et al., 2014), the Qiushulin and

Yanjiagou porphyry-type molybdenum deposit (Sun et al., 2014), and the

Beiyinxigou quartz vein-type lead-zinc-silver deposit (Wang et al., 2014). The

gold and molybdenum mineralization of the study area are considered to have

formed slightly later than the emplacement of the Mapeng batholith and the

intermediate dykes (Li et al., 2013a; Sun et al., 2014). The timing of

mineralization in the Beiyingxigou lead-zinc-silver deposit and the Qiubudong

silver deposit is constrained to be ca. 30 m.y. after the emplacement of the

Mapeng batholith (100 to 108 Ma, Wang et al., 2014; Sun et al., 2014).

Page 10: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 9

3. Analytical techniques

3.1 Sampling and major, trace and rare earth elements

analyses

Twenty representative samples of all the major rock types in the

magmatic suite were selected for petrological and geochemical analyses from

the porphyry dykes around the Mapeng intrusion, following detailed field

investigations and sample collection (Fig.2). From these, seven porphyry

samples were selected for zircon U-Pb dating and Lu-Hf isotope analyses

(Fig.2). Polished thin sections of the rocks were prepared at the University of

Science and Technology Beijing. The geochemical analyses were performed

on fresh and representative samples. The samples were crushed, ground to

<200-mesh powder and prepared using a pollution-free method at the

Institute of Regional Geological Surveys, Hebei Bureau of Geology, Mineral

Exploration and Development, Langfang, China. The petrological study of the

samples was performed using a Leica DM2500P polarized microscope in the

Typomorphic Mineral Lab, China University of Geoscience, Beijing.

The major elements, trace elements, and both light and heavy rare-earth

elements (LREEs and HREEs, respectively) of the intrusions were analyzed at

the Beijing Research Institute of Uranium Geology, China. Oxides were

analyzed using a PW4400 X-ray fluorescence spectrometer. The Na2O, MgO,

Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and Fe2O3 determinations were

based on the GB/T14506.28-2010 standard. FeO was based on the

GB/T14506.14-2010 standard, and loss on ignition on the LY/T1253-1999

standard. REEs and trace elements were analyzed using an X-series plasma

mass spectrometer with reference to the DZ/T0223-2001 standard.

Page 11: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 10

3.2 Zircon U-Pb isotopic analyses

Zircon U-Pb dating was performed on a laser ablation inductively coupled

plasma spectrometer (LA-ICP-MS) housed at the National Key Laboratory of

Continental Dynamics of Northwest University, Xi’an. The analytical

procedures are similar to those followed by Yuan et al. (2004). Before the U-

Pb dating, zircon internal textures were studied by the cathodoluminescence

(CL) technique performed on a microprobe CAMECA SX51 at Northwest

University. In LA-ICP-MS method, the laser spot diameter and frequency were

30μm and 10 Hz, respectively. Zircon 91500 was employed as a standard and

the standard silicate glass NIST610 was used to optimize the instrument. Raw

data were processed using the GLITTER program to calculate isotopic ratios

and ages of 207Pb/206Pb、206Pb/238U、207Pb/235Th, respectively (Table3). Data

were corrected for common lead, according to the method of Anderson

(2002), and the ages were calculated using ISOPLOT software (Ludwig,

2001).

3.3 Zircon Lu-Hf isotopic analyses

In situ zircon Hf isotopic analyses were conducted on the same spots or

in adjacent domains where for U–Pb dating was done. The analytical

procedures followed those described by Yuan et al. (2008). The energy

density of 15‒ 20 J/cm2 and a spot size of 45 μm were used. The flattest,

most stable portions of the signal were selected for analysis. Adjustment for

the isobaric interference of 176Yb on 176 Hf was performed in ‘real time’ as

advocated by Woodhead et al. (2004), which involved measuring the

interference-free 172Yb and 173Yb during the analysis, calculating mean βYb

value from 172Yb and 173Yb and using the 176Yb/172Yb ratio of 0.5886 (Chu et

al., 2002). Zircon 91500 was used as the reference standard with a 176Hf/177Hf

ratio of 0.282306±10 (Woodhead et al., 2004). All the Lu–Hf isotope analysis

Page 12: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 11

results were reported with an error of 1ζ. The decay constant of 176Lu of 1.865

× 10−11year−1 was adopted (Scherer et al., 2001). Initial 176Hf/177Hf ratios

εHf(t) were calculated with reference to the chondritic reservoir (CHUR) of

(BlichertToft and Albarede, 1997) at the time of zircon growth from the

magma. Single-stage Hf model age (TDM) was calculated with respect to

the depleted mantle with present-day 176Lu/177 Hf = 0.28325 and 176Lu/177Hf =

0.0384 (Griffin et al., 2000). Two-stage Hf model age (TDMC) was calculated

with respect to the average continental crust with a 176Lu/177Hf ratio of 0.015

(Griffin et al., 2002).

4 Results

4.1 Petrography

The salient details of the petrography of the samples analyzed in this

study are given in Table 1.

Porphyry dykes are common throughout the Mapeng region, and intrude

into the Precambrian basement (Fig. 2). Some of the porphyry dykes are up to

20 meters in width, and a few thousands of meters long, associated with

composite multiple intrusions of monzodiorite, diorite and syenite (Fig.3). The

dykes show e chilled margins and an intermediate bleached zone at the

contact with the host rocks. Some porphyry dykes are dominated by

somewhat wider (~1m) veins of monzonite and granite (Fig.4). Composite

camptonite dykes (ca ~20cm in width) in contact with granite porphyry were

also identified in this study (Fig.4b).

The dyke rocks are classified as diorite porphyry, quartz diorite porphyry,

monzodiorite porphyry, syenodiorite porphyry, quartz monzonite porphyry,

syenite porphyry, granite porphyry and camptonite. The rocks range from gray

to pink, displaying fine to coarse grained porphyritic texture, and composed

Page 13: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 12

mainly of quartz (5-20 vol.%), K-feldspar ( 35-55 vol.%), plagioclase (10-35

vol.%), hornblende (5-10 vol.%) and minor biotite with abundant titanite,

apatite, zircon and magnetite as the accessory minerals (Fig.5,6 ).

In the camptonite and diorite porphyry dykes, amphiboles and

plagioclases occur as phenocrysts within surrounding matrix (Fig.5d.f). K-

feldspars, plagioclases with serrated margins, and quartz with round edge

occur as coarse grained phenocrysts in the monzonite, syenite and granite

porphyry dykes(Fig.5g, 6b,d,f,h). The matrix shows fine granular structure,

and is mainly composed of feldspar and quartz, together with fine grained

carbonates and sulfides.

The lamprophyres are fine grained with a porphyritic texture. Idiomorphic

and hypidiomorphic amphiboles are the main phenocrysts and allotriomorphic

plagioclases occur secondary phenocrysts within surrounding matrix. The

matrix shows fine granular structure, and is mainly composed of feldspar

(Fig.5b). According to their mineral assemblage, the studied lamprophyres

can be classified as camptonites (Rock, 1991, Gibsher et al., 2012 and Batki

et al., 2014)

Most rocks are variably altered, as observed in thin sections and

sometimes even in hand specimens. The hydrothermal alteration of the

porphyry dykes mainly comprises the formation of pyrite, magnetite and

ilmenite in addition to sercitization, kaolinization and chloritization (Fig.7).

Pyrite occurs widespread in different crystal forms related to the hydrothermal

stage, including idiomorphic pyrite (Fig.7d), and hypidiomorphic to irregular

grains occurring as fine fracture filling (Fig.7a). Magnetite and ilmenite are

metallic minerals in the porphyry dykes (Fig.7b,c,e,f). Electron backscatter

diffraction pattern (EBSP) shows that these metallic minerals enclose K-

feldspar, quartz, barite, apatite, biotite, calcite and muscovite (Fig.7g,h,i).

Page 14: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 13

4.2 Geochemistry

Whole rock major-trace elements and rare earth elements in twenty

representative samples of the porphyry dykes are presented in Table 2.

The SiO2 contents of the samples range from 57.92 to 69.47 wt%. The

Harker variation diagrams (Fig.8) show negative correlations of Fe2O3T, MgO,

CaO, MnO, TiO2 and P2O5 with increasing SiO2. Al2O3 shows no clear

correlation, whereas Na2O increases with silica. All samples fall in calc-

alkaline to alkaline series (Fig.9a). Part of the high-K composition might be

due to the potassic alteration as also observed under thin sections. In the

K2O–SiO2 diagram (Fig.9b), all porphyry dykes fall in the high-K field. Our

samples have alumina saturation index (ASI = molar Al2O3/ (CaO + Na2O

+K2O)) between 0.85 and 1.06 (Fig.9c).

The samples from different porphyry dykes have similar REE and trace

elements patterns (Fig.10). In chondrite-normalized REE plots, the porphyries

are characterized by high concentration of light rare earth elements (LREEs)

and relatively low contents of heavy rare earth elements (HREEs), with a clear

LREE/HREE fractionation ((La/Yb)N=13.53–48.11), prominent LREE

fractionation, and relatively weak HREE fractionation (Fig.10a).

Like their REE contents, these rocks also show similar trace elements

characteristics (Fig.10b) with a strong enrichment in large ion lithophile

elements (LILE) such as Ba (928 – 2875 ppm) and K (25889 – 38170 ppm),

and depletion in high field strength elements (HFSE). In the primitive mantle

normalized incompatible trace element pattern (Fig.10b), these rocks are

characterized by negative Nb, Ta, Th, U and Zr anomalies, with distinctly

positive Ba, K and Sm anomalies.

Page 15: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 14

4.3 Zircon U-Pb geochronology

Zircon grains from seven representative rock samples were analyzed in

this study including MP-1, ZT-2 from diorite porphyry, CNK-3 from quartz

diorite porphyry, ZTX-5 from monzodiorite porphyry, ZTX-2 from syenodiorite

porphyry, ZT-1 from syenite porphyry and FJG-2 from camptonite. The results

are presented in Table 3 (Supplementary Data).

4.3.1 Intermediate and felsic porphyry

Most of the zircon grains from the intermediate and felsic porphyry have

similar morphological characteristics. They are colorless to light brown, and

show a size range of 150-200×50-80μm with aspect ratios of about 3:1 to 2:1.

They are mostly long prismatic in shape and euhedral. In CL images

(Fig.11,12a,b,c), they display oscillatory zoned and medium bright feature,

suggesting their magmatic origin. Some small crystals possess bright

inherited core and dark rim.

A total of 30–36 spots on 25–30 zircon grains from each sample were

analyzed. Their Th contents show a range of 14-726 ppm and U contents

show a range of 44-1031ppm, with Th/U ratios are in the range of 0.02-1.87

(Table 3, Supplementary Data). Most of the data are concordant, and yield

206Pb/238U weighted mean ages of 124.0 ± 1.2 Ma (MSWD=1.4, n=31) from

MP-1 diorite porphyry, 129.0 ± 2.8 Ma (MSWD=1.8, n=13) from ZT-2 diorite

porphyry, 131.8 ± 1.7 Ma (MSWD=1.6, n=21) from CNK-3 quartz diorite

porphyry, 129.3 ± 3.2 Ma (MSWD=0.36, n=33) from ZTX-2 syenodiorite

porphyry, and 128.7 ± 2.0 Ma (MSWD=3.4, n=30) from ZT-1 syenite porphyry.

Xenocrystic grains show 207Pb/206Pb ages of ca. 1.8, 2.0 and 2.5 Ga, and are

considered to have been entrained from the basement rocks (Fig.13,14,15).

4.3.2 Camptonite

Page 16: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 15

Most of the zircon grains in the camptonite sample FJG-2 are colorless to

light brown. The zircon grains range in size from 60-200×60-80μm with aspect

ratios of about 3:1 to 1:1. They are mostly stubby to long prismatic grains.

Most zircon grains are subhedral, and in CL images (Fig.12c), they display no

clear core-rim texture. The cores are weakly zoned with medium brightness

and many of the cores show short prismatic morphology, suggesting their

magmatic origin. The rims are unzoned and weakly luminescent. A total 35

spots from FJG-2 were analyzed on 30 zircon grains. Their Th contents show

a range of 6-171 ppm and U contents show a range of 30-289 ppm, the Th/U

ratios are in the range of 0.042-1.08 (Table 3, Supplementary Data).

Excluding a few zircons that experienced variable Pb-loss, the other analyses

can be subdivided into four groups which include 3 groups of Precambrian

zircons one group representing the Mesozoic magmatism. The 207Pb/206Pb

weighted mean ages of the older zircons are Ca. 1.8, 2.1 and 2.5 Ga,

corresponding well with the ages reported from the basement rocks in this

region. The 206Pb/238U weighted mean age is 128.0 ± 6.0 Ma (MSWD=2.4,

n=5), represents the timing of crystallization age of the camptonite (Fig.15).

4.4 Zircon Lu-Hf isotopes

In situ Hf isotope analyses were carried out on zircons on the same spots

where the U-Pb dating was done. The results are listed in Table 4. The data

show that the 176Lu/177Hf ratios are less than 0.002, indicating the absence of

any major enrichment of radiogenic Hf after the formation of the zircons. Thus,

the initial 176Hf/177Hf ratios can be used as a robust reference to evaluate the

source characteristics of these zircons (Wu et al., 2007). A total of 42 zircon

grains were analyzed, and the results (Fig.18 and Table 4) show a wide range

of εHf(t) values ranging from -27.8 to 7.5 with respect to the age of the zircons.

The negative values indicate a reworked crustal source and the positive

values suggest that the source also involved juvenile components. The initial

Page 17: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 16

epsilon value εHf(0) values (see Table 4) are in the range of -46.3 to -14.1.

This implies the magmas had a high residence time in the mantle and are not

juvenile. Hf model ages (tDM) are within the range of 2938 Ma to 1905 Ma.

The 34 zircon spots of Mesozoic ages in intermediate and felsic porphyry

samples were used for Hf–isotope analysis and yield low (176Hf/177Hf)i (initial

ratio) values of 0.281910 to 0.282373 (Table 4). The zircon Hf isotopic

compositions show negative εHf(t) values varying from -27.8 to -11.3, with Hf

depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal

model ages (tDMC) of 1905 Ma to 2938 Ma against their U-Pb ages of 117 Ma

to 138 Ma, suggesting complexly reworked Archean and Paleoproterozoic

sources (Fig.18).

Total 8 zircon spots of Precambrian ages included 2 from diorite

porphyry and 6 from camptonite were analyzed for in situ Lu-Hf isotopic

composition, and the results show lower (176Hf/177Hf)i in the tight range of

0.281179 – 0.281574 (Table 4) and εHf(t) values varying from -14.2 to 2.7,

close to the chondrite and depleted mantle at that time. The Hf depleted

model ages (tDM) of zircons range from 2319 Ma to 2894 Ma and the Hf

crustal model ages (tDMC) of 2610 Ma to 3322 Ma with the U-Pb ages of 1772

Ma to 2510 Ma (Fig.18). The eight zircons can be subdivided into two groups:

four zircon grains with U-Pb age of 2397 to 22510 Ma yield εHf(t) value of -4.4

to 2.7, Hf depleted model ages (tDM) of 2712 Ma – 2894 Ma and the Hf crustal

model ages (tDMC) of 2841 Ma – 3190 Ma, suggesting that the parental source

was derived from the reworked Neoarchean crust. The εHf(t) vs. age plot also

indicates that the crustal source which underwent melting was of Archean

age. Four zircon grains with the U-Pb age of 1772 Ma - 1953 Ma

(metamorphic zircons) yield the εHf(t) value of -0.9 to – 14.2, the Hf depleted

model ages (tDM) of 2319 Ma to 2741 Ma and the Hf crustal model ages (tDMC)

of 2610 Ma to 3322 Ma. The εHf(t) vs. age plot also indicates that all the plots

close to the line of chondrite and the line of 2.5 Ga (Fig.18), and the crustal

Page 18: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 17

source which underwent melting was of Meso-Neoarchean age. The data

suggest that the protolith magma was derived from a mixture of both reworked

ancient crust and Archean juvenile mantle materials.

5. Discussion

5.1 Genesis of the porphyritic dykes

In Harker diagrams for the major elements of the porphyry dykes, most

plots of Fe2O3T, MgO, CaO, MnO, TiO2 and P2O5 show negative correlations

with increasing plots of SiO2, and some plots fall outside the magmatic

fractionation trend, Al2O3 shows no clear correlation, whereas Na2O increases

with silica (Fig.8). The geochemical features in general indicate that the

magma from which the porphyry dykes were derived mostly came from the

same source, with partial mixture of other materials.

In the SiO2-A.R (Al2O3+CaO+(Na2O+K2O)/ Al2O3+CaO-(Na2O+K2O)) and

K2O – SiO2 diagrams, the data from the porphyry plot in the region of the high-

K calc-alkaline series. Tu (1989) proposed that alkaline rocks are derived from

the magma formed by partial melting of upper mantle which upwelled through

deep fractures and mixed with sialic crust. The high Mg# (average value =44,

Table 2) and K2O/Na2O data suggest that the primary magma underwent K-

metasomatism. The alumina saturation index (A/CNK) shows that the samples

of the porphyry are metaluminous to weakly peraluminous (A/CNK = 0.8–1.0),

and show negative correlation between P2O5 and SiO2, classifying the

porphyritic dykes as I-type (Chappell and White, 1992; Chappell, 1999).

These porphyry dykes have similar REE patterns (Fig.10a) with high

concentration of light rare earth element (LREES) and relatively low contents

of heavy rare earth element (HREES). The LREE/HREE = 11.01-20.56, and

the lack of significant Eu anomaly indicates plagioclase melting in the source

Page 19: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 18

and its retention in the magma. Likewise, the REE patterns of the porphyry

dykes have similar characteristics with those of the rocks of Mapeng batholith,

suggesting same source. Comparing the REE patterns of the Fuping

basement rocks, these dykes have lower REE contents and similar REE

patterns except that the basement rocks show significant Eu negative

anomaly, linking the main source of the dyke magma with melting of the

basement rocks, together with input from deep sources.

These samples also show similar trace elements characteristics like their

REE patterns (Fig.10b) with a strong enrichment in large ion lithophile

elements (LILE) and depletion in high field strength elements (HFSE), in the

primitive mantle normalized trace element pattern. They are characterized by

negative Nb (Ta) and Ti anomalies, with distinctly positive Ba and K

anomalies. A comparison of their trace elements distribution patterns with

those of the Mapeng intrusion and the Fuping basement rocks, show many

similarities including strong enrichment in LILE and depletion in HFSE.

However, the rocks of the Fuping basement show significant negative Ba

anomaly, further suggesting that the porphyry dykes have same source with

the Mapeng batholith and both are closely related to the basement in the

Fuping region.

Previous studies on the mafic enclaves in the Mesozoic intrusions of the

Mapeng and Chiwawu in the same region revealed the Mesozoic magmatism

involved substantial reworking of older continental crust (Li et al., 2014c; He

and Santosh, 2014). The enclaves represent mafic magmas derived from

deep crust or mantle source which invaded into felsic magma chambers

(Chen et al., 2009; Hu et al., 2005; Li et al., 2012; Xu et al., 2012a, b; Yang et

al., 2005). The similar features of uniform enrichment in LREE and LILEs and

deletion in HREE and HFSEs in porphyry dykes and the Mapeng batholith,

suggest mixing of crust-mantle sources during magma generation and

Page 20: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 19

evolution. The porphyry dykes also show adakite features: SiO2 ≥ 56 wt%,

Al2O3 ≥ 15% (rarely lower), usually MgO < 3 wt % (rarely above 6 wt % MgO),

low Y and Yb (<18 and 1.9 ppm, respectively), and high Sr (rarely < 400 ppm)

(Defant and Drummond, 1990; Eyuboglu et al., 2013a,b; Kamvong et al.,

2014), suggesting that the intermediate and felsic porphyry in this study are

similar to adakitic rocks (Chung et al., 2003; Gao et al., 2004). The adakitic

rocks in continental crust are sometimes closely related to mineralization,

especially porphyry Cu-Au-Ag-Mo system (Zhang et al., 2001), and their

genesis has been attributed to melting of thickened lower crust, or by melting

induced by the delamination of eclogitic lower crust (Chung et al., 2003; Gao

et al., 2004). Luo et al (2006) suggested that the lithosphere delamination is

the reasonable mechanism to trigger generation of the regional dyke complex

in TM and northern NCC with emplacement during 110 to 120 Ma. Our

geochronological data show an age range of 124 to 129 Ma for the porphyritic

dykes, which are not markedly different from those reported for the Mapeng

and Sunzhuang granitoid (Li et al., 2013a; 2014) and the other dyke

complexes of the TM and northern NCC. Combined with the major, trace and

rare earth element data of the dykes and the petrogenetic features and

source characters of the Mapeng and Sunchuang granitoids (Li et al., 2013a;

2014), we suggest that the magmatic source of porphyry dykes in this study is

closely related with lithosphere delamination. The high Mg# of these dykes

provides further evidence for a deep source of the magma associated with

delamination (Wang et al., 2005).

5.2 Implications of the zircon U-Pb age and Hf isotope data of the

porphyry dykes

Previous studies have reported age data from the major plutons and the

related ore deposits in the Taihang Mountains employing K–Ar, Ar–Ar, Rb–Sr,

U–Pb, Re–Os, and Rb-Sr isotopic methods (Cao et al., 2010; Chen et al.,

Page 21: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 20

2007b; Gao et al., 2011; He et al., 2014; Li et al; 2013a, 2014a; Li, et

al.,2013b, 2014c; Liu et al., 2010; Sun et al., 2014; Wang et al., 2010, 2014;

Ye et al.,1999; Zhang et al., 2003). The histograms of these published ages

from the intrusions and associated deposits (Fig.17) show that except for a

few ages that plot in the range of 100 to 108 Ma, most of the age data are in

the range of 120-140 Ma, with a peak at ca.130 Ma. These data indicate that

the magmatism and associated metallogeny in the Taihang Mountains area

occurred mainly during Late Cretaceous.

The 124 to 129 Ma ages obtained in our study indicate that the timing of

crystallization the these dykes coincided with the emplacement of the Mapeng

batholith and the major Mesozoic magmatic event in the Taihang Mountains

region (Li et al., 2013a; Wu et al., 2005; Xu et al., 2009; Yang et al., 2003).

Our new age data also coincide with the timing of magmatism along the

margins of the NCC (Mao et al., 2005; Chen et al., 2007b, 2009; Yang et al.,

2013), which is considered to mark of the peak of lithospheric thinning of the

NCC (Li et al.,2013a).

Previous geochronological data show that the ages of magmatic

protoliths of the Fuping TTG gneisses are ca. 2.5 Ga (Guan et al., 2002; Zhao

et al., 2002; Kröner et al., 2005a, 2005b, 2006). The NCC preserves major

imprints of a ca. 2.0 Ga tectono-thermal event (Yang and Santosh, 2014a),

associated with the final stages of assembly of the crustal blocks within the

Columbia supercontinent (Santosh, 2010). The TTG and granitic gneiss with

ca. 2.0 Ga emplacement ages have been documented from the TNCO by

several workers (e.g., Li et al., 2014c; Liu et al., 2004; Wan et al., 2010). The

major metamorphic event, coinciding with the collision of the Western and

Eastern Block, occurred at ca. 1.8 Ga (Guan et al., 2002; Zhao et al., 2002;

Kröner et al., 2005a, 2005b, 2006; Liu et al., 2006; Faure et al., 2007; Trap et

al., 2007). The old inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the porphyry

Page 22: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 21

dykes coincide with the age of the formation of protoliths of the basement

rocks, confirming that the Mesozoic magmatism including the emplacement of

the Mapeng and other intrusions as well as the formation of the porphyry

dykes might be related to the reworking of the ancient continent crust.

The in situ Hf isotope analysis of zircon grains combined with their U-Pb

ages provides a robust technique to trace the source and petrogenesis of

magmas and to constrain the crustal evolution history (e.g.,Kinny and Maas,

2003; Geng et al., 2012; Chernicoff et al., 2013; Santosh et al., 2015). Our

data on zircons from the porphyritic dykes around the Mapeng batholith in the

Fuping area show that the peak magmatism during Mesozoic in the central

part of the NCC at ca.130 Ma is different from those in the eastern NCC with

three main stages: at ca.120, ca. 130 and ca.150-160 Ma. We also identified

the common presence of inherited zircons in these younger magmatic rocks,

with a range of older ages including Paleoproterozoic and Archean. The

results of in situ Hf isotope analysis of Mesozoic age zircons from the dykes,

show 176Hf/177Hf ratios ranging from 0.281910 to 0.282373, suggesting that

most of the zircon grains possess homogeneous distribution in Hf isotopic

composition, typical of magmatic origin. The zircon Hf isotopic compositions

show negative εHf(t) values varying from -27.8 to -11.3, with Hf depleted model

ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC)

of 1905 Ma to 2938 Ma against their U-Pb ages of 117 Ma to 138 Ma,

suggesting complexly reworked Archean and Paleoproterozoic sources. The

negative εHf(t) values imply source materials derived from partial melting of old

crust and the positive εHf (t) values indicate derivation from juvenile magmas

(Kinny and Maas, 2003). The zircon Hf isotope model ages represent the

extraction time of source material from the depleted mantle and the residence

time in the crust (Amelin et al., 2000; Griffin et al., 2000). Thus, the data of the

porphyritic dykes when compared with the previous data from the Taihang

Mountains (Li et al., 2014c) suggest that the Mesozoic magmatic suite in the

Page 23: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 22

Fuping region was derived from a mixed source. Substantial recycling of the

ancient crust formed at 1.8 Ga to 3.0 Ga occurred during the Mesozoic

tectonic regime and associated mantle dynamics in this region. These

inherited zircons shows negative and positive εHf (t) values, ranging from -14.2

to 2.7, and the plots fall close to the line of chondrite and the evolution line of

2.5 Ga and 3.0 Ga crust, suggesting that at ca. 2.5 to 3.0 Ga, these zircons

and their host rocks crystallized from juvenile mantle magmas. These features

suggest the recycling of ancient basement rocks during the formation of the

Mesozoic complexes in the central part of NCC.

5.3 Tectonic model for the porphyry systems and their relation to

mineralization

Previous studies have reported S-Pb-He-Ar stable isotopes data for

sulfides and H-O isotopes from the Shihu and Xishimen gold deposits,

Qiubudong silver deposit, and the Beiyingxigou Pb-Zn-Ag deposit around the

Mapeng batholith in the Taihang Mountains region (Li et al., 2013a; Li et

al.,2013b; Sun et al., 2013; 2014; Wang et al., 2014). The isotopic data show

that the ore-forming components in these deposits originated in the lower

crust with limited input of mantle materials, and that the metallogenic source

in the Mapeng intrusion shows a strong link with the metamorphic basement

of the Fuping complex. The hydrothermal fluids released from the magmatic

source migrated to higher levels through structural pathways scavenging

metals from the surrounding basement rocks. The heat and fluid from the

upwelling magma aided the extraction of ore-forming elements from the host

rocks through crustal melting and recycling, and these were scavenged and

transported by the hydrothermal fluids.

The magma rich in water and other volatiles might have served as a

suitable carrier for the transportation of Au and other ore-forming materials.

Page 24: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 23

The high ƒO2 (Oxygen fugacity) magma would keep the elemental gold in

ionic state with +1 or +3 valences satisfying the necessary requirement for the

effective metal transportation and deposition in suitable structural locales

(such as faults or fractures) when the physicochemical conditions change

(Chen et al., 1993; Li et al., 1996; Zhu et al., 2011a, 2011b; Li et al., 2014a).

The abundant presence of apatite in the studied rocks suggests volatile-

enrichment in the later stage of the evolutionary history with auto-

metasomatism of the magma (Fig.7g,h,i). Furthermore, the lack of {010}

crystal faces in the amphiboles from the camptonite dyke also supports the

volatile enriched nature of the magma (Fig.5b). Other minerals in the porphyry

dykes include magnetite, titanite, barite and ilmenite as identified in EBSP

(Fig.5h and Fig.7b,c,f,g,h,i), implying relatively high ƒO2 and ƒS2. . In addition,

pyrite as an important gold bearing mineral occurs widespread in the porphyry

dykes (Fig.7), together with galena (Fig.7h), suggesting that the porphyritic

dykes are rich in sulfur suggesting these rocks to be potential candidates for

the exploration of gold and other sulfide mineralization.

Our field investigations, petrology, geochemistry and zircon U–Pb age

data show that the porphyry dykes are spatially and temporally associated

with the gold and other metallic mineralization. Thus, these dykes have played

a key role in controlling the gold mineralization. We envisage that the ore

fluids exsolved from magmas were channelized through splay faults

surrounding the Mapeng batholith region. The ore-bearing fluids were trapped

or ponded by these dykes within the structural pathways with subsequent

metal precipitation during changing physical–chemical conditions. The

bleached alteration zones (Fig.3) along the margins of these dykes suggest

the prolonged interaction of the porphyry dykes with the ore-bearing fluids.

In Fig. 19 we show an integrated model to evaluate the genesis of the

porphyry systems and their relation to mineralization. The asthenospheric

Page 25: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 24

upwelling during Mesozoic in the central part of the NCC led to

inhomogeneous lithospheric thinning with the heat and fluid input from

underplated mafic magmas leading to extensive melting of the basement

rocks in the lower and middle crust. Mantle-derived mafic magmas intruded

the Mapeng and other felsic magma chambers resulting in various degrees of

magma mixing and mingling. The mantle derived magmas invaded the crust

with progressive melting and thinning resulting in extensive crust-mantle

interaction. Subsequently, the mantle magmas migrated through structural

pathways and were emplaced as a series of melanocratic dykes of various

compositions, depending on the degree of melting at the source and the

extent of compositional modification during ascent. After the “magmatic flare

up”, the gold (and associated metals) were flushed out from multiple sources

and the ore-bearing fluids migrated through structural pathways and finally

concentrated the ores within veins and altered zones at ca. 130 Ma. The

metals were extracted and concentrated from both mantle and crustal sources

by circulation and migration of fluids. The dykes probably are stoppers

(impermeable barriers) that prevented the leakage and run-off of the ore-

bearing fluids.

6. Conclusion

(1) The mineralogy and geochemistry of the porphyry dykes in the Fuping

region of the central Taihang Mountains indicate high-K calc-alkaline

and I-type affinity with adakitic features, suggesting sources similar to

those of the Mapeng batholith, derived from reworking of the ancient

continent crust and mixing with mantle input.

(2) The zircon U-Pb data from the porphyritic dykes show peak of

magmatism at ca.130 Ma, coinciding with the emplacement time of

the Mapeng batholith as well as the major Mesozoic magmatic event

Page 26: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 25

and the associated metallic mineralization in the North China Craton.

Their εHf(t) values suggest that the Mesozoic magmatism and

associated metallogeny involved substantial recycling of ancient

basement rocks of the NCC.

(3) The age data, mineralogy and geochemistry of the porphyry dykes in

the Fuping region suggest that the dykes are closely related with the

gold and molybdenum mineralization in the region. These dykes

probably are stoppers (impermeable barriers) that prevented the

leakage and run-off of the ore-bearing fluids, and played a key role in

controlling the ore mineralization.

Acknowledgements

We thank Editor-in-Chief Prof. Franco Pirajno and an anonymous referee

for helpful comments which helped in improving our manuscript. This work

was supported by the Talent Award to M. Santosh under the 1000 Plan of the

Chinese Government. This study also contributes to the Key Program of

National Natural Science Foundation of China (grant no. 90914002), China

Geological Survey (grant no. 1212011220926), and the State Administrative

Office Of Ore-Prospecting Project for Critical Mines (grant nos. 200714009,

20089937). We are grateful to our colleagues Pu Guo, Mengjie Shan,

Xueming Teng, Li Tang and Xiaofang He for their kind help.

Supplementary Data

Table 3 Supplementary Data associated with this article can be found in

the online version of the journal at xxxxxxx.

Page 27: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 26

References

Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-Middle Archaean crustal

evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon

grains. Geochimica et Cosmochimica Acta 64, 4205–4225.

Anderson T., 2002. Correction of common Pb in U‒Pb analyses that do not

report 204Pb. Chemical Geology 192, 59‒79.

Batki, A., Pál-Molnár, E., Dobosi, G., Skelton, A., 2014. Petrogenetic

significance of ocellar camptonite dykes in the Ditrău Alkaline Massif,

Romania. Lithos, 200, 181-196.

Bi, .SJ, Li, J.W., Li, Z.K., 2011. Geological significance and geochronology of

paleoproterozoic mafic dikes from Xiaoqinling gold district, southern

margin of the North China craton. Earth Science Journal of China

University of Sciences 36, 17-32 (in Chinese with English abstract).

Blichert-Toft, J., Albarede, F., 1997. The Lu–Hf isotope geochemistry of

chondrites and the evolution of the mantle–crust system. Earth and

Planetary Science Letters 148, 243–258,

Cao, Y., Li, S.R., Zhang, H.F., Ao, C., Li, Z.Z., Liu, X.B., 2010. Laser probe 40

Ar/ 39 Ar dating for quartz from auriferous quartz veins in the Shihu gold

deposit, western Hebei Province, North China. Chinese Journal of

Geochemistry 29, 438–445.

Chappell, B., 1999. Aluminium saturation in I- and S-type granites and

the characterization of fractionated haplogranites. Lithos 46, 535-551.

Chappell, B., White, A., 1992. I- and S-type granites in the Lachlan

Fold Belt. Transactions of the Royal Society of Edinburgh: Earth

Sciences 83, 1-26

Chen, L., 2009. Lithospheric structure variations between the eastern and

central North China Craton from S- and P-receiver function migration.

Physics of the Earth and Planetary Interiors 173, 216–227

Page 28: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 27

Chen, G.Y., Sun, D.S., Zhou, X.R., 1993. Genetic Mineralogy of the Guojialing

Granodiorite in Jiaodong and Gold Mineralization. China University of

Geoscience Press, Wuhan, 155–164 (in Chinese with English abstract).

Chen, Y.J., Chen, H.Y., Zaw, K., Pirajno, F., Zhang, Z.J., 2007a. Geodynamic

settings and tectonic model of skarn gold deposits in China: an overview.

Ore Geology Reviews 31, 139–169.

Chen, Y.J., Zhai, M.G., Jiang, S.Y., 2009. Significant achievements and open

issues in study of orogenesis and metallogenesis surrounding the North

China continent. Acta Petrologica Sinica. 25, 2695–2726 (in Chinese with

English abstract)

Chen, Z.C., Chen, B., Tian, W., 2007b. Zircon U-Pb ages, Hf isotopic

compositions and geological significance: a case study of Mesozoic

batholiths and mafic enclaves in North Taihang. Acta Petrologica Sinica

23 , 295–306 (in Chinese with English Abstract).

Cheng, X. J., Cheng, J. P., and Wang, J. H., 1998, Element geochemistry of

shoshonitic lamprophyres in the Pengjiakuang gold district, Shandong

province, China: Geochimica 27, p. 91–100 (in Chinese with English

abstract).

Chernicoff, C.J., Zappettini, E.O., Santosh, J.O.S., McNaughton, N.J.,

Belousova, E., 2013. Combined U–Pb SHRIMP and Hf isotope study of

the Late Paleozoic Yaminue Complex, Rio Negro Province, Argentina:

implications for the origin and evolution of the Patagonia composite

terrane. Geoscience Frontiers 4, 37–56.

Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boela, R.M., Milton,

J.A., Germain, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio an

analysis using multi-collector inductively coupled plasma mass

spectrometry: an evaluation of isobaric interference corrections.

Journal of Analytical Atomic Spectrometry 17, 1567‒ 1574.

Chung S L, Liu D Y, Ji J, 2003. Adakites from continental collision zones:

Page 29: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 28

melting of thickened lower crust beneath southern Tibet.Geology 31,

1021-1024

Defant, M. J., Drummond, M. S., 1990. Derivation of some modern arc

magmas by melting of young subducted lithosphere. Nature 347, 662-

665.

Deng, J.F., Mo, X.X., Zhao, H.L., Wu, Z.X., Luo, Z.H., Su, S.G., 2004. A new

model for the dynamic evolution of Chinese lithosphere: continental roots

plume tectonics. Earth Science Reviews 65, 223–275

Dong, G.C., Santosh M, Li, S.R. Shen, J.F., Mo, X.X., Scott Steve, Qu, K.,

Wang, X.,2013. Mesozoic magmatism and metallogenesis associated

with the destruction of the North China Craton: Evidence from U–Pb

geochronology and stable isotope geochemistry of the Mujicun porphyry

Cu–Mo deposit. Ore Geology Reviews 53 434-445.

Eyuboglu, Y., Dudas, F.O., Santosh, M., Yi, K., Kwon, S., Akaryali, E., 2013a.

Petrogenesis and U–Pb zircon chronology of adakitic porphyries within

the Kop ultramafic massif (Eastern Pontides Orogenic Belt, NE Turkey).

Gondwana Research 24, 742-766.Eyuboglu, Y., Santosh, M., Dudas,

F.O., Akaryali, E., Chung, S.L., Akdag, K., Bektas, O., 2013b.The nature

of transition from adakitic to non-adakitic magmatism in a slab window

setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience

Frontiers 4, 353-375.

Fan, W.M., Menzies, M.A., 1992. Destruction of aged lower lithosphere and

asthenosphere mantle beneath eastern China. Geotectonica et

Metallogenia 16, 171–179 (In Chinese).

Faure, M., Trap, P., Lin, W., Monie, P., Bruguier, O., 2007. Polyorogenic

evolution of the Paleoproterozoic Trans-North China Belt, new insights

from the Lulliangshan– Hengshan-Wutaishan and Fuping massifs.

Episodes 30, 1–12.

Gao, S., Rundnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.S.,

2002.Re–Os evidence for replacement of ancient mantle lithosphere

Page 30: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 29

beneath the North China Craton. Earth and Planetary Science Letters

198, 307–322.

Gao S, Rudnick, R. L., Yuan, H. L., 2004. Recycling lower continental crust in

the North China craton.Nature 432. 892-897.

Gao, S., Zhang, J.F., Xu, W.L., Liu, Y.S., 2009. Delamination and destruction

of the North China Craton. Chinese Science Bulletin 54, 3367–3378.

Gao, Y.F., Wei, R.H., Hou, Z.Q., Ma, G.X., Zhao, R.S., Chen, Z.K., Wu, J.L.,

Peng, Y.X., Gao, M., 2011.Mujicun porphyry copper mineralization:

response to Mesozoic thinning of lithosphere in North China Craton.

Miner. Deposits 30, 890–902 (in Chinese with English abstract)

Geng, Y., Du, L., Ren, L., 2012.Growth and reworking of the early

Precambrian continental crust in the North China Craton. Gondwana

Research 21, 517–529.

Gibsher, A. A., Malkovets, V. G., Travin, A. V., Belousova, E. A., Sharygin, V.

V., Konc, Z. 2012. The age of camptonite dikes of the Agardag alkali-

basalt complex (< i> western Sangilen</i>): results of Ar/Ar and U/Pb

dating. Russian Geology and Geophysics, 53, 763-775.

Goldfarb, R., Santosh, M., 2014. The dilemma of the Jiaodong gold deposits:

Are they unique? Geoscience Frontiers 5, 139-153.

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh,

E., O’Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of

cratonic mantle: LA-MCICPMS analysis of zircon megacrysts in

kimberlites. Geochimica et Cosmochimica Acta 64, 133–147.

Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X.,

Zhou, X., 2002. Zircon chemistry and magma mixing, SE China: in-situ

analysis of Hf isotopes. Tonglu and Pingtan igneous complexes. Lithos

61, 237–269

Guan, H., Sun, M., Wilde, S.A., Zhou, X.H., Zhai, M.G., 2002. SHRIMP U–Pb

zircon geochronology of the Fuping complex: implications for formation

and assembly of the North China Craton. Precambrian Research 113, 1–

Page 31: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 30

18.

Guo, F., Fan, W. M., Wang, Y. J., and Zhang, M., 2004, Origin of early

Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern

China: Implications for enrichment processes beneath continental

collisional belt: Lithos 78, 291–305.

Guo, P., Santosh, M., Li, S.R., 2013.Geodynamics of gold metallogeny in the

Shandong Province, NE China: an integrated geological, geophysical and

geochemical perspective. Gondwana Research 24, 1172–1202

Guo, P., Santosh, M., Li, S.R., Li, Q.,2014. Crustal evolution in the central part

of Eastern NCC: Zircon U−Pb ages from multiple magmatic pulses in the

Luxi area and implications for gold mineralization. Ore Geology Reviews

60, 126–145.

He, X.F., Santosh, M., 2014. Crustal recycling through intraplate magmatism:

Evidence from the Trans-North China Orogen. Journal of Asian Earth

Sciences. DOI: 10.1016/j.jseaes.2014.02.011

Hu, F.F., Fan, H.R., Yang, J.H., Zhai, M.G., Jin, C.W., Xie, L.W., Yang, Y.H.,

2005. Magma mixing for the origin of granodiorite: geochemical, Sr–Nd

isotopic and zircon Hf isotopic evidence of dioritic enclaves and host

rocks from Changshannan granodiorite in the Jiaodong Peninsula,

eastern China. Acta Petrologica Sinica 21, 569– 586 (in Chinese with

English abstract)

Hu, R.Z., Burnard, P.G., Bi, X.W., Zhou, M.F., Peng, J.T., Su, W.C., Zhao, J.H.,

2009. Mantlederived gaseous components in ore-formingfluids of the

Xiangshan uranium deposit, Jiangxi province, China: evidence from He,

Ar and C isotopes. Chemical Geology 266, 86–95.

Hu, S. X., Sun, J. G., Ling, H. F., Ye, Y., Zhai, J. P., and Fang, C. Q., 2001,

Genetic relationship between eclogite, lamprophyre, gold deposit and

enriched mantle of Su-Lu active continental margin in the Mesozoic,

China: Acta Petrologica Sinica, 17 425–435 (in Chinese with English

abstract).

Page 32: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 31

Hou, Z.Q., Gao, Y.F., Qu, X.M., 2004. Origin of adakitic intrusives generated

during mid Miocene east–west extension in southern Tibet. earth and

planetary science letters 220, 139–155.

Kamvong, T., Zaw, K., Meffre, S.., Maas, R., Stein, H., Lai, C.K., 2014.

Adakites in the Truong Son and Loei fold belts, Thailand and Laos:

Genesis and implications for geodynamics and metallogeny. Gondwana

Research 26, 165-184.

Khomich, V.G., Boriskina, N.G., Santosh, M., 2014. A geodynamic perspective

of world-class gold deposits in East Asia. Gondwana Research 26, 816-

833.

Kinny, P.D., Maas, R., 2003. Lu–Hf and Sm–Nd isotope systems in zircon. In:

Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon Reviews in Mineralogy and

Geochemistry 53, 327–341

Kröner, A., Wilde, S.A., Li, J.H., Wang, K.Y., 2005a. Age and evolution of a

late Archaean to early Palaeozoic upper to lower crustal section in the

Wutaishan/ Hengshan/Fuping terrain of northern China. Journal of Asian

Earth Sciences 24, 577–595.

Kröner, A., Wilde, S.A., O’Brien, P.J., Li, J.H., Passchier, C.W., Walte, N.P.,

Liu, D.Y., 2005b. Field relationships, geochemistry, zircon ages and

evolution of a Neoarchaean to Palaeoproterozoic lower crustal section in

the Hengshan Terrain of Northern China. Acta Petrologica Sinica 79,

605–629.

Kröner, A., Wilde, S.A., Zhao, G.C., O’Brien, P.J., Sun, M., Liu, D.Y., Wan,

Y.S., Liu, S.W., Guo, J.H., 2006. Zircon geochronology of mafic dykes in

the Hengshan Complex of northern China: evidence for late

Page 33: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 32

Palaeoproterozoic rifting and subsequent high-pressure event in the

North China Craton. Precambrian Research 146, 45–67.

Kusky, T., Li, J.H., Santosh, M., 2007.The Paleoproterozoic North Hebei

Orogen: North China craton's collisional suture with the Columbia

supercontinent. Gondwana Research 12, 4–28.

Li, L., Santosh, M., Li, S. R., 2014b. The ‘Jiaodong type’ gold deposits:

Characteristics, origin and prospecting. Ore Geology Reviews.

(2014),http://dx.doi.org/10.1016/j.oregeorev.2014.06.021.

Li, Q., Santosh, M., Li, S.R., Guo, P., 2014c, The formation and

rejuvenation of continental crust in the central North China Craton:

Evidence from zircon U-Pb geochronology and Hf isotope, Journal of

Asian Earth Sciences (2014), doi:

http://dx.doi.org/10.1016/j.jseaes.2014.02.022.

Li, Q., Santosh, M., Li, S.R., 2013b. Stable isotopes and noble gases in the

Xishimen gold deposit, central North China Craton: metallogeny

associated with lithospheric thinning and crust–mantle interaction.

International Geology Review 55, 1728–1743

Li, S.R., 1995. A metallogenic series of crypto-explosive breccia type-

dominated gold deposit. Geol. Explor. Nonferrous Met. 4, 272–277 (in

Chinese with English abstract).

Li, S.R., Chen, G.Y., Shao, W., Sun, D.S., 1996. Genetic Mineralogy of the

Rushan Gold Field, Jiaodong Peninsula. Geological Publishing House,

Beijing, 1–116 (in Chinese with English abstract).

Li, S.R., Santosh, M., Zhang, H.F., Luo, J.Y., Zhang, J.Q., Li, C.L., Song, J.Y.,

Zhang, X.B., 2014a. Metallogeny in response to lithospheric thinning and

craton destruction: geochemistry and U-Pb zircon chronology of the

Yixingzhai gold deposit, central North China Craton. Ore Geology

Reviews 56,457-471.

Li, S.R., Santosh, M., Zhang, H.F., Shen, J.F., Dong, G.C., Wang, J.Z., Zhang,

J.Q., 2013a. Inhomogeneous lithospheric thinning in the central North

Page 34: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 33

China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism

and metallogeny in the Taihang Mountains. Gondwana Research 23,

141‒160.

Li, S.R., and Santosh, M., 2014, Metallogeny and craton destruction: Records

from the North China Craton. Ore Geology Reviews 56, 316-414.

Li, S.R., Shao, K.Z., 1991. Fluid inclusion typomorphism of the Qiyugou gold

deposit, Songxian county, Henan province. Geologica 5, 415–422 (in

Chinese with English abstract).

Li, S.R., Yuan, W.M., Qu, W.J., Deng, J., Hou, Z.Q., 2005. Gold mineralization

in Gaize area, Tibet. Mineral Deposit. 24, 1-14 (in Chinese with English

abstract).

Li, S.R., Yuan, W.M., Qu, W.J., Deng, J., Hou, Z.Q., 2008. Comparation of

several sets of age data and the origin of the Jiama polymetallic ore

deposit in Mozugongka County, Tibet. Acta Petrologica Sinica, 24, 511-

518. (in Chinese with English abstract).

Li, X.C., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Lan, T.G., Liu, Y.S.,

Yang, Y.H., 2012. An evolving magma chamber within extending

lithosphere: an integrated geochemical, isotopic and zircon U–Pb

geochronological study of the Gushan granite, eastern North China

Craton. Journal of Asian Earth Sciences 50, 27–43.

Li, Z.W., Hao, T.Y., Xu, Y., 2011. Uppermost mantle structure of the North

China Craton: constraints from interstation Pn travel time difference

tomography. Chinese Science Bulletin 56, 1691–1699.

Liu, S.W., Pan, Y.M., Li, J.H., Zhang, J., Li, Q.G., 2002. Geological and

isotopic geochemical constraints on the evolution of the Fuping Complex,

North China Craton. Precambr. Res. 117, 41–56.

Liu, S.W., Pan, Y.M., Xie, Q.L., Zhang, J., Li, Q.G., 2004. Archean

geodynamics in the Central Zone, North China craton: constraints from

geochemistry of two contrasting series of granitoids in the Fuping and

Wutaishan complexes. Precambrain Research 130, 229–249.

Page 35: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 34

Liu, S.W., Zhao, G.C., Wilde, S.A., Shu, G.M., Sun, M., Li, Q.G., Tian, W.,

Zhang, J., 2006. Th–U–Pb monazite geochronology of the Luliang and

Wutai complexes: constraints on the tectonothermal evolution of the

Trans-North China Orogen. Precambrain Research 148, 205–224

Liu, Y., Li, C.M., Mu, Y.Q., Sun, H., Huang, F.X., Zheng, J., 2010. Zircon

shrimp U–Pb age of Chiwawu granite complex and its implicatio in the

northern Taihang Mountain. Geology and Exploration 46, 0442–0447

Lu, F.X., Zheng, J.P., Shao, J.A., Zhang, R.S., Chen, M.H., Yu, C.M., 2006.

Asthenospheric upwelling and lithospheric thinning in late Cretaceous-

Cenozoic in eastern North China. Earth Science Frontiers 13, 86–92 (In

Chinese with English abstract).

Luo, Z.H., Wei, Y., Xin, H.T., Ke, S., Li, W.T., Li, D.D., Huang, J.X., 2006. The

Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of

the continental lithosphere in North China. Earth Science Frontiers 13,

52–63 (in Chinese with English abstract).

Ludwig, K.R., 2001. Squid 1.02: a user manual. In: Berkeley

Geochronological Center Special Publication l2, 19.

Ma, L., Jiang, S.Y., Hou, M.L., Dai, B.Z., Jiang, Y.H., Yang, T., Zhao, K.D., Pu.

W., Zhu, Z.Y., Xu, B., 2014. Geochemistry of Early Cretaceous calc-

alkaline lamprophyres in the Jiaodong Peninsula: Implication for

lithospheric evolution of the eastern North China Craton. Gondwana

Research 25, 859-872.Mao, J.W., Xie, G.Q., Zhang, Z.H., Li, X.F., Wang,

Y.T., Zhang, C.Q., Li, Y.F., 2005. Mesozoic large-scale metallogenic

pulses in North China and corresponding geodynamic settings. Acta

Petrologica Sinica 21, 169–188 (in Chinese with English abstract).

Menzies, M.A., Fan, W.M., Zhang, M., 1993. Palaeozoic and Cenozoic

lithoprobes and the loss of >120 km of Archean lithosphere, Sino–Korean

Craton, China. Geological Society London 76, 71–81.

Mo, X.X., Zhao, Z.D., Deng, J.F., 2006. Petrology and geochemistry of

postcollisional volcanic rocks from the Tibetan Plateau: implications for

Page 36: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 35

lithosphere heterogeneity and collision-induced asthenospheric

mantleflow. In: Dilek, Y., Pavlides, S. (Eds.), Postcollisional Tectonics and

Magmatism in the Mediterranean Region and Asia: Geological Society of

America Special Paper, 409, pp. 507–530

Pirajno, F., Seltmann, R., Yang, Y., 2011. A review of mineral systems and

associated tectonic settings of northern Xinjiang, NW China. Geoscience

Frontiers 2, 157–185.

Rock, N.M.S., 1991. Lamprophyres. , Blackie and Son, Glasgow.

Santosh, M., Sajeev, K., Li, J.H., 2006.Extreme crustal metamorphism during

Columbia supercontinent assembly: evidence from North China Craton.

Gondwana Research 10, 256–266.

Santosh, M., Wilde, S.A., Li, J.H., 2007.Timing of Paleoproterozoic ultrahigh-

temperature metamorphism in the North China Craton: evidence from

SHRIMP U–Pb zircon geochronology. Precambrian Research 159, 178–

196.

Santosh, M., Tsunogae, T., Ohyama, T., Sato, K., Li, J.H., Liu, S.J.,

2008.Carbonic metamorphism at ultrahigh-temperatures: evidence from

North China Craton. Earth and Planetary Science Letters 266, 149–165.

Santosh, M., Wan, Y.S., Liu, D.Y., Dong, C.Y., Li, J.H., 2009.Anatomy of

zircons from an ultrahot orogen: the amalgamation of the North China

Craton within the supercontinent Columbia. The Journal of Geology 117,

429–443.

Santosh, M. 2010. Assembling North China Craton within the Columbia

supercontinent: The role of double-sided subduction. Precambrian

Research 178, 149–167.

Santosh, M., Liu, S.J., Tsunogae, T., Li, J.H., 2012. Paleoproterozoic

ultrahigh-temperature granulites in the North China Craton: implications

for tectonic models on extreme crustal metamorphism. Precambrian

Research 222–223, 77–106.

Santosh, M., Liu, D.Y., Shi, Y.R., Liu, S.J., 2013. Paleoproterozoic

Page 37: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 36

accretionary orogenesis in the North China Craton: a SHRIMP zircon

study. Precambrian Research 227, 29–54.

Santosh, M., Yang, Q., Shaji, E., Tsunogae, T., Ram Mohan, M.,

Satyanarayanan,M., 2015. An exotic Mesoarchean microcontinent: The

Coorg Block, southern India. Gondwana Research 27, 165-195,

http://dx.doi.org/10.1016/j.gr.2013.10.005

Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium–hafnium

clock. Science 293, 683–687.

Shen, J.F., Santosh, M., Li, S.R., Zhang, H.F., Yin, N., Dong, G.C., Wang, Y.J.,

Ma, G.G., Yu, H.J., 2013. The Beiminghe skarn iron deposit, eastern

China: geochronology, isotope geochemistry and implications for the

destruction of the North China Craton. Lithos 156–159, 218–229.

Shen, J.F., Li, S.R., Santosh, M., Meng, K., Dong, G.C., Wang, Y.J., Yin, N.

Ma, G.G., Yu, H.J., 2013. He–Ar isotope geochemistry of iron and gold

deposits reveals heterogeneous lithospheric destruction in the North

China Craton. Journal of Asian Earth Sciences. 78, 237-247.

Sun, J. G., Hu, S. X., and Ling, H. F., 2000, Study on the geochemistry and

subduction-crust mantle interaction of the high potassium-potassium dike

rocks in gold deposits concentration zone of east Shandong, China: Acta

Petrologica Sinica 16, 401–412 (in Chinese with English abstract).

Sun, W.Y., Li, S.R., Santosh, M., Wang, X., Zhang, L.J., 2014. Isotope

geochemistry and geochronology of the Qiubudong silver deposit, central

North China Craton: Implications for ore genesis and lithospheric

dynamics. Ore Geology Reviews 57, 376-414.

Tam, P.Y., Zhao, G.C., Liu, F.L., Zhou, X.W., Sun, M., Li, S.Z., 2011.SHRIMP

U–Pb zircon ages of high-pressure mafic and pelitic granulites and

associated rocks in the Jiaobei massif. Constraints on the metamorphic

ages of the Paleoproterozoic Jiao-Liao-Ji Belt in the North China Craton.

Page 38: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 37

Gondwana Research 19, 150–162.

Tang, Y.J., Zhang, H.F., Santosh, M., Ying, J.F., 2013. Differential destruction

of the North China Craton: a tectonic perspective. Journal of Asian Earth

Sciences 78, 71-82.

Tian, Y., Zhao, D.P., 2011.Destruction mechanism of the North China Craton:

insight from P and S wave mantle tomography. Journal of Asian Earth

Sciences 42, 1132–1145.

Tian, Y., Zhao, D.P., Sun, R.M., Teng, J.W., 2009. Seismic imaging of the crust

and upper mantle beneath the North China Craton. Physics of the Earth

and Planetary Interiors 172, 169–182.

Trap, P., Faure, M., Lin, W., Monie, P., 2007. Late Paleoproterozoic (1900–

1800 Ma) nappe stacking and polyphase deformation in the Hengshan–

Wutaishan area: implications for the understanding of the Trans-North-

China belt, North China Craton. Precambrian Research 156, 85–106.

Trap, P., Faure, M., Lin, W., Bruguier, O., Monie, P., 2008. Contrasted tectonic

styles for the Paleoproterozoic evolution of the North China Craton.

Evidence for a similar to 2.1 Ga thermal and tectonic event in the Fuping

Massif. Journal of Structural Geology 30, 1109–1125.

Wan, Z.H., Wilde, Simon. A., Wan, J. L., 2010. Tectonic setting and

significance of 2.3–2.1 Ga magmatic events in the Trans-North China

Orogen: New constraints from the Yanmenguan mafic–ultramafic

intrusion in the Hengshan–Wutai–Fuping area. Precambrian Research.

178, 27-42.

Wang, B.D., Niu, S.Y., Sun, A.Q., Zhang, J.Z., 2010.Deep Sources of Ore-

forming Materials and the Metallogenesis of Mantle Branch Structure.

Geological Publishing House, Beijing 1–256 (in Chinese with English

abstract).

Wang, X., Li, S.R., Santosh, M., Gan, H.N., Sun, W.Y., 2014. Source

characteristics andfluid evolution of the Beiyingxigou Pb–Zn–Ag deposit,

central North China Craton: An integrated stable isotope investigation.

Page 39: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 38

Ore Geology Reviews 56, 528-540.

Wang, Y. J., Fan, W. M., Peng T P, Zhang,H., Guo, F., 2005. Nature of the

Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie

Orogen, central China: evidence from 40Ar/39Ar geochronology,

elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic

igneous rocks.Chemical Geology 220, 165-189

Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the

Early Cretaceous giant igneous event in eastern China. Earth and

Planetary Science Letters 233, 103–119.

Wu, F.Y., Li, X.H., Zheng, Y.F., Gao, S., 2007. Lu–Hf isotopic systematics and

their applications in petrology. Acta Petrologica Sinica 23 (2), 185–220 (in

Chinese with English abstract).

Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-

isotope analysis with an excimer laser, depth profiling, ablation of

complex geometries, and concomitant age estimation. Chemical Geology

209, 121–135.

Xu, H.J., Ma, C.Q., Zhang, J.F., 2012a. Generation of Early Cretaceous high-

Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern

China. Lithos 142–143, 182–200.

Xu, H.J., Song, Y.R., Ye, K., Zhang, J.F., Wang, H.R., 2012b. Petrogenesis of

mafic dykes and high-Mg adakitic enclaves in the Late Mesozoic

Fangshan low-Mg adakitic pluton, North China Craton. J Journal of Asian

Earth Sciences 54–55, 143–161.

Xu, Y.G., Li, H.Y., Pang, C.J., He, B., 2009. On the timing and duration of the

destruction of the North China Craton. Chinese Science Bulletin 54,

3379–3396.

Yang, J.H., Wu, F.Y., Wilde, S.A., 2003. A review of the geodynamic setting of

large-scale Late Mesozoic gold mineralization in the North China Craton:

an association with lithospheric thinning. Ore Geology Reviews 23, 125–

152.

Page 40: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 39

Yang, J. H., Chung, S. L., Zhai, M. G., and Zhou, X. H., 2004, Geochemical

and Sr-Nd-dPb isotopic compositions of mafic dikes from the Jiaodong

Peninsula, China: Evidence for vein-plus-peridotite melting in the

lithosphere mantle. Lithos, 73,145–160.

Yang, D.B., Xu, W.L., Gao, S., Xu, Y.G., Pei, F.P., 2012a.Repeated

modification of lithospheric mantle in the eastern North China Craton:

constraints from SHRIMP zircon U–Pb dating of dunite xenoliths in

western Shandong. Chinese Science Bulletin 57, 651–659.

Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., Lo, C.H., Song, B.,

2005. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-

pressure orogenic belt, east China and their relationship to lithospheric

thinning. Chemical Geology 222, 200–231

Yang, K.F., Fan, H.R., Santosh, M., Hu, F.F., Wilde, S.A., Lan, T.G., Lu, L.N.,

Liu, Y.S., 2012b. Reactivation of the Archean lower crust: implications for

zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of

late Mesozoic granitoids from northwestern Jiaodong Terrane, the North

China Craton. Lithos 146–147, 112–127.

Yang, Q.Y., Santosh, M., Shen, J.F., Li, S.R., 2014. Juvenile vs. recycled crust

in NE China: Zircon U–Pb geochronology, Hf isotope and an integrated

model for Mesozoic gold mineralization in the Jiaodong Peninsula.

Gondwana Research 25,1145-1468.

Yang, Q.Y., Santosh, M., 2014a. Paleoproterozoic arc magmatism in the North

China Craton: No Siderian global plate tectonic shutdown. Gondwana

Research, DOI: 10.1016/j.gr.2014.08.005Yang, Q.Y., Santosh, M., 2014b.

Early Cretaceous magma flare-up and its implications on gold

mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews,

http://dx.doi.org/10.1016/j.oregeorev.2014.01.004

Ye, R., Zhao, L.S., Shen, R.L., 1999.Geochemistry features of Yixingzhai gold

deposit in Shanxi Province. Geoscience 13, 415–418 (in Chinese with

English abstract)

Page 41: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 40

Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther D, Wu, F.Y., 2004. Accurate

U-Pb age and trace element determination of zircon by laser ablation-

inductively coupled plasma-mass spectrometry. Geostandards and

Geoanalytical Research 28, 353‒370.

Yuan, H.L., Gao, S., Dai, M.N., Zong, C.L., Günther, D., Fontaine, G.H., Liu,

X.M., Diwu, C.R., 2008. Simultaneous determinations of U–Pb age, Hf

isotopes and trace element compositions of zircon by excimer laser-

ablation quadrupole and multiple-collector ICP-MS. Chemical Geology

247, 100‒118.

Zhai, M.G., 2014. Multi-stage crustal growth and cratonization of the North

China Craton. Geoscience Frontiers

http://dx.doi.org/10.1016/j.gsf.2014.01.003

Zhai, M.G., Jang, J.H., Fan, H.R., Miao, L.C., Li, Y.G., 2002. A large scale

cluster of gold deposits and metallogenesis in the eastern North China

Craton. International Geology Review 44, 1–19.gao

Zhai, M.G., 2011.Cratonization and the Ancient North China Continent: a

summary and review. Science China Earth Sciences 54, 1110–1120.

Zhai, M.G., 2014. Multi-stage crustal growth and cratonization of the North

China Craton. Geoscience Frontiers 5, 457-469.Zhai, M.G., Santosh, M.,

2011.The early Precambrian odyssey of the North China Craton: a

synoptic overview. Gondwana Research 20, 6–25.

Zhai, M.G., Santosh, M., 2013. Metallogeny of the North China Craton: link

with secular changes in the evolving Earth. Gondwana Research 24, 275-

297.

Zhang, H.F., 2009. Peridotite-melt interaction: a key point for the destruction

of cratonic lithospheric mantle. Chinese Science Bulletin 54, 3417–3437.

Zhang, H.F., Ying, J.F., Tang, Y.J., Li, X.H., Feng, C., Santosh, M., 2011.

Phanerozoic reactivation of the Archean North China Craton through

episodic magmatism: evidence from U–Pb geochronology and Hf

isotopes from the Liaodong Peninsula. Gondwana Research 19, 446–

Page 42: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 41

459.

Zhang, H.F., Chen, L., Santosh, M., Menzies, A., 2013.Construction and

destruction of cratons: preface. Gondwana Research 23, 1–3.

Zhang, J.J., Jia, X.M., Chen, P., Tian, Y.Q., 2003.The metallogenetic system

characteristics and ore-forming models in Shanxi province. Coal Industry

Publishing House, Beijing 1–265 (in Chinese with English abstract)

Zhang, L.C., Zhai, M.G., Zhang, X.J., Xiang, P., Dai, Y.P., Wang, C.L., Pirajno,

F., 2012. Formation age and tectonic setting of the Shirengou

Neoarchean banded iron deposit in eastern Hebei Province: constraints

from geochemistry and SIMS zircon U–Pb dating. Precambrian Research

222–223, 325–338.

Zhang, Q., Wang, Y., Qian, Q., Yang, J,H., Wang, Y. L., Zhang, D.P., Yang,

G.J., 2001. The characteristic and tectonic-metallogenic significances of

the adakites in Yanshan period from eastern China. Acta Petrologica

Sinica 17, 236–244 (In Chinese with English abstract).

Zhao, G.C., Cawood, P.A., Wilde, S.A., Lu, L.Z., 2001a. High-pressure

granulites (retro-graded eclogites) from the Hengshan Complex, North

China Craton: petrology and tectonic implications. Journal of Petrology

42, 1141–1170.

Zhao, G.C., Kroner, A., Wilde, S.A., Sun, M., Li, S.H., Li, X.H., Zhang, J., Xia,

S., He, Y. 2007. Lithotectonic elements and geological events in the

Hengshan-Wutai-Fuping belt, Trans-North China Orogen: a synthesis and

implications for the evolution of a long-lived (2560–1850 Ma) magmatic

arc. Geological Magazine 144, 1–23.

Zhao, G.C., Wilde, S.A., Guo, J.H., Cawood, P.A., Sun, M., Li, X.P., 2010.

Single zircon grains record two Paleoproterozoic collisional events in

North China Craton. Precambrian Research 177, 266–276.

Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–

1.8 Ga collisional orogens and accreted cratons: a pre-Rodinia

supercontinent? Earth Science Reviews 59, 125–162.

Page 43: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 42

Zhao, G.C., He, Y.H., Sun, M., 2009.The Xiong'er volcanic belt at the southern

margin of the North China Craton: petrographic and geochemical

evidence for its outboard position in the Paleo-Mesoproterozoic Columbia

Supercontinent. Gondwana Research 16, 170–181.

Zhao, G.C., Sun, M., Wilde, S.A., 2003.Major tectonic units of the North China

Craton and their Paleoproterozoic assembly. Science In China, Series D:

Earth Sciences 46, 23–38.

Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2005.Late Archean to

Paleoproterozoic evolution of the North China Craton: key issues

revisited. Precambrian Research 136, 177–202.

Zhao, G.C., Sun, M., Wilde, Li, S.Z., Liu, S.W., Zhang, J., 2006.Composite

nature of the North China granulite-facies belt: tectonothermal and

geochronological constraints. Gondwana Research 9, 337–348.

Zhao, G.C., Zhai,M.G., 2013. Lithotectonic elements of Precambrian

basement in the North China Craton: review and tectonic implications.

Gondwana Research 23, 1207–1240.

Zhao, R.F., Guo, J.H., Peng, P., Liu, F., 2011. 2.1 Ga crustal remelting event in

Hengshan Complex: evidence from zircon U-Pb dating and Hf-Nd

isotopic study on petassic granites. Acta Petrologica Sinica 27, 1607–

1623 (In Chinese with English abstract).

Zhao, Y.M., Wu, L.S., Rui, Z.Y., Deng, X.P., 2006b. Map of the copper

resources in China (1:5000000). Beijing: Geological Publishing House (in

Chinese).

Zhao, Y.M., Wu, L.S., Ye, Q.T., Sheng, J.F., Deng, X.P., 2006c. Map of the

lead–zinc resources in China (1:5000000). Beijing: Geological Publishing

House (in Chinese).

Zheng, Y.F., Wu, F.Y., 2009. Growth and reworking of cratonic lithosphere.

Chinese Science Bulletin 54, 3347–3353.

Zheng, J.P., 2009. Comparison of mantle-derived materials from different

spatiotemporal settings: implications for destructive and accretional

Page 44: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 43

processes of the North China Craton. Chinese Science Bulletin 54, 3397–

3416.

Zhu, R.X., Zheng, T.Y., 2009. Destruction geodynamics of the North China

Craton and its Paleoproterozoic plate tectonics. Chinese Science Bulletin

54, 3354–3366.

Zhu, R.X., Chen, L., Wu, F.Y., Liu, J.L., 2011a. Timing, scale and mechanism

of the destruction of the North China Craton. Science China Earth

Sciences 54, 789–797.

Zhu, Y., An, F., Tan, J., 2011b. Geochemistry of hydrothermal gold deposits: a

review. Geoscience Frontiers 2, 367–374.

Figure captions

Fig.1 (a) Major tectonic units of the North China Craton (modified after Xu et

al., 2009); (b) Geological and tectonic map of the North China Craton

(modified after Zhao et al., 2002; Zhai and Santosh et al., 2011; Santosh,

2010); (c) Geological framework of part of the Trans-North China Orogen

showing the Fuping and other complexes (modified after Santosh et al.,

2013 and Trap et al., 2008); (d) The Mesozoic intrusive rocks in the

northern part of the Fuping region as revealed in satellite imagery

(modified after Sun et al., 2014 and Li et al.,2014b); Abbreviated symbols

represent the Yanshanian batholiths.

Fig.2 Geological map of the region surrounding Mapeng and Chiwawu

intrusions showing the major mineral deposits and basement lithologies.

The sample locations of present study are also shown.

Fig.3 Representative field photographs showing the occurrence of the

porphyry dykes discussed in location B of this study.

Fig.4 Representative field photographs showing the occurrence of the

Page 45: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 44

porphyry dykes discussed location E of this study. (a) The quartz

monzonite porphyry outcrop in TTG gneiss; (b) The granite porphyry and

camptonite outcrop.

Fig.5 Hand specimen photos of rock samples in FJG-2 (a), ZT-2 (c), CNK-3

(e), ZTX-5 (g) and representative photomicrographs FJG-2 (b), ZT-2 (d),

CNK-3 (f), ZTX-5 (h) showing the major mineral assemblages in the rocks

of present study. Mineral abbreviations: Amp-amphibole, Pl- plagioclase,

Qtz-quartz, Ttn-titanite.

Fig.6 Hand specimen photos of rock samples in ZTX-2 (a), FJG-1 (c), ZT-1

(e), ZJG-1 (g) and representative photomicrographs ZTX-2 (b), FJG-1 (d),

ZT-1 (f), ZJG-1 (h) showing the major mineral assemblages in the rocks

of present study. Mineral abbreviations: Bi-biotite, Chl-chlorite, Mag-

magnetite, Pl- plagioclase, Qtz-quartz.

Fig.7Representative photomicrographs in reflected light (a-f) and back-

scattered electron image (g-i) showing ore textures of the porphyry

dykes. Mineral abbreviations: Ap-apatite, Bi-biotite, Brt-barite, Cal-calcite,

Chl-chlorite, Gn-galena, Kfs-K feldspar, Ilm-ilmenite, Mag-magnetite, Ms-

muscovite, Pl-plagioclase, Py-pyrite, Qtz-quartz.

Fig.8 Harker diagrams for the porphyry dykes.

Fig.9 Plots of (a) SiO2 VS A.R =(Al2O3+CaO+(Na2O+K2O)/ Al2O3+CaO-

(Na2O+K2O) (b) K2O vs. SiO2 (Peccerillo and Taylor, 1976) and (c) A/NK

[molar ratio Al2O3/(Na2O+K2O)] vs. A/CNK [molar ratio Al2O3/(CaO +

Na2O+K2O)]

Fig.10 (a) Chondrite-normalized REE patterns and (b) primitive mantle-

normalized trace element diagrams for the porphyry dykes compare the

rocks from Mapeng batholith and Fuping basement. The normalization

values are from Sun and McDonough (1989);

Page 46: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 45

Fig.11 Cathodoluminescence images of zircon grains with U-Pb (red circles)

and Lu-Hf (yellow circles) analytical spots, with ages (in Ma) and εHf(t)

values from samples MP-1, ZT-2, CNK-3 and ZTX-5.

Fig.12 Cathodoluminescence images of zircon grains with U-Pb (red circles)

and Lu-Hf (yellow circles) analytical spots, with ages (in Ma) and εHf(t)

values from samples ZTX-2, ZT-1 and FJG-2.

Fig.13 Zircon U–Pb age data plots of the samples MP-1 and ZT-2. (a) and (c)

are the concordia plots of the dominant zircon population. (b) and (d) are

the age data histograms.

Fig.14 Zircon U–Pb age data plots of the samples CNK-1 and ZTX-5. (a) and

(c) are the concordia plots of the dominant zircon population. (b) and (d)

are the age data histograms.

Fig.15 Zircon U–Pb age data plots of the samples ZTX-2 and ZT-1. (a) and (c)

are the concordia plots of the dominant zircon population. (b) and (d) are

the age data histograms.

Fig.16 Zircon U–Pb age data plots of the samples FJG-2. (a) Concordia plots

of the dominant zircon population. (b) Age data histograms.

Fig.17 Histograms compiling the published ages of magmatic intrusions and

associated mineral deposits in the central NCC.

Fig.18 Diagram of Hf isotopic evolution in zircons for porphyry dikes

compared with those from basement rocks and Mesozoic intrusions of

CNCC and NE NCC. Data sources: Wang et al., 2011; Huang et al.,

2012; Lan et al., 2011; Zhang et al., 2005; Zhang et al.,2010; Yang et al.,

2012; Yang et al., 2013; Wan et al., 2011; Wang et al., 2013 and this

study. CHUR, chondritic uniform reservoir; CC, continental crust. Central

NCC, central North China Craton; NE NCC, northeast North China

Craton.

Page 47: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 46

Fig.19 Tectonic model as proposed in this study showing the major processes

of the genesis of the porphyry systems and their relation to

mineralization. See text for discussion.

Table captions

Table 1 Details of samples analyzed in this study.

Table 2 Major, trace and rare earth element concentration data of the samples

analyzed in this study.

Table 4 Lu‒Hf isotope analytical data on zircons in this study.

Supplementary Data

Table 3 LA-ICP-MS U–Pb analytical data on zircons in this study.

Page 48: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 47

Fig 1

Page 49: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 48

Fig 2

Page 50: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 49

Fig 3

Page 51: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 50

Fig 4

Page 52: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 51

Fig 5

Page 53: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 52

Fig 6

Page 54: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 53

Fig 7

Page 55: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 54

Fig 8

Page 56: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 55

Fig 9

Page 57: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 56

Fig 10

Page 58: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 57

Fig 11

Page 59: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 58

Fig 12

Page 60: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 59

Fig 13

Page 61: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 60

Fig 14

Page 62: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 61

Fig 15

Page 63: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 62

Fig 16

Page 64: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 63

Fig 17

Page 65: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 64

Fig 18

Page 66: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 65

Fig 19

Page 67: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 66

Table 1 Details of samples be analyzed in this study.

Serial No.

Sample No.

Rock type Coordinates Analytical methods

1 MP-1 Diorite porphyry N 38°45′12.74″ E

114°05′54.61″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

2 ZT-2 Diorite porphyry N 38°34′23.47″ E

114°01′42.58″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

3 ZT-4 Diorite porphyry N 38°34′23.47″ E

114°01′42.58″ Bulk Geochemistry

4 CNK-3 Quartz diorite porphyry

N 38°36′50.01″ E

113°58′14.86″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

5 CNK-1 Monzodiorite porphyry

N 38°36′50.01″ E

113°58′14.86″ Bulk Geochemistry

6 CNK-2 Monzodiorite porphyry

N 38°36′50.01″ E

113°58′14.86″ Bulk Geochemistry

7 ZTX-4 Monzodiorite porphyry

N 38°35′36.14″ E

114°00′07.11″ Bulk Geochemistry

8 ZTX-6 Monzodiorite porphyry

N 38°35′39.51″ E

114°00′01.79″ Bulk Geochemistry

9 ZTX-2 Syenodiorite porphyry

N 38°35′36.14″ E

114°00′07.09″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

10 ZTX-7 Syenodiorite porphyry

N 38°35′39.51″ E

114°00′01.79″ Bulk Geochemistry

11 FJG-1 Quartz monzonite

porphyry

N 38°35′41.67″ E

114°00′01.04″ Bulk Geochemistry

12 TPK-1 Quartz monzonite

porphyry

N 38°36′22.52″ E

113°58′49.96″ Bulk Geochemistry

13 ZT-5 Quartz monzonite

porphyry

N 38°34′23.47″ E

114°01′42.58″ Bulk Geochemistry

14 ZTX-1 Quartz monzonite

porphyry

N 38°34′31.87″ E

114°01′18.00″ Bulk Geochemistry

15 ZT-1 Syenite porphyry N 38°34′23.47″ E

114°01′42.58″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

16 ZTX-3 Syenite porphyry N 38°35′36.14″ E

114°00′07.10″ Bulk Geochemistry

17 FJG-4 Granite porphyry

N 38°35′41.67″ E

114°00′01.07″ Bulk Geochemistry

18 ZJG-1 Granite porphyry

N 38°38′24.45″ E

113°57′10.76″ Bulk Geochemistry

19 FJG-2 Camptonite N 38°35′41.67″ E

114°00′01.05″ Bulk Geochemistry+Zircon U-Pb and Lu-Hf isotopes

20 FJG-3 Camptonite N 38°35′41.67″ E

114°00′01.06″ Bulk Geochemistry

Page 68: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 67

Table 2 Major, trace and rare earth element concentration data of the samples in this study.

No. CNK-1 CNK-2 CNK-3 FJG-1 FJG-2 FJG-3 FJG-4 MP-1 TPK-1 ZJG-1

Major elements (wt%)

SiO2 66.25 64.72 61.44 68.50 57.92 60.49 63.93 65.44 63.81 64.78

TiO2 0.51 0.51 0.68 0.37 0.74 0.65 0.39 0.60 0.51 0.54

15.40 15.25 15.72 14.79 15.02 15.34 15.19 16.52 15.12 14.99

Fe2O3T 3.40 3.33 4.31 2.25 5.81 5.09 2.99 3.94 3.12 3.07

MnO 0.05 0.05 0.06 0.03 0.12 0.10 0.06 0.08 0.05 0.05

MgO 1.44 1.42 2.08 0.91 3.67 2.95 0.52 1.48 1.23 0.78

CaO 1.79 2.93 3.42 1.46 5.25 4.77 4.40 2.79 3.01 3.24

Na2O 4.49 4.31 4.48 4.15 3.20 3.37 3.46 4.49 4.28 3.94

K2O 3.48 3.20 3.53 4.42 3.17 3.37 3.37 3.36 3.31 3.38

P2O5 0.22 0.22 0.28 0.14 0.30 0.26 0.16 0.24 0.21 0.20

LOI 2.52 3.58 3.41 2.64 4.02 2.95 5.03 0.60 4.77 4.51

Mg# 45.59 45.78 48.86 44.55 55.55 53.46 25.66 42.64 43.81 33.56

N2O/K2O 1.29 1.35 1.27 0.94 1.01 1.00 1.03 1.34 1.29 1.17

A/NK 1.38 1.44 1.40 1.27 1.73 1.67 1.62 1.50 1.42 1.48

A/CNK 1.07 0.96 0.90 1.04 0.82 0.86 0.87 1.03 0.94 0.93

A.R 2.73 2.41 2.44 3.23 1.92 2.01 2.07 2.37 2.44 2.34

Trace and rare earth elements (ppm)

Rb 57.10 54.20 62.50 102.00 54.40 53.00 75.60 84.20 57.10 61.40

Ba 1214.0 928.00 1734.0 1466.0 1874.0 2013.0 1632.0 1551.0 1588.0 2875.0

Th 3.46 2.99 2.73 7.27 3.89 4.33 4.60 3.50 3.41 3.38

U 0.95 0.96 0.94 2.18 1.12 1.20 1.29 0.94 0.99 0.92

Ta 0.43 0.42 0.40 0.85 0.54 0.63 0.64 0.52 0.54 0.47

Nb 7.87 7.91 7.77 10.40 10.40 10.20 10.30 9.35 8.89 8.60

La 33.70 31.60 30.30 40.90 36.60 36.60 38.40 34.90 39.10 31.60

Ce 63.20 58.00 59.40 71.80 68.70 66.70 64.90 64.20 67.80 61.10

Sr 506.00 449.00 862.00 474.00 1466.0 959.00 597.00 891.00 287.00 347.00

Nd 26.60 28.40 30.30 28.70 31.90 29.20 27.10 30.70 29.80 28.80

Zr 50.60 45.30 91.10 87.20 187.00 164.00 130.00 44.70 61.30 40.40

Hf 1.90 1.80 2.85 2.98 4.46 4.51 3.97 1.67 2.40 1.83

Sm 4.14 4.39 4.88 4.21 5.43 5.03 4.19 4.85 4.67 4.64

Y 7.27 7.84 8.94 8.50 19.70 17.50 13.40 9.26 7.40 7.51

Pr 7.24 7.11 7.52 7.88 8.16 7.79 7.47 7.74 7.85 7.55

Eu 1.00 1.19 1.24 0.85 1.33 1.21 0.89 1.10 1.10 0.81

Gd 3.06 3.12 3.53 3.27 4.53 4.01 3.35 3.69 3.49 3.35

Tb 0.41 0.42 0.49 0.43 0.72 0.64 0.50 0.51 0.45 0.45

Dy 1.48 1.58 1.86 1.62 3.46 3.09 2.29 1.98 1.68 1.64

Ho 0.24 0.25 0.31 0.29 0.66 0.58 0.43 0.32 0.26 0.27

Er 0.77 0.72 0.93 0.88 1.92 1.71 1.33 0.93 0.79 0.80

Tm 0.10 0.10 0.12 0.13 0.31 0.28 0.21 0.12 0.10 0.10

Yb 0.57 0.61 0.73 0.78 1.94 1.79 1.35 0.71 0.58 0.62

Lu 0.08 0.08 0.10 0.12 0.28 0.27 0.21 0.09 0.09 0.09

ΣREE 142.59 137.57 141.70 161.84 165.94 158.89 152.61 151.8 157.7 141.8

LREE 135.88 130.69 133.64 154.34 152.12 146.53 142.95 143.4 150.3 134.5

HREE 6.71 6.88 8.06 7.50 13.82 12.36 9.67 8.35 7.44 7.31

LREE/HREE 20.24 19.00 16.59 20.57 11.01 11.85 14.79 17.18 20.21 18.39

Page 69: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 68

LaN/YbN 42.11 37.28 29.98 37.56 13.53 14.67 20.40 35.36 48.11 36.80

δEu 0.85 0.98 0.91 0.70 0.82 0.82 0.72 0.79 0.83 0.62

Table 2 (continued)

No. ZT-1 ZT-2 ZT-4 ZT-5 ZTX-1 ZTX-2 ZTX-3 ZTX-4 ZTX-6 ZTX-7

Major elements (wt%)

SiO2 66.78 64.08 64.26 66.98 68.57 63.86 67.39 67.49 69.50 69.47

TiO2 0.51 0.52 0.52 0.44 0.36 0.62 0.39 0.35 0.37 0.38

14.62 16.14 16.08 14.50 14.46 15.49 15.09 15.28 14.83 14.83

Fe2O3T 2.67 3.95 4.10 2.57 2.14 4.08 2.63 2.52 2.14 2.18

MnO 0.04 0.08 0.09 0.04 0.03 0.07 0.05 0.05 0.03 0.04

MgO 1.09 1.36 1.36 1.01 0.86 1.90 1.18 1.14 0.86 0.85

CaO 2.97 3.63 3.33 2.43 1.99 3.23 2.07 2.33 1.41 1.48

Na2O 3.69 4.05 4.49 3.99 3.74 4.32 4.65 4.77 4.03 4.10

K2O 4.14 3.39 3.12 4.03 4.46 3.48 4.09 3.86 4.60 4.46

P2O5 0.20 0.24 0.24 0.20 0.13 0.25 0.14 0.14 0.13 0.14

LOI 2.86 2.03 2.06 3.41 2.91 2.16 1.97 1.78 1.80 1.79

Mg# 44.67 40.53 39.67 43.72 44.20 47.99 47.06 47.25 44.29 43.47

N2O/K2O 0.89 1.19 1.44 0.99 0.84 1.24 1.14 1.24 0.88 0.92

A/NK 1.38 1.56 1.49 1.33 1.32 1.42 1.25 1.27 1.28 1.28

A/CNK 0.92 0.95 0.96 0.94 0.99 0.92 0.95 0.94 1.05 1.04

A.R 2.60 2.21 2.29 2.80 2.99 2.43 3.08 2.92 3.27 3.21

Trace and rare earth elements (ppm)

Rb 89.80 70.20 46.70 89.10 102.00 64.20 78.90 84.40 102.0 86.20

Ba 2410. 2776. 2014. 1129.0 1218.0 1719.00 1920.00 1879. 1536. 1339.

Th 7.16 3.39 3.01 5.31 6.83 4.67 3.01 3.39 6.48 6.19

U 1.76 0.96 0.81 1.79 1.65 1.43 1.59 1.96 1.83 2.00

Ta 0.74 0.58 0.52 0.73 0.75 0.64 0.65 0.73 0.71 0.72

Nb 9.29 9.74 8.78 9.77 9.62 10.40 9.47 10.30 8.41 8.91

La 45.40 36.90 32.10 33.90 35.10 37.50 20.10 25.20 35.90 35.60

Ce 79.10 67.90 58.50 62.30 62.30 70.60 40.30 48.00 63.80 63.80

Sr 424.00 902.00 817.00 530.00 355.00 817.00 548.00 723.0 574.0 577.0

Nd 32.50 32.00 28.20 27.80 25.30 30.70 19.40 22.00 25.40 25.40

Zr 110.00 71.20 59.40 48.00 65.30 85.60 73.70 78.40 77.30 76.20

Hf 3.44 2.61 2.26 2.02 2.48 2.95 2.52 2.71 2.66 2.62

Sm 4.70 5.53 4.87 4.34 3.77 4.91 3.46 3.81 3.78 3.82

Y 9.26 17.30 14.90 7.11 6.56 11.60 10.20 10.80 7.05 7.22

Pr 8.85 8.24 7.06 7.36 7.03 8.09 4.97 5.64 7.13 7.10

Eu 0.97 1.30 1.24 1.09 0.79 1.21 0.83 0.83 0.81 0.82

Gd 3.77 4.38 3.89 3.31 3.04 3.90 2.65 2.90 2.98 2.90

Tb 0.50 0.67 0.61 0.43 0.38 0.54 0.41 0.44 0.38 0.38

Dy 1.93 3.12 2.96 1.60 1.42 2.22 1.86 2.04 1.45 1.46

Ho 0.32 0.58 0.53 0.27 0.24 0.39 0.32 0.36 0.25 0.25

Er 0.98 1.73 1.58 0.81 0.74 1.17 0.94 1.06 0.77 0.78

Tm 0.13 0.27 0.24 0.11 0.10 0.16 0.15 0.16 0.11 0.11

Yb 0.82 1.68 1.50 0.69 0.62 1.02 0.89 1.00 0.69 0.68

Lu 0.12 0.25 0.22 0.10 0.09 0.15 0.14 0.15 0.10 0.10

ΣREE 180.08 164.54 143.51 144.10 140.92 162.55 96.41 113.5 143.5 143.2

Page 70: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPTP a g e | 69

LREE 171.52 151.87 131.97 136.79 134.29 153.01 89.06 105.4 136.8 136.5

HREE 8.56 12.67 11.54 7.31 6.62 9.54 7.36 8.10 6.73 6.66

LREE/HREE 20.04 11.98 11.44 18.71 20.27 16.03 12.10 13.02 20.33 20.51

LaN/YbN 39.57 15.75 15.35 35.50 40.74 26.37 16.15 18.08 37.37 37.39

δEu 0.71 0.81 0.87 0.88 0.71 0.85 0.83 0.76 0.74 0.75

Page 71: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 70

Table 3. LA-ICP-MS U–Pb analytical data on zircons in this study.

Sample

spots

Element concentration(ppm) Isotope ratios(±1σ) Age(Ma±1σ) Concordance(%) PbT

232Th

238U Th/U

207Pb/

206Pb

207Pb/

235U

206Pb/

238U

208Pb/

232Th

207Pb/

206P

b 207

Pb/235

U 206

Pb/238

U 208

Pb/232

Th

CNK-3-01

20.89 104.9

1 178.6

4 0.59

0.0484

0.0039

0.1319

0.0103

0.0198

0.0004

0.0058

0.0002

119.8

180.19

125.8

9.24

126.2

2.68

116.8

4.81

100

CNK-3-02

605.95

75.14 268.7

0 0.28

0.1663

0.0036

10.8334

0.1752

0.4723

0.0069

0.1359

0.0025

2521.1

35.59

2508.9

15.03

2493.8

30.24

2574.9

43.68

99

CNK-3-03

22.34 106.7

7 169.5

6 0.63

0.0485

0.0038

0.1381

0.0105

0.0207

0.0004

0.0072

0.0003

123.4

175.05

131.4

9.33

131.8

2.74

144.1

5.05

100

CNK-3-04

30.58 253.4

6 250.7

4 1.01

0.0486

0.0035

0.1393

0.0096

0.0208

0.0004

0.0070

0.0002

128.2

160.6

132.4

8.56

132.6

2.6 140

.1 3.8

1 100

CNK-3-05

15.73 57.59 118.2

1 0.49

0.0492

0.0078

0.1364

0.0211

0.0201

0.0007

0.0051

0.0006

155.1

333.14

129.8

18.83

128.5

4.55

103.5

12.34

99

CNK-3-06

21.19 110.9

9 165.0

2 0.67

0.0492

0.0044

0.1411

0.0123

0.0208

0.0005

0.0064

0.0003

157.7

197.48

134.1

10.94

132.7

2.91

128 4.9

6 99

CNK-3-07

39.07 381.2

6 353.1

4 1.08

0.0483

0.0031

0.1258

0.0077

0.0189

0.0004

0.0058

0.0002

114.6

144.81

120.3

6.96

120.6

2.26

115.9

2.97

100

CNK-3-08

16.49 57.92 117.1

5 0.49

0.0526

0.0048

0.1467

0.0130

0.0202

0.0005

0.0066

0.0003

310.9

195.25

139 11.51

129.1

2.95

132.4

6.72

92

CNK-3-09

21.78 117.9

4 178.2

1 0.66

0.0485

0.0038

0.1338

0.0100

0.0200

0.0004

0.0065

0.0002

124.4

173.16

127.5

8.98

127.7

2.58

131.3

4.52

100

CNK-3-10

1953.64

318.31

885.10

0.36 0.160

3 0.0032

9.5837

0.1367

0.4337

0.0061

0.1222

0.0017

2458.3

33.49

2395.6

13.11

2322.5

27.26

2330.8

30.45

94

CNK-3-11

18.50 137.8

2 118.2

8 1.17

0.0515

0.0060

0.1524

0.0172

0.0215

0.0006

0.0070

0.0003

263.4

246.35

144 15.16

136.9

3.8 141

.5 5.5

7 95

CNK-3-12

23.87 93.42 195.3

3 0.48

0.0486

0.0036

0.1348

0.0095

0.0201

0.0004

0.0068

0.0003

128.7

163.83

128.4

8.5 128

.4 2.5

7 137

.4 5.2

8 100

CNK-3-13

28.94 161.5

9 244.2

8 0.66

0.0495

0.0033

0.1456

0.0093

0.0213

0.0004

0.0066

0.0002

172.2

148.1

138 8.2

1 136

2.59

133.1

4.03

99

CNK-3-14

37.03 468.9

5 303.4

0 1.55

0.0487

0.0037

0.1334

0.0097

0.0199

0.0004

0.0066

0.0002

132.9

168.07

127.1

8.65

126.8

2.64

132.2

3.08

100

Page 72: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 71

CNK-3-15

428.37

105.09

149.09

0.70 0.186

2 0.0040

13.4556

0.2210

0.5241

0.0078

0.1493

0.0023

2708.7

34.96

2712.2

15.53

2716.7

33.07

2812.5

40.52

100

CNK-3-16

209.40

14.95 137.8

2 0.11

0.1383

0.0034

6.1059

0.1250

0.3203

0.0050

0.0791

0.0033

2205.3

42.54

1991.1

17.87

1791.3

24.57

1538.6

61.34

77

CNK-3-17

53.82 615.6

3 468.4

5 1.31

0.0488

0.0036

0.1430

0.0100

0.0213

0.0004

0.0064

0.0002

139.5

162.99

135.8

8.91

135.5

2.8 128

.1 3.4

2 100

CNK-3-18

16.16 64.98 115.5

5 0.56

0.0485

0.0050

0.1399

0.0141

0.0209

0.0006

0.0071

0.0004

125.6

227.52

132.9

12.52

133.3

3.52

143.3

7.79

100

CNK-3-19

921.18

724.55

511.59

1.42 0.110

4 0.0023

4.9907

0.0740

0.3277

0.0046

0.0967

0.0012

1806.7

36.6

1817.7

12.55

1827.3

22.34

1866

22.54

99

CNK-3-20

227.55

104.44

117.25

0.89 0.122

7 0.0030

6.2066

0.1218

0.3668

0.0056

0.1043

0.0017

1996.1

42.15

2005.4

17.17

2014.4

26.6

2004.5

30.83

99

CNK-3-21

22.40 117.0

6 177.2

3 0.66

0.0486

0.0035

0.1416

0.0098

0.0211

0.0004

0.0071

0.0002

129.4

160.42

134.5

8.69

134.8

2.64

142.6

4.6 100

CNK-3-22

13.94 34.32 102.2

2 0.34

0.0491

0.0073

0.1449

0.0210

0.0214

0.0007

0.0069

0.0006

154.2

312.85

137.4

18.59

136.4

4.23

139.3

12.06

99

CNK-3-23

20.69 108.2

1 156.3

3 0.69

0.0486

0.0062

0.1394

0.0172

0.0208

0.0006

0.0070

0.0004

129.6

273.2

132.5

15.29

132.7

3.95

141.9

8.68

100

CNK-3-24

1678.68

87.49 1031.

84 0.08

0.1459

0.0031

8.3360

0.1348

0.4145

0.0061

0.1139

0.0024

2298

36.13

2268.2

14.67

2235.3

27.55

2180.8

43.58

97

CNK-3-25

46.32 534.6

5 388.9

0 1.37

0.0477

0.0027

0.1369

0.0073

0.0208

0.0004

0.0062

0.0001

82.4

129.32

130.3

6.54

132.9

2.35

125.8

2.56

98

CNK-3-26

20.22 116.0

6 145.8

3 0.80

0.0486

0.0051

0.1436

0.0146

0.0215

0.0006

0.0064

0.0003

126.9

228.49

136.3

12.93

136.8

3.45

128.6

5.23

100

CNK-3-27

15.19 50.80 100.5

3 0.51

0.0482

0.0068

0.1237

0.0172

0.0186

0.0006

0.0068

0.0005

110.3

304.18

118.4

15.5

118.8

3.58

136.1

9.65

100

CNK-3-28

22.88 147.6

8 175.7

3 0.84

0.0484

0.0059

0.1450

0.0173

0.0218

0.0007

0.0072

0.0004

116.5

265.86

137.5

15.32

138.7

4.11

145 7.7 99

CNK-3-29

19.27 62.29 143.6

7 0.43

0.0485

0.0041

0.1348

0.0111

0.0202

0.0004

0.0065

0.0003

122.9

188.73

128.4

9.92

128.7

2.77

130.9

6.41

100

CNK-3-30

46.35 458.0

8 419.3

3 1.09

0.0486

0.0039

0.1318

0.0101

0.0197

0.0004

0.0062

0.0002

129.2

176.43

125.7

9.02

125.5

2.72

125.7

3.45

100

FJG-2-01

213.10

52.85 90.08 0.59 0.154

6 0.0035

9.5253

0.1697

0.4471

0.0069

0.1220

0.0021

2397.2

37.44

2390

16.37

2382.5

30.62

2326.2

38.19

99

FJG-2-02

140.07

149.25

82.82 1.80 0.108

7 0.0029

4.3662

0.1016

0.2914

0.0047

0.0814

0.0012

1778.2

48.65

1706

19.23

1648.4

23.57

1581

23.03

92

Page 73: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 72

FJG-2-03

18.20 70.58 140.5

9 0.50

0.0487

0.0045

0.1321

0.0119

0.0197

0.0004

0.0058

0.0003

135.1

203.79

126 10.65

125.6

2.79

116.3

5.67

100

FJG-2-04

195.02

39.98 100.6

5 0.40

0.1281

0.0033

6.6989

0.1481

0.3796

0.0062

0.1114

0.0026

2071.4

44.96

2072.5

19.53

2074.3

29.09

2134.4

47.49

100

FJG-2-05

140.91

26.76 58.30 0.46 0.156

7 0.0037

9.9034

0.1962

0.4586

0.0074

0.1230

0.0026

2420.3

39.93

2425.8

18.27

2433.3

32.7

2344.8

47.4

99

FJG-2-06

259.64

92.48 198.2

4 0.47

0.1093

0.0027

3.9704

0.0794

0.2636

0.0040

0.0744

0.0014

1787.9

43.71

1628.2

16.21

1508

20.56

1449.9

26.21

81

FJG-2-07

22.03 169.9

6 168.3

7 1.01

0.0497

0.0040

0.1345

0.0104

0.0197

0.0004

0.0061

0.0002

178.8

176.97

128.1

9.34

125.5

2.65

122.1

3.71

98

FJG-2-08

230.16

63.68 89.59 0.71 0.165

2 0.0037

10.8261

0.1913

0.4754

0.0073

0.1305

0.0022

2510

36.84

2508.3

16.42

2507

32 2479.6

38.43

100

FJG-2-09

105.82

21.03 44.76 0.47 0.159

9 0.0044

9.7257

0.2327

0.4412

0.0079

0.1204

0.0032

2455

45.44

2409.1

22.03

2356

35.11

2297.1

57.58

96

FJG-2-10

297.55

8.08 191.3

5 0.04

0.1113

0.0025

5.0486

0.0877

0.3292

0.0049

0.0880

0.0036

1820.5

39.66

1827.5

14.72

1834.2

23.57

1705.1

66.84

99

FJG-2-11

75.24 10.49 29.63 0.35 0.162

5 0.0046

10.5077

0.2649

0.4692

0.0087

0.1290

0.0042

2481.8

46.97

2480.6

23.37

2479.9

38.02

2453

74.45

100

FJG-2-12

167.20

46.09 82.77 0.56 0.132

1 0.0032

7.1086

0.1411

0.3906

0.0061

0.1078

0.0020

2125.4

41.54

2125.1

17.67

2125.5

28.48

2068.6

37.06

100

FJG-2-13

9.42 42.80 48.05 0.89 0.054

1 0.0096

0.1457

0.0253

0.0195

0.0007

0.0062

0.0004

375.1

356.19

138.1

22.46

124.7

4.35

124.6

8.23

89

FJG-2-14

223.54

52.82 89.50 0.59 0.163

4 0.0037

10.6566

0.1912

0.4733

0.0073

0.1315

0.0023

2490.7

37.32

2493.6

16.66

2498

32.08

2497.5

40.96

100

FJG-2-15

198.61

30.42 126.4

3 0.24

0.1103

0.0026

4.9077

0.0948

0.3228

0.0049

0.0898

0.0020

1804.6

42.56

1803.6

16.3

1803.2

23.95

1738.6

37.68

100

FJG-2-16

217.61

36.53 89.79 0.41 0.162

2 0.0037

10.4668

0.1884

0.4682

0.0073

0.1245

0.0025

2478.4

37.46

2477

16.68

2475.9

31.84

2372.4

44 100

FJG-2-17

287.28

44.75 123.4

7 0.36

0.1561

0.0034

9.8231

0.1672

0.4565

0.0069

0.1298

0.0024

2414

36.52

2418.3

15.69

2424.1

30.47

2467.5

42.42

100

FJG-2-18

115.89

18.69 45.87 0.41 0.165

5 0.0042

10.8404

0.2324

0.4753

0.0080

0.1291

0.0032

2512.1

41.76

2509.5

19.93

2506.9

35.09

2454.4

57.46

100

FJG-2-19

158.19

29.55 66.70 0.44 0.163

3 0.0039

10.2846

0.2008

0.4568

0.0073

0.1236

0.0026

2490.5

39.42

2460.7

18.07

2425.3

32.45

2355

47.22

97

FJG-2-20

403.70

54.93 196.4

4 0.28

0.1517

0.0032

8.5904

0.1391

0.4107

0.0061

0.1175

0.0021

2365.7

35.78

2295.5

14.73

2218

27.65

2246

37.81

93

Page 74: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 73

FJG-2-21

222.10

38.21 139.8

8 0.27

0.1084

0.0026

4.8934

0.0947

0.3276

0.0050

0.0928

0.0020

1771.8

42.87

1801.1

16.31

1826.8

24.21

1793.6

36.5

97

FJG-2-22

291.28

46.99 127.7

5 0.37

0.1594

0.0035

9.8162

0.1666

0.4468

0.0067

0.1261

0.0023

2449.2

36.39

2417.7

15.64

2380.8

29.98

2400.7

40.89

97

FJG-2-23

9.81 43.85 46.80 0.94 0.066

0 0.0090

0.1949

0.0257

0.0214

0.0007

0.0074

0.0004

806.1

261.26

180.8

21.85

136.7

4.63

149 8.8 68

FJG-2-24

150.70

53.83 71.94 0.75 0.157

5 0.0048

8.5267

0.2346

0.3927

0.0075

0.1043

0.0026

2429

51.01

2288.8

25 2135.4

34.57

2004.8

48.15

86

FJG-2-25

85.69 11.43 35.56 0.32 0.161

8 0.0045

10.0852

0.2433

0.4523

0.0081

0.1424

0.0042

2474.1

45.71

2442.6

22.28

2405.3

35.84

2690

75 97

FJG-2-26

203.20

48.81 82.40 0.59 0.164

4 0.0038

10.6377

0.1976

0.4694

0.0074

0.1292

0.0023

2501.1

38.2

2492

17.24

2481.1

32.32

2455.4

41.65

99

FJG-2-27

215.50

6.20 148.7

3 0.04

0.1101

0.0029

4.6735

0.1024

0.3078

0.0049

0.0851

0.0052

1801.7

46.53

1762.5

18.32

1729.8

24.04

1650.6

97.33

96

FJG-2-28

326.19

58.99 134.4

3 0.44

0.1673

0.0036

10.8800

0.1822

0.4716

0.0071

0.1337

0.0023

2530.9

35.85

2512.9

15.57

2490.7

31.04

2535.5

40.23

98

FJG-2-29

32.82 132.2

1 289.2

7 0.46

0.0474

0.0030

0.1365

0.0083

0.0209

0.0004

0.0068

0.0002

68.3

145.3

129.9

7.42

133.2

2.5 136

.1 4.7

6 98

FJG-2-30

94.53 12.20 36.84 0.33 0.172

7 0.0046

11.4947

0.2635

0.4828

0.0085

0.1327

0.0039

2583.7

43.5

2564.2

21.41

2539.4

36.9

2518.6

69.81

98

FJG-2-31

374.77

54.55 158.7

0 0.34

0.1641

0.0035

10.5877

0.1749

0.4678

0.0070

0.1296

0.0023

2498.7

35.72

2487.6

15.33

2474

30.65

2463.6

40.67

99

FJG-2-32

102.76

16.89 41.41 0.41 0.156

8 0.0042

10.2099

0.2345

0.4723

0.0082

0.1255

0.0033

2421.1

44.35

2454

21.24

2493.7

35.78

2388.9

59.81

97

FJG-2-33

99.36 18.13 38.64 0.47 0.168

6 0.0045

11.1784

0.2566

0.4807

0.0084

0.1350

0.0034

2544.2

43.75

2538.1

21.39

2530.3

36.62

2559.5

60.12

99

FJG-2-34

579.01

171.65

254.56

0.67 0.161

7 0.0034

9.7756

0.1533

0.4384

0.0064

0.1199

0.0017

2473.5

34.86

2413.9

14.44

2343.5

28.67

2288.8

30.53

94

FJG-2-35

192.70

64.56 87.53 0.74 0.150

5 0.0036

8.6840

0.1676

0.4185

0.0066

0.1164

0.0020

2351.2

39.93

2305.4

17.57

2253.7

29.92

2225

36.02

96

MP-1-01

27.94 278.8

6 219.5

0 1.27

0.0497

0.0033

0.1332

0.0083

0.0194

0.0004

0.0061

0.0001

182.3

145.51

126.9

7.46

124.1

2.32

122.1

2.87

98

MP-1-02

21.01 121.6

7 163.6

7 0.74

0.0485

0.0037

0.1262

0.0092

0.0189

0.0004

0.0060

0.0002

121.3

168.54

120.7

8.25

120.8

2.45

120.2

4.16

100

MP-1-03

25.06 176.9

3 211.2

6 0.84

0.0489

0.0051

0.1187

0.0120

0.0176

0.0005

0.0059

0.0003

144.6

227.86

113.8

10.89

112.5

2.9 119

.4 5.8

4 99

Page 75: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 74

MP-1-04

21.86 130.8

6 174.5

8 0.75

0.0492

0.0035

0.1327

0.0092

0.0196

0.0004

0.0063

0.0002

159.4

160.01

126.5

8.23

124.9

2.4 126

.2 3.9

5 99

MP-1-05

28.79 106.7

5 263.5

6 0.41

0.0478

0.0026

0.1277

0.0065

0.0194

0.0003

0.0064

0.0002

86.7

124.42

122 5.8

9 124

2.11

129.6

4.21

98

MP-1-06

22.24 105.8

8 190.4

4 0.56

0.0480

0.0064

0.1349

0.0175

0.0204

0.0006

0.0061

0.0004

97.5

289.79

128.5

15.69

130.3

4.05

123.4

8.42

99

MP-1-07

20.06 111.6

6 171.6

1 0.65

0.0497

0.0052

0.1341

0.0135

0.0196

0.0005

0.0060

0.0003

179.5

225.36

127.7

12.08

125.1

3.2 119

.9 6.0

1 98

MP-1-08

25.96 120.3

2 216.3

1 0.56

0.0474

0.0030

0.1311

0.0080

0.0201

0.0004

0.0064

0.0002

68.5

145.01

125 7.1

4 128

.2 2.3

3 128

.9 4.1

8 98

MP-1-09

13.21 66.98 96.77 0.69 0.054

9 0.0058

0.1429

0.0145

0.0189

0.0005

0.0067

0.0003

409 218.45

135.6

12.88

120.6

3.11

134.5

6.33

88

MP-1-10

37.94 568.4

7 303.6

2 1.87

0.0486

0.0047

0.1262

0.0117

0.0189

0.0005

0.0062

0.0002

129.1

211.47

120.7

10.57

120.4

2.96

124.1

3.5 100

MP-1-11

15.52 56.20 111.6

7 0.50

0.0487

0.0056

0.1270

0.0142

0.0190

0.0005

0.0066

0.0004

131.7

249.19

121.4

12.75

121.1

3.29

133.3

8.3 100

MP-1-12

20.71 95.90 160.6

8 0.60

0.0485

0.0049

0.1260

0.0122

0.0189

0.0005

0.0059

0.0003

125.9

219.92

120.5

11.01

120.4

3.03

118.5

6.03

100

MP-1-13

31.35 283.7

8 250.0

5 1.13

0.0486

0.0032

0.1254

0.0080

0.0187

0.0004

0.0056

0.0001

130.7

149.62

120 7.2

1 119

.6 2.3

2 112

.8 2.8

6 100

MP-1-14

19.96 126.2

5 154.8

9 0.82

0.0486

0.0056

0.1245

0.0140

0.0186

0.0005

0.0062

0.0003

126 251.14

119.1

12.62

118.9

3.24

125 6.5

3 100

MP-1-15

20.38 99.04 163.5

0 0.61

0.0487

0.0058

0.1365

0.0159

0.0204

0.0006

0.0070

0.0004

133.6

259.95

129.9

14.21

129.9

3.76

140.1

7.95

100

MP-1-16

24.87 200.5

2 201.0

8 1.00

0.0488

0.0036

0.1338

0.0096

0.0199

0.0004

0.0063

0.0002

137.8

166.27

127.5

8.61

127.1

2.51

126.3

3.55

100

MP-1-17

22.41 132.7

6 178.1

2 0.75

0.0486

0.0052

0.1263

0.0132

0.0189

0.0005

0.0062

0.0003

126.5

235.85

120.8

11.93

120.7

3.16

125.7

6.1 100

MP-1-18

20.64 123.0

5 165.9

7 0.74

0.0488

0.0058

0.1386

0.0161

0.0206

0.0006

0.0055

0.0003

135.7

259.19

131.7

14.37

131.7

3.75

111.4

5.85

100

MP-1-19

14.64 60.59 104.5

3 0.58

0.0486

0.0051

0.1346

0.0137

0.0201

0.0005

0.0058

0.0003

129.6

229.72

128.2

12.29

128.3

3.2 116

.9 6.6

9 100

MP-1-20

22.58 144.3

8 183.0

5 0.79

0.0496

0.0047

0.1286

0.0119

0.0188

0.0005

0.0060

0.0003

174.6

209.13

122.8

10.73

120.3

2.9 120

.4 4.9

8 98

MP-1-21

198.84

36.70 104.8

7 0.35

0.1510

0.0034

8.5915

0.1555

0.4133

0.0063

0.1135

0.0021

2357

38.43

2295.7

16.46

2230.1

28.6

2173.5

38.69

94

Page 76: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 75

MP-1-22

16.88 61.93 118.7

7 0.52

0.0502

0.0048

0.1402

0.0130

0.0203

0.0005

0.0061

0.0003

203.2

207.59

133.3

11.59

129.5

2.92

122.6

6.51

97

MP-1-23

27.36 184.8

4 223.2

1 0.83

0.0509

0.0041

0.1359

0.0104

0.0194

0.0004

0.0065

0.0002

235.5

173.85

129.4

9.31

123.9

2.67

130.1

4.48

96

MP-1-24

20.88 98.32 177.0

8 0.56

0.0486

0.0038

0.1286

0.0098

0.0192

0.0004

0.0057

0.0002

127.3

175.39

122.8

8.79

122.8

2.54

114.9

4.77

100

MP-1-25

26.25 167.9

5 227.5

5 0.74

0.0484

0.0054

0.1332

0.0144

0.0200

0.0005

0.0063

0.0003

118.5

243.06

126.9

12.91

127.6

3.41

126.7

6.02

99

MP-1-26

26.21 207.2

7 228.0

3 0.91

0.0490

0.0033

0.1295

0.0083

0.0192

0.0004

0.0058

0.0002

146.7

149.8

123.7

7.48

122.7

2.29

117.8

3.2 99

MP-1-27

20.17 92.92 168.0

2 0.55

0.0498

0.0061

0.1388

0.0167

0.0203

0.0006

0.0064

0.0004

184.1

264.28

131.9

14.86

129.2

3.77

129.1

8.01

98

MP-1-28

15.81 59.48 131.5

8 0.45

0.0485

0.0046

0.1336

0.0124

0.0200

0.0005

-0.00

50

0.0006

123.2

210.07

127.3

11.09

127.7

2.84

-100

.5 12 100

MP-1-29

40.52 388.7

2 355.9

6 1.09

0.0528

0.0037

0.1402

0.0093

0.0193

0.0004

0.0063

0.0002

320.9

149.47

133.2

8.28

123.1

2.49

126.2

3.83

92

MP-1-30

20.88 192.6

0 162.6

0 1.18

0.0557

0.0047

0.1487

0.0120

0.0194

0.0005

0.0066

0.0002

439.3

177.12

140.8

10.63

123.9

2.88

133.5

4.1 86

MP-1-31

223.53

209.26

272.99

0.77 0.162

6 0.0037

5.3071

0.0925

0.2370

0.0035

0.0422

0.0007

2483.1

37.33

1870

14.9

1371.1

18.36

834.8

14.25

19

MP-1-32

128.31

52.96 204.2

4 0.26

0.1097

0.0029

3.8816

0.0877

0.2570

0.0041

0.0683

0.0023

1794.2

47.84

1609.9

18.25

1474.4

20.84

1334.9

44.16

78

MP-1-33

10.46 31.90 71.39 0.45 0.048

7 0.0064

0.1332

0.0172

0.0199

0.0006

0.0064

0.0005

131.2

284.29

127 15.44

126.9

3.55

127.8

9.04

100

MP-1-34

22.47 95.03 187.1

3 0.51

0.0485

0.0040

0.1298

0.0103

0.0194

0.0004

0.0065

0.0003

123.6

182.83

123.9

9.25

124.1

2.71

130.9

5.46

100

MP-1-35

19.47 85.36 167.9

1 0.51

0.0486

0.0044

0.1280

0.0111

0.0191

0.0004

0.0058

0.0003

128.3

198 122

.3 9.9

8 122

.1 2.8

117.4

5.55

100

ZT-1-01

10.45 41.47 76.48 0.54 0.049

3 0.0046

0.1474

0.0134

0.0217

0.0005

0.0072

0.0003

160.9

205.61

139.6

11.87

138.4

3.15

144.6

6.38

99

ZT-1-02

25.79 203.9

9 232.2

0 0.88

0.0489

0.0035

0.1384

0.0096

0.0205

0.0004

0.0064

0.0002

142.4

161.4

131.6

8.57

131 2.6 129

.4 3.5 100

ZT-1-03

14.41 101.2

5 109.0

8 0.93

0.0518

0.0043

0.1505

0.0119

0.0211

0.0005

0.0062

0.0002

274.6

177.96

142.4

10.54

134.6

2.94

124.5

4.13

94

Page 77: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 76

ZT-1-04

17.48 88.07 144.8

7 0.61

0.0492

0.0043

0.1318

0.0111

0.0194

0.0005

0.0062

0.0003

155.9

192.76

125.7

9.98

124.1

2.85

125.2

5.17

99

ZT-1-05

12.08 42.23 53.92 0.78 0.050

2 0.0085

0.1408

0.0233

0.0204

0.0008

0.0068

0.0005

203.3

352.66

133.8

20.75

129.9

5.06

137.5

9.53

97

ZT-1-06

30.12 175.2

2 227.2

4 0.77

0.0495

0.0054

0.1353

0.0144

0.0198

0.0005

0.0061

0.0003

173.2

237.42

128.8

12.88

126.4

3.35

122.7

5.97

98

ZT-1-07

27.07 84.31 181.3

4 0.46

0.0485

0.0054

0.1388

0.0151

0.0208

0.0005

0.0066

0.0004

121.1

242.86

132 13.43

132.5

3.22

132.7

7.96

100

ZT-1-08

80.97 524.9

0 637.4

4 0.82

0.0492

0.0034

0.1421

0.0093

0.0209

0.0004

0.0067

0.0002

159.3

153.01

134.9

8.3 133

.5 2.6

135.5

4.38

99

ZT-1-09

51.77 244.3

3 238.3

0 1.03

0.0485

0.0046

0.1623

0.0151

0.0243

0.0006

0.0087

0.0003

122.9

210.64

152.7

13.14

154.6

3.57

174.5

6.74

99

ZT-1-10

100.35

569.61

426.04

1.34 0.050

9 0.0044

0.1505

0.0125

0.0214

0.0005

0.0070

0.0003

235.6

187.23

142.4

11.06

136.8

3.01

140.8

5.22

96

ZT-1-11

- - - - 0.049

8 0.0044

0.1391

0.0118

0.0203

0.0005

0.0067

0.0003

183.9

192.64

132.3

10.54

129.3

2.9 134

.6 6.5

5 98

ZT-1-12

- - - - 0.048

9 0.0069

0.1342

0.0187

0.0199

0.0006

0.0069

0.0004

141.1

303.12

127.9

16.7

127.1

3.85

138.5

8.12

99

ZT-1-13

- - - - 0.050

0 0.0058

0.1425

0.0161

0.0207

0.0006

0.0073

0.0004

194.3

249.71

135.3

14.3

131.8

3.75

146.9

8 97

ZT-1-14

18.75 88.03 155.3

3 0.57

0.0504

0.0041

0.1347

0.0106

0.0194

0.0004

0.0060

0.0002

211 178.08

128.3

9.47

123.9

2.57

120.5

4.75

96

ZT-1-15

24.16 107.6

8 192.6

6 0.56

0.0503

0.0036

0.1397

0.0097

0.0201

0.0004

0.0064

0.0002

209.7

158.88

132.8

8.63

128.5

2.54

128.5

4.44

97

ZT-1-16

17.28 58.75 108.7

6 0.54

0.0488

0.0107

0.1579

0.0340

0.0235

0.0011

0.0100

0.0009

138.4

448.47

148.9

29.81

149.5

7.11

200 18.44

100

ZT-1-17

22.30 111.8

9 193.4

9 0.58

0.0508

0.0083

0.1292

0.0206

0.0185

0.0007

0.0059

0.0005

231.6

339.62

123.4

18.51

117.8

4.57

119.3

9.8 95

ZT-1-18

22.72 96.50 197.8

3 0.49

0.0497

0.0047

0.1362

0.0124

0.0199

0.0005

0.0062

0.0003

180.6

206.01

129.7

11.12

126.9

3.03

125.4

6.25

98

ZT-1-19

13.39 41.12 76.03 0.54 0.050

4 0.0069

0.1465

0.0196

0.0211

0.0006

0.0066

0.0004

212.2

288.36

138.8

17.32

134.6

3.95

132.1

8.91

97

ZT-1-20

17.26 97.26 138.0

9 0.70

0.0497

0.0063

0.1314

0.0162

0.0192

0.0005

0.0064

0.0003

178.6

269.99

125.3

14.55

122.5

3.25

129.4

6.09

98

ZT-1-21

11.31 33.93 77.41 0.44 0.048

6 0.0091

0.1336

0.0245

0.0200

0.0008

0.0083

0.0007

127.3

389.45

127.3

21.94

127.3

4.97

167.1

14.13

100

Page 78: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 77

ZT-1-22

17.26 79.12 125.7

5 0.63

0.0478

0.0057

0.1388

0.0162

0.0211

0.0006

0.0069

0.0003

87.8

261.73

132 14.43

134.4

3.49

139.1

6.84

98

ZT-1-23

34.70 225.3

9 302.2

5 0.75

0.0495

0.0028

0.1366

0.0075

0.0200

0.0004

0.0063

0.0002

171.6

128.78

130 6.6

6 127

.8 2.2

8 126

.1 3.3 98

ZT-1-24

29.93 221.0

6 274.2

8 0.81

0.0474

0.0039

0.1259

0.0099

0.0193

0.0004

0.0061

0.0002

67.3

184.08

120.4

8.94

123.1

2.65

122.2

4.15

98

ZT-1-25

22.55 85.65 192.5

2 0.44

0.0487

0.0034

0.1353

0.0090

0.0202

0.0004

0.0066

0.0002

131.4

154.33

128.9

8.02

128.8

2.4 133

.7 4.8

7 100

ZT-1-26

15.57 59.90 98.34 0.61 0.049

7 0.0107

0.1560

0.0327

0.0228

0.0011

0.0059

0.0007

180.7

435.37

147.2

28.73

145.2

6.81

119.5

13.42

99

ZT-1-27

21.72 107.8

6 174.9

8 0.62

0.0473

0.0035

0.1308

0.0093

0.0201

0.0004

0.0066

0.0002

63 166.91

124.9

8.33

128.1

2.5 132

.6 4.3

4 98

ZT-1-28

10.90 59.21 63.97 0.93 0.046

5 0.0065

0.1293

0.0178

0.0202

0.0006

0.0068

0.0003

25.3

306.45

123.4

16.04

128.6

3.45

137.7

6.11

96

ZT-1-29

35.03 197.0

6 298.6

9 0.66

0.0495

0.0025

0.1449

0.0067

0.0213

0.0004

0.0071

0.0002

169.1

111.79

137.4

5.98

135.6

2.27

143.5

3.38

99

ZT-1-30

29.65 171.4

1 226.3

8 0.76

0.0495

0.0035

0.1540

0.0104

0.0226

0.0005

0.0075

0.0002

173.6

156.55

145.5

9.16

143.8

2.86

151.9

4.64

99

ZT-1-31

12.25 60.79 88.77 0.68 0.046

6 0.0046

0.1232

0.0119

0.0192

0.0005

0.0071

0.0003

27.7

221.73

118 10.72

122.5

2.88

143.3

5.79

96

ZT-1-32

20.07 85.91 174.2

7 0.49

0.0494

0.0034

0.1291

0.0086

0.0190

0.0004

0.0060

0.0002

165.5

154.24

123.2

7.71

121.1

2.35

120.2

4.47

98

ZT-1-33

21.58 134.2

7 198.4

4 0.68

0.0494

0.0033

0.1267

0.0082

0.0186

0.0004

0.0060

0.0002

166.5

149.96

121.1

7.36

118.9

2.25

121.4

3.63

98

ZT-1-34

18.87 64.02 140.2

3 0.46

0.0482

0.0041

0.1418

0.0118

0.0214

0.0005

0.0073

0.0003

106.7

190.2

134.6

10.45

136.3

2.83

146.8

6.22

99

ZT-1-35

13.06 57.88 93.49 0.62 0.051

9 0.0056

0.1478

0.0156

0.0207

0.0005

0.0069

0.0003

282.5

230.24

140 13.81

131.8

3.22

138.1

6.76

94

ZT-2-01

83.11 25.37 45.75 0.55 0.117

4 0.0033

5.6002

0.1383

0.3462

0.0058

0.1006

0.0023

1916.3

50.03

1916.1

21.28

1916.2

27.83

1937.1

42.65

100

ZT-2-02

208.70

34.52 125.5

0 0.28

0.1131

0.0027

5.2896

0.1014

0.3392

0.0051

0.1019

0.0022

1850.1

42.26

1867.2

16.36

1882.9

24.67

1960.9

40.76

98

ZT-2-03

11.32 31.73 61.82 0.51 0.047

6 0.0069

0.1376

0.0196

0.0210

0.0006

0.0064

0.0005

76.4

312.79

130.9

17.47

133.9

3.73

128.8

9.48

98

ZT-2-04

180.51

58.28 86.05 0.68 0.129

6 0.0032

7.0993

0.1450

0.3972

0.0063

0.1215

0.0022

2093.1

42.65

2124

18.18

2156.3

28.93

2317.8

40.19

97

Page 79: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 78

ZT-2-05

236.76

71.17 120.9

8 0.59

0.1237

0.0029

6.4826

0.1214

0.3802

0.0058

0.1126

0.0020

2009.8

40.75

2043.5

16.47

2077.4

26.92

2155.7

35.54

97

ZT-2-06

11.24 42.25 71.49 0.59 0.049

4 0.0063

0.1414

0.0178

0.0208

0.0006

0.0067

0.0004

165.3

275.26

134.3

15.79

132.6

3.76

135 8.7

4 99

ZT-2-07

121.89

24.43 74.73 0.33 0.111

5 0.0029

4.9784

0.1075

0.3238

0.0051

0.0969

0.0023

1824.5

45.91

1815.7

18.26

1808.2

24.79

1868.6

42.31

99

ZT-2-08

624.57

122.15

277.56

0.44 0.150

8 0.0031

9.1035

0.1371

0.4380

0.0063

0.1373

0.0021

2354.6

34.48

2348.5

13.78

2341.7

28.03

2600.1

36.36

99

ZT-2-09

12.89 64.13 100.0

6 0.64

0.0588

0.0127

0.1552

0.0325

0.0191

0.0010

0.0070

0.0008

560.4

411.36

146.5

28.55

122.2

6.57

141.8

15.29

80

ZT-2-10

921.05

182.80

422.19

0.43 0.146

6 0.0029

8.6834

0.1231

0.4297

0.0060

0.1190

0.0017

2306.2

33.56

2305.3

12.9

2304.5

27.11

2273

29.74

100

ZT-2-11

19.14 95.86 137.7

3 0.70

0.0493

0.0041

0.1431

0.0116

0.0210

0.0005

0.0067

0.0003

163.3

184.3

135.8

10.28

134.3

2.86

135.5

5.06

99

ZT-2-12

17.30 100.6

2 141.9

2 0.71

0.0528

0.0058

0.1406

0.0149

0.0193

0.0005

0.0066

0.0003

319.2

230.81

133.6

13.24

123.4

3.43

132.3

6.57

92

ZT-2-13

12.50 59.46 81.72 0.73 0.047

4 0.0081

0.1290

0.0214

0.0198

0.0008

0.0070

0.0005

66.7

362.56

123.2

19.28

126.1

4.91

140.9

10.13

98

ZT-2-14

15.29 88.28 118.2

1 0.75

0.0499

0.0072

0.1299

0.0182

0.0189

0.0007

0.0070

0.0004

190.1

303.31

124 16.32

120.6

4.11

141.5

8.41

97

ZT-2-15

12.56 49.49 82.90 0.60 0.048

0 0.0063

0.1251

0.0162

0.0189

0.0005

0.0067

0.0004

98.8

286.74

119.7

14.6

120.7

3.28

135.6

7 99

ZT-2-16

16.62 85.55 114.1

1 0.75

0.0480

0.0046

0.1362

0.0126

0.0206

0.0005

0.0062

0.0003

97.3

211.76

129.6

11.24

131.3

3 125

.8 5.2

4 99

ZT-2-17

371.31

161.77

158.46

1.02 0.150

8 0.0032

8.8838

0.1410

0.4273

0.0062

0.1209

0.0017

2355.1

35.31

2326.1

14.48

2293.3

28.06

2306.6

30.44

97

ZT-2-18

15.32 63.73 80.61 0.79 0.130

5 0.0083

0.4265

0.0250

0.0237

0.0006

0.0097

0.0005

2105.2

107.38

360.7

17.82

151 3.7

8 195

.4 10.07

(39)

ZT-2-19

18.67 60.50 106.1

4 0.57

0.1583

0.0109

0.4631

0.0292

0.0212

0.0006

0.0164

0.0007

2437.8

112.02

386.4

20.27

135.3

3.84

327.8

12.9

(86)

ZT-2-20

229.48

24.42 138.0

5 0.18

0.1110

0.0025

5.2048

0.0930

0.3400

0.0050

0.1012

0.0024

1816.2

40.29

1853.4

15.21

1886.6

24.14

1948.8

43.08

96

ZT-2-21

17.82 98.71 134.4

9 0.73

0.0521

0.0054

0.1453

0.0147

0.0202

0.0006

0.0063

0.0003

287.8

221.88

137.8

13 129

.2 3.5

125.8

6.26

93

ZT-2-22

14.59 72.08 101.1

4 0.71

0.0656

0.0060

0.1860

0.0165

0.0206

0.0005

0.0064

0.0003

791.9

182.18

173.2

14.16

131.3

3.27

129.5

5.98

68

Page 80: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 79

ZT-2-23

16.80 78.55 120.7

5 0.65

0.0463

0.0044

0.1299

0.0120

0.0203

0.0005

0.0066

0.0003

13.3

213.62

124 10.77

129.8

2.95

132 5.7

4 96

ZT-2-24

18.16 70.40 112.1

3 0.63

0.0828

0.0062

0.2434

0.0175

0.0213

0.0005

0.0097

0.0004

1263.2

140.35

221.2

14.28

136.1

3.15

194.7

7.42

37

ZT-2-25

20.55 3.63 168.2

7 0.02

0.0486

0.0034

0.1368

0.0091

0.0204

0.0004

0.0149

0.0024

128.4

155 130

.2 8.0

9 130

.2 2.6

3 299

.6 47.97

100

ZT-2-26

123.73

17.37 67.06 0.26 0.115

2 0.0031

5.9073

0.1366

0.3719

0.0061

0.1111

0.0031

1882.7

47.43

1962.3

20.08

2038.3

28.67

2128.5

56.02

92

ZT-2-27

368.08

94.31 169.2

6 0.56

0.1464

0.0030

8.3720

0.1322

0.4146

0.0060

0.1163

0.0018

2304.4

35.24

2272.1

14.32

2236.1

27.38

2223.4

32.13

97

ZT-2-28

90.01 27.45 44.60 0.62 0.119

8 0.0033

6.1929

0.1510

0.3750

0.0063

0.1110

0.0024

1952.5

48.86

2003.4

21.31

2052.9

29.71

2128.3

44.29

95

ZT-2-29

449.63

62.90 360.7

4 0.17

0.1032

0.0022

3.6859

0.0593

0.2589

0.0037

0.0777

0.0015

1682.9

38.42

1568.3

12.86

1484.2

18.83

1512.9

27.74

87

ZT-2-30

17.44 73.16 111.5

4 0.66

0.0916

0.0062

0.2621

0.0168

0.0208

0.0005

0.0094

0.0004

1458.7

124.32

236.4

13.54

132.4

3.09

188.4

7 21

ZTX-2-01

27.63 167.0

0 252.1

7 0.66

0.0496

0.0035

0.1405

0.0095

0.0206

0.0004

0.0064

0.0002

173.8

156.65

131.3

2.67

133.5

8.47

129.5

4.47

98

ZTX-2-02

27.75 208.8

0 239.2

4 0.87

0.0495

0.0032

0.1396

0.0086

0.0205

0.0004

0.0067

0.0002

169.9

143.24

130.6

2.48

132.7

7.64

135.2

3.57

98

ZTX-2-03

17.75 79.26 153.6

9 0.52

0.0511

0.0051

0.1394

0.0135

0.0198

0.0005

0.0069

0.0004

245.9

214.75

126.3

3.3 132

.5 12.04

139 7.4

6 95

ZTX-2-04

21.21 140.9

7 169.1

4 0.83

0.0502

0.0046

0.1436

0.0128

0.0208

0.0005

0.0067

0.0003

202.3

200.18

132.5

3.2 136

.3 11.32

134.4

5.15

97

ZTX-2-05

23.36 144.8

8 191.2

3 0.76

0.0497

0.0037

0.1357

0.0098

0.0198

0.0004

0.0067

0.0002

181.4

165.4

126.4

2.7 129

.2 8.7

1 135

.3 4.8

9 98

ZTX-2-06

14.91 56.08 114.8

2 0.49

0.0502

0.0046

0.1353

0.0121

0.0196

0.0005

0.0067

0.0003

201.7

201.25

124.9

2.93

128.8

10.82

134.2

6.63

97

ZTX-2-07

14.33 59.81 117.7

8 0.51

0.0487

0.0046

0.1266

0.0116

0.0189

0.0004

0.0063

0.0003

133.4

207.84

120.4

2.75

121.1

10.46

127.2

5.96

99

ZTX-2-08

13.12 65.38 95.22 0.69 0.053

7 0.0047

0.1486

0.0126

0.0201

0.0005

0.0062

0.0003

359.2

186.96

128.1

2.97

140.7

11.15

125.3

5.35

91

ZTX-2-09

16.67 70.03 131.6

8 0.53

0.0508

0.0039

0.1423

0.0106

0.0203

0.0004

0.0063

0.0003

231 169.12

129.7

2.77

135.1

9.44

127.5

5.25

96

ZTX-2-10

20.09 104.6

6 165.0

9 0.63

0.0487

0.0040

0.1342

0.0107

0.0200

0.0004

0.0060

0.0003

133.3

183.34

127.5

2.72

127.8

9.6 120

.6 5.6

2 100

Page 81: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 80

ZTX-2-11

14.21 51.66 106.1

9 0.49

0.0495

0.0051

0.1409

0.0141

0.0206

0.0005

0.0072

0.0004

172.8

224.15

131.7

3.42

133.9

12.53

145.3

8.52

98

ZTX-2-12

16.59 64.49 133.1

2 0.48

0.0516

0.0041

0.1456

0.0112

0.0205

0.0005

0.0061

0.0003

266.9

173.43

130.6

2.83

138 9.9

5 122

.7 5.5

3 95

ZTX-2-13

15.92 70.91 123.1

3 0.58

0.0454

0.0036

0.1289

0.0099

0.0206

0.0004

0.0073

0.0003

0.1 147 131

.4 2.6

4 123

.1 8.8

9 146

.6 5.0

8 93

ZTX-2-14

23.80 170.1

9 211.1

8 0.81

0.0497

0.0037

0.1291

0.0093

0.0188

0.0004

0.0059

0.0002

182.9

165.18

120.2

2.45

123.3

8.35

118.2

3.77

97

ZTX-2-15

12.51 60.06 81.56 0.74 0.050

0 0.0058

0.1441

0.0162

0.0209

0.0006

0.0068

0.0003

196.4

247.63

133.3

3.68

136.7

14.35

136.5

6.59

98

ZTX-2-16

26.61 294.3

3 247.9

9 1.19

0.0476

0.0025

0.1276

0.0063

0.0195

0.0003

0.0060

0.0001

76.9

119.44

124.2

2.11

122 5.6

3 119

.9 2.2

3 98

ZTX-2-17

423.94

130.57

288.91

0.45 0.176

4 0.0037

6.6662

0.1068

0.2739

0.0040

0.0961

0.0015

2619.6

34.88

1560.6

20.23

2068.2

14.14

1854.6

26.72

73

ZTX-2-18

18.39 101.5

8 147.0

4 0.69

0.0489

0.0040

0.1369

0.0107

0.0203

0.0004

0.0064

0.0002

142.5

180.2

129.5

2.78

130.3

9.59

129.8

4.76

99

ZTX-2-19

16.22 66.08 129.2

3 0.51

0.0488

0.0039

0.1299

0.0102

0.0193

0.0004

0.0063

0.0002

139.6

179.25

123.2

2.53

124 9.1

2 127

4.82

99

ZTX-2-20

44.35 164.3

9 428.8

4 0.38

0.0512

0.0026

0.1366

0.0065

0.0193

0.0003

0.0062

0.0002

251.3

111.91

123.4

2.12

130 5.7

9 124

.3 2.9

3 95

ZTX-2-21

39.34 523.0

7 361.5

2 1.45

0.0470

0.0062

0.1359

0.0173

0.0210

0.0007

0.0064

0.0002

49.5

286.02

133.7

4.1 129

.4 15.47

128.6

4.37

97

ZTX-2-22

23.42 115.3

5 161.6

3 0.71

0.0502

0.0064

0.1296

0.0162

0.0187

0.0006

0.0055

0.0003

204.3

272.57

119.5

3.72

123.8

14.53

109.8

6.21

97

ZTX-2-23

19.51 107.6

8 160.8

7 0.67

0.0508

0.0063

0.1357

0.0163

0.0194

0.0006

0.0059

0.0003

230 261.89

123.7

3.67

129.2

14.56

119.2

5.91

96

ZTX-2-24

367.12

75.03 148.0

2 0.51

0.1724

0.0038

10.7853

0.1834

0.4535

0.0068

0.1334

0.0023

2580.9

36.07

2410.6

30.22

2504.8

15.8

2531.2

40.43

97

ZTX-2-25

12.71 47.79 86.98 0.55 0.049

7 0.0054

0.1428

0.0150

0.0208

0.0005

0.0063

0.0003

181.6

233.82

132.8

3.26

135.5

13.36

127 6.6

9 98

ZTX-2-26

50.39 374.9

7 462.9

4 0.81

0.0481

0.0021

0.1320

0.0054

0.0199

0.0003

0.0064

0.0001

106.3

100.89

126.8

2.04

125.9

4.85

129.1

2.48

99

ZTX-2-27

21.31 108.3

8 176.4

8 0.61

0.0489

0.0069

0.1312

0.0180

0.0195

0.0007

0.0056

0.0004

141.3

301.43

124.2

4.1 125

.1 16.

2 112

.6 8.3

2 99

ZTX-2-28

21.93 112.9

4 162.0

3 0.70

0.0497

0.0056

0.1456

0.0158

0.0213

0.0006

0.0077

0.0004

179.6

241.26

135.5

3.66

138 14.01

154.8

7.4 98

Page 82: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 81

ZTX-2-29

15.39 65.03 107.7

9 0.60

0.0482

0.0052

0.1357

0.0143

0.0204

0.0005

0.0063

0.0003

111 237.15

130.1

3.32

129.2

12.76

126.8

6.11

99

ZTX-2-30

25.59 157.0

9 210.8

9 0.74

0.0468

0.0034

0.1354

0.0095

0.0210

0.0004

0.0064

0.0002

40.1

165.07

133.7

2.62

129 8.4

6 128

.8 3.9

8 96

ZTX-2-31

13.15 69.84 91.71 0.76 0.050

4 0.0051

0.1360

0.0134

0.0195

0.0005

0.0059

0.0003

214.2

219.39

124.7

3.15

129.4

11.97

118 5.3

3 96

ZTX-2-32

28.25 130.5

6 236.3

4 0.55

0.0466

0.0032

0.1365

0.0090

0.0213

0.0004

0.0062

0.0002

26.8

156.33

135.5

2.62

130 8 125

.2 4.3

2 96

ZTX-2-33

18.45 97.19 150.2

1 0.65

0.0492

0.0040

0.1334

0.0105

0.0196

0.0004

0.0060

0.0002

158.5

180.15

125.3

2.64

127.1

9.4 120

.6 4.5

6 99

ZTX-2-34

21.58 132.7

7 168.3

6 0.79

0.0599

0.0051

0.1585

0.0130

0.0192

0.0005

0.0059

0.0003

598.4

174.74

122.5

2.83

149.4

11.42

117.9

6.71

82

ZTX-2-35

18.55 80.10 146.1

8 0.55

0.0492

0.0040

0.1360

0.0106

0.0200

0.0004

0.0058

0.0002

158.9

178.31

127.8

2.66

129.5

9.46

117.2

4.77

99

ZTX-5-02

19.22 137.1

7 152.8 0.90

0.0508

0.0040

0.1441

0.0110

0.0206

0.0005

0.0069

0.0002

232.1

172.71

136.7

9.74

131.3

2.81

138.2

4.53

96

ZTX-5-03

15.51 76.15 118.2

2 0.64

0.0509

0.0048

0.1477

0.0136

0.0210

0.0005

0.0069

0.0003

237.4

204.53

139.9

12 134

.2 3.2

138.3

6.4 96

ZTX-5-04

13.48 60.12 95.37 0.63 0.050

6 0.0052

0.1417

0.0143

0.0203

0.0005

0.0062

0.0003

220.8

223.38

134.5

12.69

129.7

3.29

124.4

6.85

96

ZTX-5-05

17.61 118.4

6 140.6

8 0.84

0.0495

0.0039

0.1361

0.0103

0.0200

0.0004

0.0068

0.0002

170 173.39

129.5

9.21

127.3

2.64

136.3

4.38

98

ZTX-5-06

50.01 608.3

4 479.8 1.27

0.0500

0.0023

0.1308

0.0055

0.0190

0.0003

0.0062

0.0001

194.4

101.96

124.8

4.97

121.2

1.97

125.2

2.29

97

ZTX-5-07

18.61 69.76 158.8

2 0.44

0.0470

0.0040

0.1267

0.0105

0.0196

0.0004

0.0065

0.0003

47.3

191.83

121.2

9.42

124.9

2.66

131.6

6.26

97

ZTX-5-08

20.40 108.6

8 180.4

8 0.60

0.0494

0.0031

0.1316

0.0079

0.0193

0.0004

0.0070

0.0002

167.2

140.8

125.5

7.11

123.3

2.31

141.2

4.31

98

ZTX-5-09

15.46 85.28 109.9

1 0.78

0.0482

0.0043

0.1377

0.0118

0.0207

0.0005

0.0069

0.0003

110.5

195.98

131 10.52

132.1

2.84

138.6

4.97

99

ZTX-5-10

39.00 283.5

9 364.9

4 0.78

0.0504

0.0025

0.1392

0.0065

0.0200

0.0004

0.0068

0.0002

212.8

110.91

132.3

5.77

127.8

2.19

136.6

3.2 96

ZTX-5-11

16.17 106.1

4 132.2

9 0.80

0.0507

0.0048

0.1311

0.0121

0.0187

0.0005

0.0065

0.0003

229 205

.7 125

.1 10.85

119.6

2.83

130.3

5.11

95

ZTX-5-12

20.24 132.3

7 167.2

1 0.79

0.0518

0.0041

0.1370

0.0105

0.0192

0.0004

0.0061

0.0002

275.6

172.29

130.3

9.37

122.5

2.67

123.7

4.3 94

Page 83: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 82

ZTX-5-13

31.28 257.8 280.1 0.92 0.053

9 0.0030

0.1494

0.0079

0.0201

0.0004

0.0069

0.0002

366.9

120.09

141.4

6.94

128.3

2.31

139.3

3.4 90

ZTX-5-14

35.86 299.5

6 377.8 0.79

0.0605

0.0037

0.1549

0.0089

0.0186

0.0004

0.0070

0.0002

619.6

125.74

146.2

7.83

118.7

2.29

140 3.9

2 77

ZTX-5-15

33.55 270.4 308.8

1 0.88

0.0514

0.0028

0.1347

0.0069

0.0190

0.0003

0.0063

0.0002

258 119.51

128.3

6.16

121.4

2.14

127.2

3.03

94

ZTX-5-16

40.83 313.0

1 361.7 0.87

0.0486

0.0022

0.1335

0.0056

0.0199

0.0003

0.0070

0.0001

126.5

102.94

127.2

5.03

127.2

2.04

141.1

2.78

100

ZTX-5-17

21.32 118.6

1 198.5

8 0.60

0.0545

0.0035

0.1385

0.0084

0.0184

0.0004

0.0061

0.0002

392.8

136.01

131.7

7.47

117.7

2.27

121.9

4.05

88

ZTX-5-18

9.92 46.15 70.79 0.65 0.051

5 0.0082

0.1341

0.0208

0.0189

0.0006

0.0074

0.0005

263.3

327.9

127.7

18.61

120.6

4.05

149.9

9.37

94

ZTX-5-19

14.33 71.12 108.0

7 0.66

0.0508

0.0056

0.1310

0.0140

0.0187

0.0005

0.0067

0.0004

232.5

235.58

125 12.57

119.4

3.26

135.1

7.42

95

ZTX-5-20

31.96 224 288.5

9 0.78

0.0484

0.0026

0.1298

0.0066

0.0194

0.0003

0.0065

0.0002

118.9

121.17

123.9

5.89

124.1

2.12

130.2

3.05

100

ZTX-5-21

22.73 130.9

9 188.8

7 0.69

0.0486

0.0035

0.1327

0.0093

0.0198

0.0004

0.0071

0.0002

128.4

162.28

126.5

8.31

126.4

2.43

143 4.2

1 100

ZTX-5-22

32.61 480.8

8 277.9

9 1.73

0.0665

0.0038

0.1738

0.0094

0.0189

0.0004

0.0067

0.0002

823.5

115.07

162.7

8.11

121 2.2

7 134

.8 3.3

3 66

ZTX-5-23

32.24 229.7

8 289.2 0.79

0.0497

0.0025

0.1316

0.0063

0.0192

0.0003

0.0059

0.0001

179.8

113.64

125.6

5.61

122.7

2.05

119.2

2.7 98

ZTX-5-24

11.88 59.14 81.15 0.73 0.078

1 0.0090

0.2129

0.0235

0.0198

0.0007

0.0076

0.0004

1148.4

213.02

196 19.69

126.3

4.17

152.7

8.82

45

ZTX-5-25

16.71 99.24 118.2

6 0.84

0.0602

0.0048

0.1690

0.0130

0.0204

0.0005

0.0067

0.0002

610.3

163.71

158.5

11.26

130 2.8

5 135

.8 4.9 78

ZTX-5-26

27.24 230.2 248.8 0.93 0.054

5 0.0031

0.1374

0.0074

0.0183

0.0003

0.0056

0.0001

393.4

122.5

130.7

6.59

116.7

2.11

112.4

2.84

88

ZTX-5-27

65.50 726.5

4 608.7

9 1.19

0.0533

0.0021

0.1402

0.0050

0.0191

0.0003

0.0062

0.0001

342.4

85.36

133.2

4.41

121.8

1.87

123.9

2.04

91

ZTX-5-28

9.97 50.94 70.79 0.72 0.058

0 0.0092

0.1444

0.0222

0.0181

0.0007

0.0059

0.0004

528.1

313.83

136.9

19.7

115.4

4.39

119.2

8.85

81

ZTX-5-29

21.56 125.0

8 200.0

2 0.63

0.0476

0.0033

0.1205

0.0080

0.0184

0.0004

0.0059

0.0002

79.5

156.81

115.5

7.23

117.2

2.19

119.7

3.75

99

ZTX-5-30

14.12 77.45 92.71 0.84 0.049

7 0.0071

0.1370

0.0191

0.0200

0.0006

0.0071

0.0004

179 302.25

130.4

17.09

127.8

3.94

142.4

7.87

98

Page 84: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 83

ZTX-5-31

13.91 77.53 100.1

8 0.77

0.0472

0.0060

0.1181

0.0147

0.0182

0.0005

0.0059

0.0003

57.6

279.28

113.4

13.33

116 3.3

8 119

.7 6.0

8 98

ZTX-5-32

417.43

152.09

252.46

0.60 0.130

7 0.0034

6.7629

0.1459

0.3753

0.0059

0.1022

0.0020

2107.5

44.82

2080.9

19.09

2054.4

27.83

1967.6

35.93

97

ZTX-5-33

45.13 354.7

4 421.0

8 0.84

0.0495

0.0034

0.1304

0.0087

0.0191

0.0004

0.0060

0.0002

171.2

154.64

124.5

7.8 122

.1 2.3

7 121

.1 3.6

5 98

ZTX-5-34

19.46 113.6

4 166.0

4 0.68

0.0478

0.0035

0.1244

0.0087

0.0189

0.0004

0.0060

0.0002

88.8

165.64

119 7.8

9 120

.5 2.3

7 120

.7 4.0

6 99

ZTX-5-35

12.83 69.48 89.81 0.77 0.049

8 0.0065

0.1352

0.0171

0.0197

0.0006

0.0064

0.0003

184.8

276.53

128.8

15.33

125.8

3.63

129.4

6.61

98

Page 85: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 84

Table 4 Lu‒Hf isotope analytical data on zircons in this study

Sample Age 176Hf/177Hf 1 se 176Lu/177Hf 176Yb/177Hf epsilon 176Hf/177Hf epsilon T(DM) T(DM) Hf Chur (t) Hf DM (t) spot (Ma) Hf(t) initial Hf(0) (Ga) crustal

MP-1-01 127 0.282374 0.000011 0.0006 0.0132 -11.3 0.282373 -14.1 1228 1905 0.281763 0.282083 MP-1-08 125 0.282251 0.000012 0.0006 0.0118 -15.7 0.282249 -18.4 1398 2183 0.281763 0.282083 MP-1-11 121 0.282195 0.000010 0.0005 0.0110 -17.8 0.282194 -20.4 1473 2309 0.281763 0.282083 MP-1-17 121 0.282193 0.000013 0.0005 0.0103 -17.9 0.282192 -20.5 1474 2314 0.281763 0.282083 MP-1-25 127 0.282278 0.000012 0.0007 0.0151 -14.8 0.282276 -17.5 1365 2122 0.281763 0.282083 MP-1-34 124 0.282266 0.000015 0.0006 0.0136 -15.2 0.282264 -17.9 1379 2150 0.281763 0.282083 ZT-1-10 137 0.282273 0.000008 0.0007 0.0174 -14.7 0.282271 -17.7 1374 2128 0.281763 0.282083 ZT-1-21 127 0.282203 0.000007 0.0006 0.0129 -17.4 0.282201 -20.1 1465 2289 0.281763 0.282083 ZT-1-24 123 0.282253 0.000007 0.0009 0.0209 -15.7 0.282251 -18.4 1408 2180 0.281763 0.282083 ZT-1-33 119 0.282313 0.000007 0.0007 0.0153 -13.7 0.282312 -16.2 1316 2048 0.281763 0.282083 ZT-1-34 136 0.282245 0.000007 0.0008 0.0168 -15.7 0.282243 -18.6 1414 2190 0.281763 0.282083 ZT-1-35 132 0.282293 0.000008 0.0007 0.0153 -14.1 0.282291 -17.0 1343 2086 0.281763 0.282083 ZT-2-03 134 0.282225 0.000008 0.0015 0.0324 -16.5 0.282221 -19.3 1468 2239 0.281763 0.282083 ZT-2-09 122 0.282116 0.000008 0.0015 0.0331 -20.6 0.282113 -23.2 1621 2488 0.281763 0.282083 ZT-2-22 131 0.282220 0.000007 0.0007 0.0170 -16.7 0.282218 -19.5 1445 2248 0.281763 0.282083 ZT-2-23 130 0.282217 0.000009 0.0012 0.0295 -16.9 0.282214 -19.6 1469 2258 0.281763 0.282083

ZTX-2-01 134 0.282157 0.000007 0.0006 0.0119 -18.9 0.282156 -21.7 1527 2386 0.281763 0.282083 ZTX-2-09 135 0.282213 0.000008 0.0006 0.0134 -16.9 0.282212 -19.8 1451 2261 0.281763 0.282083 ZTX-2-11 134 0.282159 0.000011 0.0006 0.0140 -18.8 0.282157 -21.7 1526 2383 0.281763 0.282083 ZTX-2-12 138 0.282224 0.000009 0.0005 0.0099 -16.4 0.282223 -19.4 1431 2234 0.281763 0.282083 ZTX-2-15 137 0.282251 0.000009 0.0006 0.0147 -15.5 0.282249 -18.4 1400 2175 0.281763 0.282083 ZTX-2-23 129 0.282232 0.000011 0.0006 0.0125 -16.3 0.282231 -19.1 1424 2221 0.281763 0.282083 ZTX-5-03 134 0.282090 0.000009 0.0006 0.0141 -21.2 0.282088 -24.1 1622 2536 0.281763 0.282083 ZTX-5-07 125 0.282129 0.000008 0.0008 0.0172 -20.1 0.282127 -22.7 1575 2455 0.281763 0.282083

Page 86: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 85

ZTX-5-11 120 0.282171 0.000011 0.0006 0.0133 -18.7 0.282170 -21.2 1508 2363 0.281763 0.282083 ZTX-5-15 121 0.281914 0.000010 0.0017 0.0415 -27.8 0.281910 -30.3 1918 2938 0.281763 0.282083 ZTX-5-22 121 0.282020 0.000012 0.0007 0.0154 -24.0 0.282018 -26.6 1722 2700 0.281763 0.282083 ZTX-5-26 117 0.282112 0.000013 0.0010 0.0233 -20.9 0.282109 -23.4 1609 2500 0.281763 0.282083

Page 87: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 86

Graphical abstract

Page 88: Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes ... · Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cre-taceous dykes in the central North China Craton:

ACC

EPTE

D M

ANU

SCR

IPT

ACCEPTED MANUSCRIPT

P a g e | 87

Research Highlights

The porphyry dykes show high-K calc-alkaline and I-type affinity with adakitic features.

Their 124 to 129 Ma emplacement ages coincide with the major Mesozoic magmatic event in the NCC

The zircon εHf(t) values suggest both reworked and juvenile ancient crust.

The dykes probably acted as stoppers (impermeable barriers) and concentrated the gold and molybdenum

mineralization.