98
1 Stochastic Dynamic Optimization of Forest Industry Company Management INFORMS International Meeting 2007 Puerto Rico Peter Lohmander Professor SLU Umea, SE-901 83, Sweden, http:// www.Lohmander.com Version 2007-06-21

Peter Lohmander Professor SLU Umea, SE-901 83, Sweden, Lohmander

  • Upload
    murray

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

Stochastic Dynamic Optimization of Forest Industry Company Management INFORMS International Meeting 2007 Puerto Rico. Peter Lohmander Professor SLU Umea, SE-901 83, Sweden, http://www.Lohmander.com Version 2007-06-21. Abstract. - PowerPoint PPT Presentation

Citation preview

Page 1: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

1

Stochastic Dynamic Optimization of Forest Industry Company Management

INFORMS International Meeting 2007 Puerto Rico

Peter LohmanderProfessor

SLU Umea, SE-901 83, Sweden, http://www.Lohmander.com

Version 2007-06-21

Page 2: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

2

Abstract

• Forest industry production, capacity and harvest levels are optimized.

• Adaptive full system optimization is necessary for consistent results.

• The stochastic dynamic programming problem of a complete forest industry company is solved. The raw material stock level and the main product prices are state variables. In each state and at each stage, a linear programming profit maximization problem of the forest company is solved. Parameters from the Swedish forest industry are used as illustration.

Page 3: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

3

Question

How should these activities in a typical forest industry company be optimized and coordinated in the presence of stochastic markets?

*Pulp, paper and liner production and sales,

*Sawn wood production and sales,

*Raw material procurement and sales,

*Harvest operations

*Transport

Page 4: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

4

Approach in three stages

• A typical forest industry company is defined using real mills and forest conditions in the North of Sweden.

• For each year (or other period) and possible price and stock state, the variable company profit is maximized using linear programming. (Quadratic programming etc. are other options.)

• The expected present value of the company over an infinite horizon is maximized via stochastic dynamic programming in Markov chains. In this stage, a standard LP solver is used.

Page 5: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

5

Page 6: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

6

Page 7: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

7

Page 8: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

8

Page 9: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

9

Page 10: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

10

Page 11: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

11

Page 12: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

12

Page 13: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

13

Page 14: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

14

Page 15: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

15

Page 16: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

16

Page 17: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

17

Page 18: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

18

Page 19: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

19

Page 20: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

20

Page 21: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

21

Page 22: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

22

Page 23: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

23

Page 24: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

24

Page 25: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

25

Page 26: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

26

Page 27: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

27

Page 28: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

28

Page 29: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

29

Page 30: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

30

Page 31: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

31

Page 32: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

32

Page 33: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

33

Page 34: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

34

Page 35: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

35

Page 36: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

36

Page 37: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

37

Page 38: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

38

Page 39: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

39

Page 40: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

40

Page 41: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

41

Page 42: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

42

Optimization of the variable profit during a year:

Linear programming code

Background:

http://www.lohmander.com/SkogIndEk1/SI1.html

Page 43: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

43

! SMB2;! Peter Lohmander 2003-10-15;

Max = TProf;TProf = - InkK - IntKostn + ForsI;InkK = PKTi*KTimmer + PKMav*KMav + PKFlis*KFlis + PReturpL*KReturpl + PReturpI*KReturpI; IntKostn = AvvK*Avv + TPKostTI*ETimmer + TPKostMA*EMav + CSV*ProdSV + CLiner*ProdLin;ForsI = PSV*ProdSV + PLiner*ProdLin + PSTi*STimmer + PSMav*SMav + PSFlis*SFlis;

!Market prices of raw material and raw material constraints;PKTi = 380;PSTi = 330;PKMav = 200;PSMav = 120;PKFlis = 250;PSFlis = 150;PReturpL = 50;PReturpI = 730;[LRetP] KReturpL <= 100;

Page 44: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

44

!SMBs forest and harvesting;AvvK = 70;AvvKap = 570;TimAndel = .5;[KapAvv] Avv <= AvvKap;

!Roundwood transport costs;TPKostTI = 60;TPKostMa = 70; !SMBs saw mill;PSV = 1500;CSV = 300;SVKap = 80;TTimmer = ETimmer + KTimmer;ProdSV = .5*TTimmer;ProdFl = .8*ProdSV;ProdSp = .2*ProdSV;[KapSV] ProdSV <= SVKap;

Page 45: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

45

!SMBs raw material balance;EMav = (1-TimAndel)* Avv - SMav;ETimmer = Timandel*Avv - STimmer;EFlis = ProdFl - SFlis;

!SMBs liner mill;PLiner = 4900;CLiner = 1200;LinerKap = 400;TRetP = KReturpL + KReturpI;TFiber = EMav + EFlis + KMav + KFlis; ProdLin = .25*TFiber + .95*TRetP;[FFiberK] TFiber/TRetP >= 4;[KapLiner] ProdLin <= LinerKap;end

Page 46: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

46

Optimization of the variable profit during a year:

Optimal results

Page 47: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

47

Local optimal solution found at step: 10 Objective value: 1373354.

Variable Value Reduced Cost TPROF 1373354. 0.0000000 INKK 236846.2 0.0000000 INTKOSTN 563850.0 0.0000000 FORSI 2174050. 0.0000000 PKTI 380.0000 0.0000000 KTIMMER 160.0000 0.0000000 PKMAV 200.0000 0.0000000 KMAV 471.5128 0.0000000 PKFLIS 250.0000 0.0000000 KFLIS 0.0000000 50.00000

PRETURPL 50.00000 0.0000000 KRETURPL 100.0000 0.0000000 PRETURPI 730.0000 0.0000000 KRETURPI 105.1282 0.0000000 AVVK 70.00000 0.0000000 AVV 570.0000 0.0000000

Page 48: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

48

TPKOSTTI 60.00000 0.0000000 ETIMMER 0.0000000 10.00000

TPKOSTMA 70.00000 0.0000000 EMAV 285.0000 0.0000000 CSV 300.0000 0.0000000

PRODSV 80.00000 0.0000000 CLINER 1200.000 0.0000000 PRODLIN 400.0000 0.0000000

PSV 1500.000 0.0000000 PLINER 4900.000 0.0000000 PSTI 330.0000 0.0000000

STIMMER 285.0000 0.0000000 PSMAV 120.0000 0.0000000 SMAV 0.0000000 10.00000 PSFLIS 150.0000 0.0000000 SFLIS 0.0000000 50.00000

AVVKAP 570.0000 0.0000000 TIMANDEL 0.5000000 0.0000000

SVKAP 80.00000 0.0000000

Page 49: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

49

TTIMMER 160.0000 0.0000000 PRODFL 64.00000 0.0000000 PRODSP 16.00000 0.0000000 EFLIS 64.00000 0.0000000

LINERKAP 400.0000 0.0000000 TRETP 205.1282 0.0000000 TFIBER 820.5128 0.0000000

Page 50: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

50

Row Slack or Surplus Dual PriceLRETP 0.0000000 680.0000KAPAVV 0.0000000 160.0000KAPSV 0.0000000 600.0000FFIBERK 0.6043397E-09 -788.9547KAPLINER 0.0000000 2915.385

Page 51: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

51

”Single period results”

In the ”single period optimization model”, you should always harvest all

available stands and produce at full capacity utilization in the saw mill and the liner mill.

Page 52: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

52

”Stochastic multi period questions”:

Maybe you should, under some market conditions, save some harvest areas for

future periods?

Maybe also the other decisions in the company are different when we consider many periods and stochastic markets?

Page 53: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

53

Optimal variable profit (KSEK/Year) as a function of * stock level * harvest level * price of external pulpwood (PWP)* price of imported waste paper (IWPP):

Page 54: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

54

s = 1

1 2 3 4 5 6 7 8 9 m

160 200 240 160 200 240 160 200 240PWP (SEK/ton)

h m3 630 630 630 730 730 730 830 830 830IWPP (SEK/ton)

1 470 1398090 1367867 1347006 1398090 1357354 1336493 1398090 1354200 1325981

2 520 1405840 1375867 1356006 1405840 1365354 1345493 1405840 1362200 1334981

3 570 1413590 1383867 1365006 1413590 1373354 1354493 1413590 1370200 1343981

4 620                  

5 670                  

Page 55: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

55

s=2

1 2 3 4 5 6 7 8 9 m

160 200 240 160 200 240 160 200 240

PWP (SEK/ton)

h m3 630 630 630 730 730 730 830 830 830

IWPP (SEK/ton)

1 471                  

2 521 1405995 1376027 1356186 1405995 1365514 1345673 1405995 1362360 1335161

3 571 1413745 1384027 1365186 1413745 1373514 1354673 1413745 1370360 1344161

4 621 1421495 1392027 1374186 1421495 1381514 1363673 1421495 1378360 1363673

5 671                  

Page 56: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

56

s=3

1 2 3 4 5 6 7 8 9 m

160 200 240 160 200 240 160 200 240

PWP (SEK/ton)

h m3 630 630 630 730 730 730 830 830 830

IWPP (SEK/ton)

1 472                  

2 522                  

3 572 1413900 1384187 1365366 1413900 1373674 1354853 1413900 1370520 1344341

4 622 1421650 1392187 1374366 1421650 1381674 1363853 1421650 1378520 1353341

5 672 1429400 1400187 1383366 1429400 1389674 1372853 1429400 1386520 1362341

Page 57: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

57

Optimization of the expected present value of the company

during over an infinite horizon:

Linear programming in a Markov chain

Page 58: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

58

The optimization problem at a general level

We want to maximize the expected present value of the profit, all revenues minus costs, over an infinite horizon.

This is solved via stochastic dynamic programming. Compare Howard (1960),

Wagner (1975), Ross (1983) and Winston (2004).

Page 59: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

59

* *

1

( , ) ( , , ) ( | , , ) ( , 1)max

( )

Jr

j

W i t R i t h e j i t h W j thh H i

Page 60: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

60

,1

( | , ) , | ( )J

ri i h j

j

W R e j i h W i h h H i

*

* * *

,1

( | , )J

ri ji h

j

W R e j i h W

Page 61: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

61

Min Z =

ii

w s.t.

, ( )( , ) ,i j i u u U i

j

w j i u w R i u

Page 62: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

62

1

( )i

Z w i

Page 63: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

63

min ( , )s m

Z f s m

Page 64: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

64

Min Z =

s.t.

2 2

1

1 1 2 2 1 1 2 2 1 1

1 1 1 ( )

( , ) ( , , , ) ( , ) ( , , )

; ; ( , )

s m

h U s

f s m s m s m h f s m g s m h

s S m M s h

( , )s m

f s m

Page 65: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

65

Optimal dynamic analysis r = 5%

! Puerto_20070516_2010 HRS;! Peter Lohmander;Model:

sets:stock/1..3/:;market/1..9/:p1,p2;sm(stock,market):f;mark2(market,market):TR;harv/1..5/:;shm(stock,harv,market):g;endsets

Page 66: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

66

b = 1/1.05; Z = @sum( sm(i,j):f(i,j));min = Z;@for(stock(s): @for(market(m): @for(harv(h)| (s+3-h) #GE#1 #AND# (s+3-h) #LE# 3 :[Dec] f(s,m) >= g(s,h,m) + b*@sum(market(n):TR(m,n)*f(s+3-h,n)) )));

Page 67: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

67

@for(mark2(m,n)| n #NE# 5 :

TR(m,n) = .05);

@for(mark2(m,n)| n #EQ# 5 :

TR(m,n) = .6);

Page 68: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

68

data:

g =

1398090 1367867 1347006 1398090 1357354 1336493 1398090 1354200 1325981

1405840 1375867 1356006 1405840 1365354 1345493 1405840 1362200 1334981

1413590 1383867 1365006 1413590 1373354 1354493 1413590 1370200 1343981

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Page 69: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

69

0 0 0 0 0 0 0 0 01405995 1376027 1356186 1405995 1365514 1345673 1405995 1362360 13351611413745 1384027 1365186 1413745 1373514 1354673 1413745 1370360 13441611421495 1392027 1374186 1421495 1381514 1363673 1421495 1378360 13636730 0 0 0 0 0 0 0 0

Page 70: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

70

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 01413900 1384187 1365366 1413900 1373674 1354853 1413900 1370520 13443411421650 1392187 1374366 1421650 1381674 1363853 1421650 1378520 13533411429400 1400187 1383366 1429400 1389674 1372853 1429400 1386520 1362341 ;

p1 = 1 2 3 1 2 3 1 2 3;p2 = 1 1 1 2 2 2 3 3 3;

enddataend

Page 71: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

71

Global optimal solution found at step: 94

Objective value: 0.7812784E+09

Page 72: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

72

Variable Value Reduced Cost B 0.9523810 0.0000000 Z 0.7812784E+09 0.0000000

Page 73: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

73

F( 1, 1) 0.2896002E+08 0.0000000 F( 1, 2) 0.2893005E+08 0.0000000 F( 1, 3) 0.2891080E+08 0.0000000 F( 1, 4) 0.2896002E+08 0.0000000 F( 1, 5) 0.2891953E+08 0.0000000 F( 1, 6) 0.2890029E+08 0.0000000 F( 1, 7) 0.2896002E+08 0.0000000 F( 1, 8) 0.2891638E+08 0.0000000 F( 1, 9) 0.2888978E+08 0.0000000 F( 2, 1) 0.2896792E+08 0.0000000 F( 2, 2) 0.2893821E+08 0.0000000 F( 2, 3) 0.2891998E+08 0.0000000 F( 2, 4) 0.2896792E+08 0.0000000 F( 2, 5) 0.2892769E+08 0.0000000 F( 2, 6) 0.2890947E+08 0.0000000 F( 2, 7) 0.2896792E+08 0.0000000 F( 2, 8) 0.2892454E+08 0.0000000 F( 2, 9) 0.2890947E+08 0.0000000 F( 3, 1) 0.2897583E+08 0.0000000 F( 3, 2) 0.2894637E+08 0.0000000 F( 3, 3) 0.2892916E+08 0.0000000 F( 3, 4) 0.2897583E+08 0.0000000 F( 3, 5) 0.2893585E+08 0.0000000 F( 3, 6) 0.2891865E+08 0.0000000 F( 3, 7) 0.2897583E+08 0.0000000 F( 3, 8) 0.2893270E+08 0.0000000 F( 3, 9) 0.2890814E+08 0.0000000

Page 74: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

74

F( 1, 5) 0.2891953E+08 0.0000000

Page 75: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

75

F( 1, 5) 0.2891953E+08 0.0000000F( 2, 5) 0.2892769E+08 0.0000000F( 3, 5) 0.2893585E+08 0.0000000

Page 76: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

76

DEC( 1, 1, 1) 369.8571 0.0000000 DEC( 1, 1, 2) 0.0000000 -5.285714 DEC( 1, 1, 3) 631.2857 0.0000000 DEC( 1, 2, 1) 619.8571 0.0000000 DEC( 1, 2, 2) 0.0000000 -5.285714 DEC( 1, 2, 3) 381.2857 0.0000000 DEC( 1, 3, 1) 2238.571 0.0000000 DEC( 1, 3, 2) 618.7143 0.0000000 DEC( 1, 3, 3) 0.0000000 -5.285714 DEC( 1, 4, 1) 369.8571 0.0000000 DEC( 1, 4, 2) 0.0000000 -5.285714 DEC( 1, 4, 3) 631.2857 0.0000000 DEC( 1, 5, 1) 619.8571 0.0000000 DEC( 1, 5, 2) 0.0000000 -52.42857 DEC( 1, 5, 3) 381.2857 0.0000000 DEC( 1, 6, 1) 2238.571 0.0000000 DEC( 1, 6, 2) 618.7143 0.0000000 DEC( 1, 6, 3) 0.0000000 -5.285714 DEC( 1, 7, 1) 369.8571 0.0000000 DEC( 1, 7, 2) 0.0000000 -5.285714 DEC( 1, 7, 3) 631.2857 0.0000000 DEC( 1, 8, 1) 619.8571 0.0000000 DEC( 1, 8, 2) 0.0000000 -5.285714 DEC( 1, 8, 3) 381.2857 0.0000000 DEC( 1, 9, 1) 2238.571 0.0000000 DEC( 1, 9, 2) 618.7143 0.0000000 DEC( 1, 9, 3) 0.0000000 -5.285714

Page 77: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

77

DEC( 1, 5, 1) 619.8571 0.0000000 DEC( 1, 5, 2) 0.0000000 -52.42857 DEC( 1, 5, 3) 381.2857 0.0000000

Page 78: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

78

DEC( 2, 1, 2) 369.8571 0.0000000 DEC( 2, 1, 3) 0.0000000 -23.71428 DEC( 2, 1, 4) 631.2857 0.0000000 DEC( 2, 2, 2) 619.8571 0.0000000 DEC( 2, 2, 3) 0.0000000 -23.71428 DEC( 2, 2, 4) 381.2857 0.0000000 DEC( 2, 3, 2) 2238.571 0.0000000 DEC( 2, 3, 3) 618.7143 0.0000000 DEC( 2, 3, 4) 0.0000000 -23.71428 DEC( 2, 4, 2) 369.8571 0.0000000 DEC( 2, 4, 3) 0.0000000 -23.71428 DEC( 2, 4, 4) 631.2857 0.0000000 DEC( 2, 5, 2) 619.8571 0.0000000 DEC( 2, 5, 3) 0.0000000 -273.5714 DEC( 2, 5, 4) 381.2857 0.0000000 DEC( 2, 6, 2) 2238.571 0.0000000 DEC( 2, 6, 3) 618.7143 0.0000000 DEC( 2, 6, 4) 0.0000000 -23.71428 DEC( 2, 7, 2) 369.8571 0.0000000 DEC( 2, 7, 3) 0.0000000 -23.71428 DEC( 2, 7, 4) 631.2857 0.0000000 DEC( 2, 8, 2) 619.8571 0.0000000 DEC( 2, 8, 3) 0.0000000 -23.71428 DEC( 2, 8, 4) 381.2857 0.0000000 DEC( 2, 9, 2) 12750.57 0.0000000 DEC( 2, 9, 3) 11130.71 0.0000000 DEC( 2, 9, 4) 0.0000000 -23.71428

Page 79: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

79

DEC( 3, 1, 3) 369.8571 0.0000000 DEC( 3, 1, 4) 0.0000000 -1.000000 DEC( 3, 1, 5) 631.2857 0.0000000 DEC( 3, 2, 3) 619.8571 0.0000000 DEC( 3, 2, 4) 0.0000000 -1.000000 DEC( 3, 2, 5) 381.2857 0.0000000 DEC( 3, 3, 3) 2238.571 0.0000000 DEC( 3, 3, 4) 618.7143 0.0000000 DEC( 3, 3, 5) 0.0000000 -1.000000 DEC( 3, 4, 3) 369.8571 0.0000000 DEC( 3, 4, 4) 0.0000000 -1.000000 DEC( 3, 4, 5) 631.2857 0.0000000 DEC( 3, 5, 3) 619.8571 0.0000000 DEC( 3, 5, 4) 0.0000000 -1.000000 DEC( 3, 5, 5) 381.2857 0.0000000 DEC( 3, 6, 3) 2238.571 0.0000000 DEC( 3, 6, 4) 618.7143 0.0000000 DEC( 3, 6, 5) 0.0000000 -1.000000 DEC( 3, 7, 3) 369.8571 0.0000000 DEC( 3, 7, 4) 0.0000000 -1.000000 DEC( 3, 7, 5) 631.2857 0.0000000 DEC( 3, 8, 3) 619.8571 0.0000000 DEC( 3, 8, 4) 0.0000000 -1.000000 DEC( 3, 8, 5) 381.2857 0.0000000 DEC( 3, 9, 3) 2238.571 0.0000000 DEC( 3, 9, 4) 618.7143 0.0000000 DEC( 3, 9, 5) 0.0000000 -1.000000

Page 80: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

80

Optimal harvest levels in the forest district when r = 2%, 5% or

10%

Page 81: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

81

S = Entering stock level S=1 (570 000 m3 or less may be harvested this year)

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 520 000 m3 520 000 m3 570 000 m3

IWPP = 730 520 000 m3 520 000 m3 570 000 m3

IWPP = 630 520 000 m3 520 000 m3 570 000 m3

Optimal harvest levels in the forest district when r = 2%, 5% or 10%

Page 82: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

82

Optimal harvest levels in the forest district when r = 2%, 5% or 10%

S=2 (621 000 m3 or less may be harvested this year)

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 571 000 m3 571 000 m3 621 000 m3

IWPP = 730 571 000 m3 571 000 m3 621 000 m3

IWPP = 630 571 000 m3 571 000 m3 621 000 m3

Page 83: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

83

Optimal harvest levels in the forest district when r = 2%, 5% or 10%

S=3 (672 000 m3 or less may be harvested this year)

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 622 000 m3 622 000 m3 672 000 m3

IWPP = 730 622 000 m3 622 000 m3 672 000 m3

IWPP = 630 622 000 m3 622 000 m3 672 000 m3

Page 84: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

84

Optimal harvest levels in the forest district when r = 2%, 5% or

10%:

Harvest approx. 50 000 cubic metres less than the maximum possible in case the pulp wood price is not at the highest level. Harvest as much as possible if

the pulp wood price is at the highest level.

Page 85: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

85

Pulpwood price

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

Year

SE

K/m

3Let’s study the optimal decisions with changing pulp wood prices

if the rate of interest is 10%!

Page 86: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

86

Pulpwood price

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

Year

SE

K/m

3

Harvest in relation to average harvest

-1,5

-1

-0,5

0

0,5

1

1,5

0 2 4 6 8 10 12 14 16

Year

Ap

pro

x. 5

0 00

0 m

3/st

ep

Optimal Stock Path

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12 14 16

Year

Sto

ck le

vel

Page 87: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

87

Optimal harvest levels in the forest district when r = 15% (or

higher)

Page 88: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

88

S = Entering stock level S=1 (570 000 m3 or less may be harvested this year)

Optimal harvest levels in the forest district when r = 15%

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 570 000 m3 570 000 m3 570 000 m3

IWPP = 730 570 000 m3 570 000 m3 570 000 m3

IWPP = 630 570 000 m3 570 000 m3 570 000 m3

Page 89: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

89

Optimal harvest levels in the forest district when r = 15%

S=2 (621 000 m3 or less may be harvested this year)

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 621 000 m3 621 000 m3 621 000 m3

IWPP = 730 621 000 m3 621 000 m3 621 000 m3

IWPP = 630 621 000 m3 621 000 m3 621 000 m3

Page 90: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

90

Optimal harvest levels in the forest district when r = 15%

S=3 (672 000 m3 or less may be harvested this year)

PWP = 160 PWP = 200 PWP = 240

IWPP = 830 672 000 m3 672 000 m3 672 000 m3

IWPP = 730 672 000 m3 672 000 m3 672 000 m3

IWPP = 630 672 000 m3 672 000 m3 672 000 m3

Page 91: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

91

Optimal harvest levels in the forest district when r = 15% (or

higher):

Harvest as much as possible for all possible pulp wood prices!

Page 92: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

92

General results• With this approach, all relevant decisions in

the company can be consistently optimized.• For instance, we find how the optimal

harvest level is affected by the present price in the pulpwood market, the transition probability matrix of prices, the rate of interest, the volume of harvestable stands and all other company relevant conditions such as capacities in the sawmill, the liner mill, transport costs for different assortements on different roads etc..

Page 93: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

93

Observation #1All the sub problems (the

optimization problems within each time period) may be solved with

continuous or discrete variables via linear programming, quadratic programming or some other

optimization method, taking all relevant constraints into

consideration.

Page 94: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

94

Observation #2In the ”master problem” (the Markov chain problem over an infinite horizon), the state space is discrete. With standard software,

this still makes it possible to use high resolution in the interesting dimensions.

For instance, with ten possible stock levels, we may use four exogenous market prices

(with ten possible levels in each dimension) and still have no more than 100 000

variables. Such a problem can easily be solved.

Page 95: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

95

Observation #3This forest sector model can easily be

modified and we can instantly calculate how the expected economic value of the

company and the optimal decisions change.

For instance, we may introduce ”possible”

bioenergy power plants and new types of pulp and paper mills and instantly derive

the optimal results.

Page 96: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

96

Abstract

• Forest industry production, capacity and harvest levels are optimized.

• Adaptive full system optimization is necessary for consistent results.

• The stochastic dynamic programming problem of a complete forest industry company is solved. The raw material stock level and the main product prices are state variables. In each state and at each stage, a linear programming profit maximization problem of the forest company is solved. Parameters from the Swedish forest industry are used as illustration.

Page 97: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

97

Page 98: Peter Lohmander Professor  SLU  Umea, SE-901 83, Sweden,  Lohmander

98

Contact: Peter Lohmander

Professor

SLU, Dept. of Forest Economics

SE-901 83 Umea, Sweden

e-mail:

[email protected]

Personal home page:

http://www.Lohmander.com