49
Perturbations of multivariate Christoffel-Darboux kernels Mihai Putinar UCSB and Newcastle University February 13, 2018 Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 1 / 49

Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Perturbations of multivariate Christoffel-Darbouxkernels

Mihai Putinar

UCSB and Newcastle University

February 13, 2018

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 1 / 49

Page 2: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

joint work with

B. Beckermann (U. Lille)E. Saff (Vanderbilt U.)

closely related to prior works with:

B. Gustafsson (KTH Stockholm)M. Korda (LAAS Toulouse)J.-B. Lasserre (LAAS Toulouse)I. Mezic (UCSB)E. Pauwels (U. Toulouse)N. Stylianopoulos (U. Cyprus)

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 2 / 49

Page 3: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Contents

I. History and theoretical background

II. Perturbation of multivariate Christoffel-Darboux kernels

III. Ramifications and more motivation

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 3 / 49

Page 4: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Spectral analysis of Koopman’s operator

joint work with Korda and Mezic

In particular the presence of singular absolute continuous spectrum in thestudy and classification of some challenging dynamical systems.Derived from Christoffel-Darboux analysis of data.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 4 / 49

Page 5: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

I. Complex orthogonal polynomials

µ ≥ 0 positive Borel measure, rapidly decreasing on C, of infinite support,so that the orthogonal polynomials Pn(z), n ≥ 0, are well defined by

Pn(z) = γnzn + O(zn−1), γn > 0,

and〈Pn,Pk〉2,µ = δnk .

Moment data (observables) and complex orthogonal polynomialsare interchangeable via elementary matrix operations.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 5 / 49

Page 6: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Christoffel-Darboux kernel

KN(z ,w) =N−1∑k=0

Pk(z)Pk(w),

is the reproducing kernel in the space CN [z ] of polynomials of degree lessthan N:

〈h,KN(·,w)〉2,µ = h(w), deg h < N.

E. B. Christoffel, Uber die Gaussische Quadratur und eineVerallgemeinerung derselben, J. Reine Angew. Math. 55 (1858), 61-82.

G. Darboux, Memoire sur l’approximation des fonctions de tres-grandsnombres, et sur une classe etendue de developpements en serie, Liouville J.(3) 4 (1878), 5-56; 377-416.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 6 / 49

Page 7: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Christoffel function

|h(w)| ≤ ‖h‖‖KN(·,w)‖

with optimal solution KN(·,w):

max|h(w)|‖h‖

= ‖KN(·,w)‖,

or equivalently

ΛN(µ,w) := min‖h‖2

2,µ

|h(w)|2=

1

KN(w ,w)

where deg h < N and h(w) 6= 0.

The asymptotics of Christoffel’s function ΛN(µ,w) were and remaincentral for many problems of mathematical analysis.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 7 / 49

Page 8: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Determinateness of 1-D moment problems

Note that the orthogonal polynomials Pn(z) depend only on the momentsof the underlying measure µ:

ckn =

∫Czkzndµ(z), k , n ≥ 0.

Solving the moment problem (i.e. recovery of µ from (ckn)∞k,n=0)encounters a natural and difficult obstacle: is the measure µ unique?

M. Riesz (1923), R. Nevanlinna (1924): If suppµ ⊂ R, then the momentsdetermine the measure if and only if

limN→∞

ΛN(µ, z) = 0,

for at least one z ∈ C \ R (and hence for all). Following earlier ideas of H.Weyl.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 8 / 49

Page 9: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Maximal point masses

Note that always ΛN+1(µ, z) ≤ ΛN(µ, z), so

Λ(µ, z) = limN→∞

ΛN(µ, z)

exists.

In case x ∈ R,

µ(x) ≤ Λ(µ, x) = min

∫|h(y)|2dµ(y), h(x) = 1,

and the upper bound is attained (by extremal solutions of the momentproblem).

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 9 / 49

Page 10: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

The unit circlew(t) ≥ 0 integrable weight on [−π, π). With geometric mean

G (w) = exp(1

∫ π

−πlnw(t)dt),

if w satisfies Szego’s condition∫ π

−πlnw(t)dt > −∞,

and G (w) = 0 otherwise.

Szego (1914) Λ(w(t)dt, 0) = G (w).

Formulated equivalently as an extremum problem, with z = e it :

limn→∞

minAj

1

∫ π

−π|zn + A1z

n−1 + . . .+ An|2w(t)dt = G (w).

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 10 / 49

Page 11: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Density of complex polynomials in Lebesgue space

µ ≥ 0 positive Boreal measure on [−π, π) with Lebesgue decompsoition

µ = w(t)dt + µsc + µd .

where w(t) has bounded variation.

Kolmogorov (1941), Krein (1945) The system 1, z , z2, . . . is dense inLp(µ), p ≥ 1, if and only if∫ π

−π| lnw(t)|dt =∞.

Hint: By Szego’s Theorem, if G (w) > 0, then e−it cannot beapproximated by 1, e it , e i2t , . . . .

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 11 / 49

Page 12: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Accelerated convergence of Fourier seriesLet α ≥ 0 be a positive measure supported on a compact set I ⊂ R. For acontinuous function f ∈ C (I ) we set

SN(α, f , x) =N−1∑k=0

〈f ,Pk〉Pk(x).

Then

sup‖f ‖∞,I≤1

|SN(α, f , x)|2 ≤ ‖f ‖22,αKN(α; x , x) ≤ α(I )KN(α; x , x).

Consequently

|f (x)− SN(α, f , x)| = |f (x)− Q(x)− SN(α, f − Q, x)| ≤

infdegQ<N

‖f − Q‖∞,K (1 + α(I )√KN(α : x , x)).

Lebesgue (1905) was the first to use this scheme for studying theconvergence of Fourier type developments.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 12 / 49

Page 13: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

The unit disk

µ = dA on D = z ∈ C : |z | < 1

KN(z ,w)→ K (z ,w) =1

π(1− zw)2, z ,w ∈ D,

the Bergman kernel, and

KN(z , z) =N + 1

π

1

|z |2 − 1|z |2N+2(1 + O(1/N)), |z | > 1.

measures how fast a polynomial of degree less than N lifts outside thedisk, keeping its square norm average on D bounded.

Classical asymptotics extended to more general domains by Carleman(1922) and Suetin (1969).

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 13 / 49

Page 14: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Paradigm

For a positive measure µ on the line or circle:

limn

1

Kµn (x , x)

= µ(x),

while

limn

n

Kµn (x , x)

=µ′(x)

ωI (x), a.e.,

on an interval I , where ωI is the equilibrium measure.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 14 / 49

Page 15: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

The circle again

Simple example: µ = dθ2π on [−π, π).

Kn(z ,w) =1− znwn

1− zw,

implies for z = e it ,w = e is :

Kn(z , z) = |Kn(z , z)| = lims→t

sin n(t−s)2

sin t−s2

= n.

Hencen

Kn(z , z)= 1.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 15 / 49

Page 16: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

CD kernels, their level sets and their perturbationsEarly work: V. B. Uvarov, The connection between systems ofpolynomials that are orthogonal with respect to different distributionfunctions, Zh. Vychisl. Mat. Mat. Fiz., 1969, Volume 9, Number 6,1253-1262.

More recent kernel computations: D. Lubinsky, Some recent methodsfor establishing universality limits, J. Nonlinear Analysis 71(2009),2750-2765.

Shape reconstruction: for instance of an archipelago, with islands andlakes (Gustafsson, Saff, P., Totik, Stahl, Stylianopoulos)

Statistical motivation: A ”cloud” approximated by a measure with apositive density (possibly along a real algebraic variety) and ”outliers”represented by a finite atomic measure (Lassrre, Pauwels, P.)

Multivariate setting: techniques from pluripotential theory, asymptotics oforthogonal polynomials, real algebraic geometry, matrix inequalities.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 16 / 49

Page 17: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

First mild complications

Let µ be a positive measure, rapidly decreasing at infinity in Cd . Thesupport of µ may be contained in a proper algebraic subset S(µ) (theZariski closure of supp(µ)).

Along S(µ) not all monomials are independent, so an ordering of them, byan appropriate degree is necessary.

The usual definition of a CD kernel makes sense only along S(µ):

1√Kµn (z , z)

= min‖p‖2,µ : deg p ≤ k, p(z) = 1.

A related object to consider is the cosine function

Cµn (z ,w) :=Kµn (z ,w)√

Kµn (z , z)

√Kµn (w ,w)

.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 17 / 49

Page 18: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Statistics interlude

The mean m(µ) and positive definite covariance matrix C(µ) of a randomvariable with values in Cd with law described by some probability measureµ have the entries

m(µ)j =

∫zjdµ(z), C(µ)j ,k =

∫(zj −m(µ)j)(zk −m(µ)k)dµ(z).

The Mahalanobis distance between a point z ∈ Cd and the probabilitymeasure µ is given by

∆(z , µ) =√

(z −m(µ))C(µ)−1(z −m(µ))∗.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 18 / 49

Page 19: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Relation to the CD kernel

In terms of the moment matrices and tautological vectorvd(z) = (1, z1, ..., zd),

V ∗Md(µ)V =

[〈1, 1〉2,µ 0

0 C(µ)

], V :=

[1 −m(µ)0 I

],

where 〈1, 1〉2,µ = µ(Cd) = 1 and pµ0 (z) = Kµ0 (z , z) = 1 for all z ∈ Cd .

ThereforeKµd (z , z) = vd(z)Md(µ)−1vd(z)∗

= vd(z)V

[1 00 C(µ)−1

]V ∗vd(z)∗ = 1 + ∆(z , µ)2.

Thus, up to some additive constant,√

Kµn (z , z) can be considered as a

natural generalization of the Mahalanobis distance between a point z ∈ Cd

and the probability measure µ.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 19 / 49

Page 20: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Small perturbations

The proximity of the two measures is imposed by the following condition:there exists a sufficiently small ε ∈ (0, 1) such that

(1− ε) ‖p‖22,µ ≤ ‖p‖2

2,ν ≤ (1 + ε) ‖p‖22,µ (1)

for polynomials of a prescribed ”degree”.Then

(1− ε)K νn (z , z) ≤ Kµ

n (z , z) ≤ (1 + ε)K νn (z , z), (2)

|Kµn (z ,w)− K ν

n (z ,w)| ≤ ε√

K νn (z , z)

√K νn (w ,w), (3)

|Cµn (z ,w)− C νn (z ,w)| ≤ 2ε. (4)

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 20 / 49

Page 21: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Additive perturbations of measures

Let supp(µ) be an infinite set such that there exists an infinite number oforthogonal polynomials pµj , and consider the case of adding ` disjointpoint masses in the Zariski closure S(µ) of the support of the originalmeasure µ (and later outside (µ)). That is,

σ =∑j=1

tjδzj , tj > 0, z1, ..., z` ∈ S(µ) disjoint. (5)

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 21 / 49

Page 22: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Main result

Consider the following matrices (depending on n)

C := Cµn (z1, ..., z`; z1, ..., z`),

C := Cµn (z1, ..., z`, z ; z1, ..., z`, z) =

[C b∗

b 1

],

D := diag

(1√

tjKµn (zj , zj)

)j=1,...,`

,

and the constants

Σm := 1−m−1∑j=0

(−1)jbC−1(D2C−1)jb∗, m ≥ 1.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 22 / 49

Page 23: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Alternating inequalities

Then, for all z ∈ Cd ,

Kµ+σn (z , z)

Kµn (z , z)

= 1− b(D2 + C )−1b∗, (6)

and

Σ1 ≤ Σ3 ≤ Σ5 ≤ ... ≤Kµ+σn (z , z)

Kµn (z , z)

≤ ... ≤ Σ4 ≤ Σ2 ≤ Σ0. (7)

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 23 / 49

Page 24: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

One point mass

σ = t1δz1 adds one point mass to µ:

C = 1, b = Cµn (z , z1), D2 =1

t1Kµn (z1, z1)

.

andKµ+σn (z , z)

Kµn (z , z)

= 1− b(1 + D2)−1b∗ = 1− |Cµn (z , z1)|2

1 + 1t1K

µn (z1,z1)

.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 24 / 49

Page 25: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Green function estimate

Consider an ordering with respect to total degree, and suppose thatsupp(µ) is infinite. Denote by Ω be the unbounded connected componentof Cd \ supp(µ), and let gΩ : Cd 7→ R be the plurisubharmonic Greenfunction with pole at ∞ which is strictly positive on Ω. Then, forz ∈ S(µ) ∩ Ω,

lim infm→∞

Kµntot(m)(z , z)1/m ≥ e2gΩ(z). (8)

If, in addition, Ω is L-regular and µ belongs to the multivariategeneralization of the class Reg, then the limit

limm→∞

Kµntot(m)(z , z)1/m = e2gΩ(z) (9)

exists for all z ∈ S(µ), and equals zero for z ∈ S(µ) \ Ω.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 25 / 49

Page 26: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Function theory of a complex variable

Ratio asymptotics for complex orthogonal polynomials:

Let Ω denote a subdomain of the unbounded component of C \ (µ), andsuppose that there is a function g analytic and different from zero in Ωsuch that

limn→∞

pµn (z)

pµn+1(z)= g(z) (10)

uniformly on any compact subset of Ω. Let F be a compact subset of Ω.Then 1/Kµ

n (z , z)→ 0 uniformly for z ∈ F , and

limn→∞

Cµn (z ,w)|pµn (z)|pµn (z)

pµn (w)

|pµn (w)|=

√(1− |g(z)|2)(1− |g(w)|2)

1− g(z)g(w)(11)

uniformly for z ,w ∈ F .

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 26 / 49

Page 27: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

CD kernel perturbation estimate

Under the preceding assumptions, and in particular z1, ..., z` ∈ Ω withdistinct g(z1), ..., g(z`), we have uniformly on compact subsets of Ω

limn→∞

Kµ+σn (z , z)

Kµn (z , z)

=∣∣∣∏j=1

g(z)− g(zj)

1− g(z)g(zj)

∣∣∣2, (12)

and, at a point mass z = zm,

Kµ+σn (zm, zm) =

1

tm

(1 +O

(1

Kµn (zm, zm)

))n→∞

. (13)

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 27 / 49

Page 28: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Bergman space asymptotics

Let µ area measure on a domain with piece-wise boundary, and

ν = µ+ σ, σ =∑j=1

tjδzj , tj > 0, z1, ..., z` ∈ C \ (µ) distinct.

Then the Hausdorff distance between (ν) and the level setSn := z ∈ C : K ν

n (z , z) ≤ γn with γn as in Theorem ??(b) tends to zeroas n→∞.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 28 / 49

Page 29: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Bergman space asymtoticsLet µ be area measure on G , and suppose that Γ is a Jordan curve whichis either piecewise analytic without cusps, or otherwise possesses an arclength parametrization with a derivative being 1/2-Holder continuous.

(a) For all n ≥ 0 and z ∈ G :

Kµn (z , z) ≤ 1

π(z , Γ)2.

(b) With r(n) :=√

1 + 1n+1 the estimates

1

emax

z∈Gr(n)

Kµn (z , z) ≤ max

z∈supp(µ)Kµn (z , z) ≤ max

z∈Gr(n)

Kµn (z , z)

≤ γn :=c1

(Γ, ∂Gr(n))2.

hold for all n ≥ 0.Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 29 / 49

Page 30: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

(c) We have

Kµn (z , z) =

n + 1

π

|Φ′(z)|2

|Φ(z)|2 − 1|Φ(z)|2n+2(1 +O(

1

n)n→∞)

uniformly on compact subsets of C \ supp(µ).

(d) The asymptotics

pµn (z)

pµn+1(z)=

1

Φ(z)(1 +O((1/n)n→∞)

is valid uniformly on compact subsets of C \ supp(µ).

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 30 / 49

Page 31: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Discretization of Bergman space scenarioConsider the discrete measures

ν = µ+ σ, µ =N∑

j=`+1

tjδzj , tj > 0, z`+1, ..., zN ∈ (µ) distinct,

where we assume that µ is sufficiently close to µ such that‖Mn(µ, µ)− I‖ ≤ 1/2. Then there exist c > 0 and q ∈ (0, 1) dependingonly on µ, σ but not on ν such that, for the outliers,

j = 1, 2, ..., ` : 1− tjKνn (zj , zj) ≤ cqn,

whereas for the other mass points of ν

j = `+ 1, ...,N : tjKνn (zj , zj) ≤

3

2mintjγn,

tjπ(zj , Γ)2

,

where γn depends only on n and the geometry of the Green function levellines.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 31 / 49

Page 32: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Conclusion for a regular cloud measure

µ with finitely many external point masses σ =∑

j tjδzj yields asymptotics

Kµ+σn (zj , zj) =

1

tj[1 +O(

1

Kµ(zj , zj))], n→∞.

The leverage score1− tjK

µ+σn (zj , zj)

becomes small.

With effective bounds in the case of Bergman space.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 32 / 49

Page 33: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Figure: A cloud of N = 576 points, with 7 random outliers, the others obtainedby discretizing normalized Lebesgue measure on the unit square by a regular grid.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 33 / 49

Page 34: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Figure: A cloud of N = 600 points, with ` = 7 random outliers. The other pointsare random samplings of the unit disk.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 34 / 49

Page 35: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 35 / 49

Page 36: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Figure: A first cloud of N = 600 points, with ` = 7 random outliers, and a secondone with N = 900 and 15 outliers. The other points are random samplings.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 36 / 49

Page 37: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Real or complex setting?

Figure: Comparison of level lines of Green functions for the unit square and threedifferent families of orthogonal polynomials: for the left-hand image we utilizedthe plurisubharmonic Green function of [−1, 1]2 ⊂ R2, which corresponds tobivariate OP with graded lexicograpghical ordering (i.e., total degree); the middleimage is generated by using the tensor Green function corresponding to bivariateOP and partial degree is used; and for the right-most image, the complex Greenfunction corresponding to Bergman OP of one complex variable is used.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 37 / 49

Page 38: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

III. Shape reconstruction in 2Djoint work with Gustafsson, Saff and Stylianopoulos

CD kernel at work with methods of one complex variable

G = ∪Gj an archipelago, i.e. a finite union of simply connected domains,with real analytic boundary Γ = ∂G and µ = χGdArea.

”Observables” are finitely many moments

amn =

∫zmzn dµ(z)

such as derived from geometric tomography.They determine the complex orthogonal polynomials Pn(z), 0 ≤ n ≤ N,and the CD-kernel

Kn(z ,w) =n−1∑j=0

Pj(z)Pj(w).

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 38 / 49

Page 39: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Christoffel function as defining function of the archipelago

Normalized Christoffel function

γn(z) = [Kn(z , z)]−1/2

satisfies:

√πdist(z , Γ) ≤ γn(z) ≤ Cdist(z , Γ)

for z ∈ G , close to Γ. Moreover:

γn(z) = O(1

n), z ∈ Γ.

Outside G this function decreases exponentially to zero. On analyticboundaries one has sharp estimates.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 39 / 49

Page 40: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Reconstruction experiments

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 40 / 49

Page 41: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 41 / 49

Page 42: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

y

0,5

1

0

-1

x

-0,5

20 4 6

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 42 / 49

Page 43: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

2,5

2

1,5

1

0,5

0

-0,5

-1

3210-1

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 43 / 49

Page 44: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

3

2,5

2

0,5

0210-1

1,5

1

-0,5

-1

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 44 / 49

Page 45: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

Supports on real algebraic varietiesand identifying the density of a measure with singular supportCD kernel at work in the context of only real variablesjoint work with Lasserre and Pauwels

Detecting a circle:

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 45 / 49

Page 46: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

2D torus

4

8

12

16degree

Figure: Dragon fly orientation with respect to the sun, on the torus. The curvesrepresent the empirical Christoffel function for different values of the degree.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 46 / 49

Page 47: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

2D sphere

0 1 2 3 4 5 6

−1.

5−

1.0

−0.

50.

00.

51.

01.

5

long

lat

0.008

0.01 0.01

0.01

0.01

0.01

0.012

0.012

0.012 0.012

0.014

0.014

0.016

0.016

0.016

0.018

0.018

0.018

0.02

0.02

0.022 0.024

Figure: Each point represent the observation of a double star in the sky. They liveon the sphere and are associated to their longitude and latitude. The level setsare those of the empirical Christoffel functions evaluated on the sphere in R3.The degree is 8. The band which is highlighted by the level sets corresponds tothe Milky Way.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 47 / 49

Page 48: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

2D torus lying on 3D sphere

−3 −2 −1 0 1 2 3

−3

−2

−1

01

23

phi

psi

0.001

0.001

0.0019 0.0019

0.0033

0.0033

0.0033

0.0033

0.0051

0.0

051

0.0051

0.0051

0.0075

0.0075

0.0075

0.0075 0.011

0.011

0.011

0.011

0.011

0.019

0.019

0.019

0.019

0.019

0.019

0.038

0.038

0.038

0.038

0.038

0.038

0.079

0.079

0.079

0.079

0.079

0.079

0.079

0.079

Figure: Each point two dihedral angles for a Glycine amino acid. These angles areused to describe the global three dimensional shape of a protein. They live on thebitorus. The level sets are those of the empirical Christoffel functions evaluatedon the sphere in R4. The degree is 4.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 48 / 49

Page 49: Perturbations of multivariate Christo el-Darboux kernelshelper.ipam.ucla.edu/publications/otm2019/otm2019_15338.pdf · 2019. 2. 14. · = v d(z)V 1 0 0 C( ) 1 Vv d(z) = 1 + ( z; )2:

ReferencesB. Beckermann, M. Putinar, E. Saff, and N. Stylianopoulos, Perturbations ofChristoffel-Darboux kernels. I: detection of outliers, arXiv:1812.06560.

B. Gustafsson, M. Putinar, E. Saff, and N. Stylianopoulos, Bergman polynomials on anarchipelago: Estimates, zeros and shape reconstruction, Advances in Math. 222(2009),1405–1460.

M. Korda and M. Putinar and I. Mezic, Data-driven spectral analysis of the Koopmanoperator, Appl. Comp. Harmonic Analysis, to appear.

J.B. Lasserre, E. Pauwels, M. Putinar, Data analysis from empirical moments and theChristoffel function, arXiv:1810.08480

P. Nevai, Geza Freud, Orthogonal polynomials and Christoffel functions. A case study,J. Approx. Theory 48 (1986), pp. 3-167.

B. Simon, The Christoffel-Darboux kernel, Perspectives in PDE, Harmonic Analysis andApplications, a volume in honor of VG Maz’ya’s 70th birthday, Proceedings of Symposiain Pure Mathematics 79(2008), 295-335.

V. Totik, Asymptotics for Christoffeel functions for general measures on the real line,

Journal d’Analyse Mathematique 81(2000), 283-303.

Mihai Putinar (UCSB and NU) Perturbations of multivariate Christoffel-Darboux kernels February 13, 2018 49 / 49