Perturbation theory - Quantum mechanics 2 - Lecture 2fizika.unios.hr/.../qm2/Lecture_2_Perturbation_theory.pdf · Contents Time-independent nondegenerate perturbation theory Time-independent

Embed Size (px)

Citation preview

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Perturbation theoryQuantum mechanics 2 - Lecture 2

    Igor Lukacevic

    UJJS, Dept. of Physics, Osijek

    17. listopada 2012.

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Do you remember this?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Do you remember this?

    H00n = E0n

    0n

    0n|0m = nm complete set

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now, let us kick the potential bottom a little...

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now, let us kick the potential bottom a little...

    What wed like to solve now is...

    Hn = Enn

    A question

    Does anyone have an idea how?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Name Description Hamiltonian

    L-S coupling Coupling between orbital and H = H0 + f (r)~L ~Sspin angular momentum in a H = f (r)~L ~Sone-electron atom H0 = p2/2m Ze2/r

    Stark effect One-electron atom in a constant H = H0 + eE0zuniform electric field ~E = ~ezE0 H = eE0z

    H0 = p2/2m Ze2/rZeeman effect One-electron atom in a constant H = H0 + (e/2mc)~J ~B

    uniform magnetic field ~B H = (e/2mc)~J ~BH0 = p2/2m Ze2/r

    Anharmonic Spring with nonlinear restoring H = H0 + K x4

    oscilator force H = K x4

    H0 = p2/2m + 1/2Kx2

    Nearly free Electron in a periodic lattice H = H0 + V (x)electron V (x) =

    n Vnexp[i(2nx/a)]

    model H0 = p2/2m

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Assume

    ] H is small compared to H0

    ] eigenstates and eigenvalues of H do not differ much from those of H0

    ] eigenstates and eigenvalues of H0 are known

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Assume

    ] H is small compared to H0

    ] eigenstates and eigenvalues of H do not differ much from those of H0

    ] eigenstates and eigenvalues of H0 are known

    expand

    n = 0n +

    1n +

    22n + . . . ,

    En = E0n + E

    1n +

    2E 2n + . . .

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Assume

    ] H is small compared to H0

    ] eigenstates and eigenvalues of H do not differ much from those of H0

    ] eigenstates and eigenvalues of H0 are known

    expand

    n = 0n +

    1n +

    22n + . . . ,

    En = E0n + E

    1n +

    2E 2n + . . .

    and sort

    (0) . . . H00n = E0n

    0n ,

    (1) . . . H01n + H0n = E

    0n

    1n + E

    1n

    0n ,

    (2) . . . H02n + H1n = E

    0n

    2n + E

    1n

    1n + E

    2n

    0n ,

    ...

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Making 0n|/

    (1) and using the normalization property of 0n, we get

    First-order correction to the energy

    E 1n = 0n|H |0n

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the energy

    E 1n = 0n|H |0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the energy

    E 1n = 0n|H |0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin(n

    ax)

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the energy

    E 1n = 0n|H |0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin(n

    ax)

    Perturbation Hamiltonian: H = V0

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the energy

    E 1n = 0n|H |0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin(n

    ax)

    Perturbation Hamiltonian: H = V0

    First-order correction:E 1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E 0n + V0

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin(n

    ax)

    Perturbation Hamiltonian: H = V0

    First-order correction:E 1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E 0n + V0Compare this result with an exact solution for a constant perturbation all thehigher corrections vanish

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin(n

    ax)

    Perturbation Hamiltonian: H = V0

    First-order correction:E 1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E 0n + V0Compare this result with an exact solution for a constant perturbation all thehigher corrections vanish

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-wayacross the well

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-wayacross the well

    E 1n =2V0a

    a/20

    sin2(n

    ax)dx =

    V02

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-wayacross the well

    E 1n =2V0a

    a/20

    sin2(n

    ax)dx =

    V02

    HW. Compare this result with an exact one.

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now we seek the first-order correction to the wave function.(1) and 1n =

    m 6=n

    cmn0m give

    First-order correction to the wavefunction

    1n =m 6=n

    0m|H |0n(E 0n E 0m)

    0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the wavefunction

    1n =m 6=n

    0m|H |0n(E 0n E 0m)

    0m

    For calculationdetails, see Refs[2], [3] and [4].

    In conclusion

    First-order perturbation theory gives:

    often accurate energies

    poor wave functions

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    e

    x2

    2 Hn(x)

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    e

    x2

    2 Hn(x)

    E 1n = 0n|ax3|0n = 0

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    e

    x2

    2 Hn(x)

    E 1n = 0n|ax3|0n = 0For 1n we need expressions 0m|H |0n

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    e

    x2

    2 Hn(x)

    E 1n = 0n|ax3|0n = 0For 1n we need expressions 0m|H |0n

    for m = n 2k , k Z these are zero

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = ~2

    2m

    d2

    dx+

    1

    2kx2 + ax3

    H0 eigenenergies: E 0n =

    (n +

    1

    2

    )~

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    e

    x2

    2 Hn(x)

    E 1n = 0n|ax3|0n = 0For 1n we need expressions 0m|H |0n

    for m = n 2k , k Z these are zero

    so, well, for example, take only these:m = n + 3, n + 1, n 1, n 3

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    n|ax3|n + 3 = a

    (n + 1)(n + 2)(n + 3)

    (2)3

    n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3|n 1 = 3a

    n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)

    (2)3

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    n|ax3|n + 3 = a

    (n + 1)(n + 2)(n + 3)

    (2)3

    n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3|n 1 = 3a

    n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)

    (2)3

    Energy differences

    m En Emn+3 3~n+1 ~n-1 ~n-3 3~

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Example 2

    Compute the first-order corrections for a harmonic oscilatorwith applied small perturbation W = ax3.

    n|ax3|n + 3 = a

    (n + 1)(n + 2)(n + 3)

    (2)3

    n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3|n 1 = 3a

    n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)

    (2)3

    Energy differences

    m En Emn+3 3~n+1 ~n-1 ~n-3 3~

    1n =a

    2~

    [1

    3

    n(n 1)(n 2)

    20n3 + 3n

    n

    20n1

    3(n + 1)

    n + 1

    20n+1

    1

    3

    (n + 1)(n + 2)(n + 3)

    20n+3

    ]

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Making 0n|/

    (2), using the normalization property of 0n and orthogonality

    between 0n and 1n, we get

    Second-order correction to theenergy

    E 2n =m 6=n

    |0m|H |0n|2

    E 0n E 0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now we seek the second-order correction to the wave function.(2) and 1n =

    m 6=n

    cmn0m give

    Second-order correction to the wave function

    2n =m 6=n

    [

    0n|H |0n0m|H |0n

    (E 0n E 0m)2

    +k 6=n

    0m|H |0k0k |H |0n(E 0n E 0m)(E 0n E 0k )

    ]0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Symmetry Degeneracy Perturbation

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Symmetry Degeneracy Perturbation

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    A question

    Whats wrong with

    E 2n =m 6=n

    |0m|H |0n|2

    E 0n E 0m, m, n q

    if unperturbed eigenstates are degenerate E 01 = E02 = = E 0q ?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Matrix H in basis B

    H =

    H 11 H1,q+1 . . .

    . . . 0H q/2,q/2

    0 . . .H qq

    H q+1,1...

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    For n = 1,

    qm=1

    (H pm E npm)anm = 0 appear as

    H 11 E 1 H 12 H 13 . . . H 1q

    H 21 H22 E 1 H 23 . . . H 2q

    ......

    ......

    ...H q1

    a11a12...

    a1q

    = 0

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    The q roots of secular equation detH E nI = 0 are the diagonal elements of

    the submatrix of H .

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    H = H0 + H

    H00n = E

    0n

    0n

    E 01 q-fold degenerate

    m1-

    Construct

    n =

    qi=1

    anm0m

    which diagonalizes submatrixof H :n|H |k = E nk

    m2

    Nondegenerateperturbation theorywith basis B

    q(H E )a = 0

    m3- det

    H E nI = 0m8 m6 m5 m46

    ? XXXXX

    XXXXXX

    Xy

    ?

    {n}Gives new basis B

    m7 {ani} E 1,E 2, . . . ,E q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    n = n +1n +

    22n + . . . n qn =

    0n +

    1n +

    22n + . . . n > qEn = E

    0n +E

    1n +

    2E 2n + . . . n q (E 01 = = E 0q )

    En = E0n + E

    1n +

    2E 2n + . . . n > qE n = n|H |n n qE 1n = 0n|H |0n n > q

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    n = n +1n +

    22n + . . . n qn =

    0n +

    1n +

    22n + . . . n > qEn = E

    0n +E

    1n +

    2E 2n + . . . n q (E 01 = = E 0q )

    En = E0n + E

    1n +

    2E 2n + . . . n > qE n = n|H |n n qE 1n = 0n|H |0n n > q

    So, what do we get from degenerate perturbation theory:

    1st-order energy corrections

    corrected w.f. (with nondegenerate states they serve as a basis forhigher-order calculations)

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Two-dimensional harmonic oscilator Hamiltonian:

    H0 =p2x + p

    2y

    2m+

    K

    2(x2 + y 2)

    np = n(x)p(y) |np

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Two-dimensional harmonicoscilator Hamiltonian:

    H0 =p2x + p

    2y

    2m+

    K

    2(x2 + y 2)

    np = n(x)p(y) |np

    Enp = ~(n + p + 1) is(n + p + 1)-fold degenerate.Whats the degeneracy of |01state?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Two-dimensional harmonicoscilator Hamiltonian:

    H0 =p2x + p

    2y

    2m+

    K

    2(x2 + y 2)

    np = n(x)p(y) |np

    Enp = ~(n + p + 1) is(n + p + 1)-fold degenerate.Whats the degeneracy of |01state?E10 = E01 = 2~0.

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Now, turn on the perturbation: H = K xy

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Now, turn on the perturbation: H = K xy

    find w.f. which diagonalize H

    1 = a10 + b01

    2 = a10 + b

    01

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Now, turn on the perturbation: H = K xy

    find w.f. which diagonalize H

    1 = a10 + b01

    2 = a10 + b

    01

    calculate the elements of submatrix of H in the basis {10, 01}

    H = K (10|xy |10 10|xy |0101|xy |10 01|xy |01

    )= E

    (0 11 0

    )

    E = K

    22, 2 =

    m0~

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    Now, turn on the perturbation: H = K xy

    find w.f. which diagonalize H

    1 = a10 + b01

    2 = a10 + b

    01

    calculate the elements of submatrix of H in the basis {10, 01}

    H = K (10|xy |10 10|xy |0101|xy |10 01|xy |01

    )= E

    (0 11 0

    )

    E = K

    22, 2 =

    m0~

    solve the secular equation

    E EE E = 0 E = E E10

    E+ = E10 + E

    E = E10 E

    @@@

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    obtain the new w.f. from(E EE E

    )(ab

    )= 0

    =E = +E 1 = 12 (10 + 01)E = E 2 = 12 (10 01)

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    obtain the new w.f. from(E EE E

    )(ab

    )= 0

    =E = +E 1 = 12 (10 + 01)E = E 2 = 12 (10 01)

    HW

    How does the threefold-degenerate energy

    E = 3~0

    of the two-dimensional harmonic oscilator separate due to the perturbation

    H = K xy ?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Problem

    If the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Problem

    If the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Let us assume:

    H(~r , t) = H0(~r) + H(~r , t)

    n(~r , t) = n(~r)eit

    H0n = E0nn

    (~r , t) =n

    cn(t)n(~r , t) , t > 0

    i~t

    = (H0 + H)

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Problem

    If the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Let us assume:

    H(~r , t) = H0(~r) + H(~r , t)

    n(~r , t) = n(~r)eit

    H0n = E0nn

    (~r , t) =n

    cn(t)n(~r , t) , t > 0

    i~t

    = (H0 + H)

    Can you remember the meaning of these coefficients?

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Inserting (~r , t) and cn(t) = c0n + c

    1n (t) +

    2c2n (t) + . . . into time-dependentS.E. and factorizing the perturbation Hamiltonian as H (~r , t) = H(~r)f (t) gives

    Probability that the system has undergone a transition from state l to statek at time t

    Plk = Plk = |cn|2 =Hkl~

    2 t

    e ikl tf (t)dt

    2

    For calculation details, see Refs [2] and [3].

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

  • ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Literature

    1 I. Supek, Teorijska fizika i struktura materije, II. dio, Skolska knjiga,Zagreb, 1989.

    2 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., PearsonEducation, Inc., Upper Saddle River, NJ, 2005.

    3 R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, SanFrancisco, 2003.

    4 A. Szabo, N. Ostlund, Modern Quantum Chemistry, Introduction toAdvanced Electronic Structure theory, Dover Publications, New York,1996.

    5 Y. Peleg, R. Pnini, E. Zaarur, Shaums Outline of Theory and Problems ofQuantum Mechanics, McGraw-Hill, 1998.

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    Time-dependent perturbation theoryLiterature