1
Performance and applications of a -TPC K. Miuchi a† , H. Kubo a , T. Nagayoshi a , Y. Okada a , R. Orito a , A. Takada a , A. Takeda a , T. Tanimori a , M. Ueno a , O. Bouianov b , M. Bouianov c a: Kyoto University b: Massachusetts Institute of Technology c:CSC-Scientific Computing Ltd. † Contact Address: Kentaro Miuchi [email protected] Cosmic-Ray Group, Department of Phy sics, Graduate School of Science, Kyoto U niversity, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan 1.Introduction 2.-PIC 4. -TPC (gas-filled operation) 5. Applications 6.Conclusions References [1] T.Nagayoshi, et al., Nucl. Instr. Meth. A 5 13(2003)277 [2] H.Kubo, et al. Nucl. Instr. Meth. A 513(20 03)94 [3] K.Miuchi, et al., IEEE Trans. Nucl. Sci., 50 (2003)825 [4] R.Orito, et al., Instr. Meth. A 513(2003)40 8, [5] T. Tanimori, et al., New Astronomy Rev. 48 -TPC : an “electric cloud chamber” REQUIREMENTS - Tracking minimum ionizing particles (MIPs) - Fine (sub-millimeter) samplings - Low ion-feedback MeV gamma-ray camera [4,5] - -TPC (recoil electron) + Scintillator (scattered gamma) - “electron track” gives event-by-event ray-tracing Time-resolved neutron imaging[6] - n + 3 He → 3 H + p -TPC : an “electric cloud chamber” DEVELOPMENT - 10×10×10 cm 3 detection volume - Fine tracking of proton, electron were shown. - First MIP tracks were detected. - Now we are entering the phase for “Applications” Development [2,3] - -PIC+ 8cm drift length - Digital-based electronics PIC[1] “2-D imaging detector” - m pitch, 120 m 2-D spatial resolution - Maximum gain 16000, operation gain 6000 (>1000hours) - PCB technology for large area (10×10 cm 2 in operation, 30×30cm 2 in development ) Ion feedback - Less than 30% for 10 4 cps/mm 2 X-ray (max 20keV) Improvements - DAQ Clock rate 20MHz to 50MHz sampling ×2 - Amplifier time constant 16ns to 80ns S/N ×2 20mV 10mV Dark matter experiment[7] - TPC is thought to be a very reliable method. - Low pressure operation: to be examined MIP tracking - Ar-C 2 H 6 (80:20), 2atm - First “MIP tracks” were detected 3. -TPC (gas-flow operation) hatched: Dark matter painted neutron BG Operation gain : >10000 MIP’s energy deposition: ~4 ion-e pairs/400m (in Ar gas, 1atm) Schematics of -PIC 10m -PIC on the board X-ray image by -PIC 10 10 × × 10cm 10cm 2 Edge projectio n 2cm Feedback measurement Feedback fraction Feedback fraction = I D / I A 30×30 cm 2 -PIC in development MIP tracks MeV gamma-ray images -TPC system Data acquisitio n Amplifier modification Clock rate up Electron tracks Conceptual design Prototy pe Neutron (Simulation) Expected dark matter “wind” Neutron signals Gas vessel 128ch cable System - Gas vessel: 60cm, diameter 20cm height - 128ch feed-through cable (5cm width, 0.3mm thickness) - 10cm drift length (1mm copper wires) Feed- through Anger camera only “event circle” by conventional Compton cameras DM WIND γ γ F F AMP 50 MHz 20 MHz 16ns amplifier 80ns amplifier PEM TPC TPC AMP PEM Whole system ~500 keV electro ns Ar-C 2 H 6 (90:10) gain ~6000 ~1MeV protons Ar-C 2 H 6 (90:10) gain ~3000 Cosmic-ray muons Ar-C 2 H 6 (80:20) 2atm gain >10000 Thermal neutrons Ar-CF 4 - 3 He(78:2 0:2) 1.1 atm gain ~3000

Performance and applications of a -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno

Embed Size (px)

Citation preview

Page 1: Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno

Performance and applications of a -TPCK. Miuchia†, H. Kuboa, T. Nagayoshia, Y. Okadaa, R. Oritoa,

A. Takadaa, A. Takedaa, T. Tanimoria, M. Uenoa, O. Bouianovb, M. Bouianovc

a: Kyoto University b: Massachusetts Institute of Technology c:CSC-Scientific Computing Ltd.

† Contact Address: Kentaro Miuchi [email protected] Cosmic-Ray Group, Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan TEL +81(0)75-753-3867 / FAX +81(0)75-753-3799

1.Introduction 2.-PIC

4. -TPC (gas-filled operation)

5. Applications

6.Conclusions

References [1] T.Nagayoshi, et al., Nucl. Instr. Meth. A 513(2003)277[2] H.Kubo, et al. Nucl. Instr. Meth. A 513(2003)94[3] K.Miuchi, et al., IEEE Trans. Nucl. Sci., 50(2003)825[4] R.Orito, et al., Instr. Meth. A 513(2003)408,[5] T. Tanimori, et al., New Astronomy Rev. 48 (2004) 263[6] K.Miuchi, et al., Nucl. Instr. Meth. A 517(2004)219[7] T.Tanimori, et al., Phys. Lett. B 578 (2004) 241

-TPC : an “electric cloud chamber”REQUIREMENTS - Tracking minimum ionizing particles (MIPs) - Fine (sub-millimeter) samplings - Low ion-feedback

MeV gamma-ray camera [4,5] - -TPC (recoil electron) + Scintillator (scattered gamma)

- “electron track” gives event-by-event ray-tracing

Time-resolved neutron imaging[6] - n + 3He → 3H + p

-TPC : an “electric cloud chamber”DEVELOPMENT - 10×10×10 cm3 detection volume - Fine tracking of proton, electron were shown. - First MIP tracks were detected. - Now we are entering the phase for “Applications”

Development [2,3] - -PIC+ 8cm drift length

- Digital-based electronics

PIC[1] “2-D imaging detector” - m pitch, 120 m 2-D spatial resolution

- Maximum gain 16000, operation gain 6000 (>1000hours) - PCB technology for large area

(10×10 cm2 in operation, 30×30cm2 in development )

Ion feedback - Less than 30% for 104cps/mm2 X-ray (max 20keV)

Improvements - DAQ Clock rate 20MHz to 50MHz sampling ×2 - Amplifier time constant 16ns to 80ns S/N ×2

20mV

10mV

Dark matter experiment[7] - TPC is thought to be a very reliable method. - Low pressure operation: to be examined

MIP tracking - Ar-C2H6 (80:20), 2atm - First “MIP tracks” were detected

3. -TPC (gas-flow operation)

hatched: Dark matterpainted: neutron BG

Operation gain : >10000

MIP’s energy deposition: ~4 ion-e pairs/400m

(in Ar gas, 1atm)

Schematics of -PIC

10m

-PIC on the board X-ray image by -PIC

1010××10cm10cm22

Edge projection

2cm

Feedback measurement Feedback fraction

Fee

dbac

k fr

actio

n =

ID

/ I A

30×30 cm2 -PIC in development

MIP tracksMeV gamma-ray images

-TPC system

Data acquisition

Amplifier modification Clock rate up Electron tracks

Conceptual design Prototype

Neutron (Simulation) Expected dark matter “wind”

Neutron signals

Gas vessel

128ch cable

System - Gas vessel: 60cm, diameter 20cm height

- 128ch feed-through cable     (5cm width, 0.3mm thickness) - 10cm drift length (1mm copper wires)

Feed-through

Anger camera

only “event circle” by conventional Compton cameras

DM WIND γ γ

FF

AMP

50 MHz

20 MHz

16ns amplifier

80ns amplifier

PEM

TPC

TPC

AMP

PEM

Whole system

~500 keV electronsAr-C2H6 (90:10) gain ~6000

~1MeV protonsAr-C2H6 (90:10) gain ~3000

Cosmic-ray muonsAr-C2H6 (80:20) 2atmgain >10000

Thermal neutronsAr-CF4 -3He(78:20:2)

1.1 atmgain ~3000