37
PERFORMANCE ANALYSIS OF ALUMINIUM OXIDE/POLYALKYLENE GLYCOL NANOLUBRICANT IN AUTOMOTIVE AIR CONDITIONING SYSTEM MOHAMAD REDHWAN BIN ABD AZIZ Doctor of Philosophy UNIVERSITI MALAYSIA PAHANG

PERFORMANCE ANALYSIS OF ALUMINIUM …

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

PERFORMANCE ANALYSIS OF

ALUMINIUM OXIDE/POLYALKYLENE

GLYCOL NANOLUBRICANT IN

AUTOMOTIVE AIR CONDITIONING SYSTEM

MOHAMAD REDHWAN BIN ABD AZIZ

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Doctor of Philosophy.

_______________________________

(Supervisor’s Signature)

Full Name : DR. WAN AZMI BIN WAN HAMZAH

Position : ASSOCIATE PROFESSOR

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

_______________________________

(Student’s Signature)

Full Name : MOHAMAD REDHWAN BIN ABD AZIZ

ID Number : PMM 15007

Date :

PERFORMANCE ANALYSIS OF ALUMINIMUM OXIDE/POLYALKYLENE

GLYCOL NANOLUBRICANT IN AUTOMOTIVE AIR CONDITIONING

SYSTEM

MOHAMAD REDHWAN BIN ABD AZIZ

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2018

ii

ACKNOWLEDGEMENTS

In the name of ALLAH swt, the Most Merciful and Most Beneficial. First and foremost,

many praises to ALLAH and whole-hearted gratefulness to the Great Creator as I

completed my PHD work.

My deepest gratitude goes to my supervisor Associate Professor Dr. Wan Azmi bin Wan

Hamzah. I am grateful to have such an outstanding, supportive and understanding

supervisor who guided and motivated me throughout this PHD journey.

I would also like to express my appreciation to my fellow researchers namely Sharif

Mohd Zaki, Nurul Nadia Mohd Zawawi, Khamisah Abdul Hamid, Muhammad Nabil

Fikri bin Mohamad and all undergraduate students for their help in this research work.

Not to forget my thankfulness to Prof Dr. Rizalman bin Mamat, Mr Yusof Taib, Mr.

Nizam Abdullah and all FKM and UMP staff for their support.

My thankfulness also goes to TATI University College as my employer for the financial

support under further study grant.

My sincere gratefulness goes to my beloved parents, family members and all people who

contributed to this work. I would like to acknowledge their suggestions and comments,

which are crucial for the successful completion of this work.

Finally, to my lovely wife, Wan Nabihah Adilah Wan Mohamad, your sacrifies is much

appreciated and cherished. Thank you my dear for enduring the life of these years.

iii

ABSTRAK

Penjimatan tenaga dan peningkatan kecekapan bahan api akan mengurangkan

kebergantungan kepada bahan api fosil. Salah satu pendekatan untuk mempertingkatkan

kecekapan bahan api dan seterusnya penjimatan tenaga adalah dengan meningkatkan

prestasi sistem pendingin hawa otomotif (AAC). Sistem AAC adalah satu beban

tambahan terbesar pada kenderaan; melalui peningkatan beban tambahan oleh sistem

AAC akan menurunkan kecekapan, meningkatkan penggunaan bahan api dan

meningkatkan pengeluaran gas rumah hijau. Persekitaran dunia yang semakin panas dan

kesan El-Nino akan meningkatkan penggunaan AAC. Salah satu pendekatan terbaru yang

dapat meningkatkan kecekapan AAC adalah melalui penggunaan partikel bersaiz nano

ke dalam sistem penyejukan. Objektif kajian ini adalah untuk menilai dan

mengoptimumkan prestasi sistem AAC dengan menggunakan nano pelincir Aluminium

Oksida/Polialkalina Glikol (Al2O3/PAG). Ini boleh dicapai dengan menstabilkan dan

mencirikan nano pelincir Al2O3/PAG, menyiasat prestasi serta penggunaan tenaga relatif

dan; akhirnya mengoptimumkan parameter operasi sistem AAC. Nano pelincir

Al2O3/PAG disediakan melalui kaedah dua-langkah dan kestabilan partikel nano dinilai

menggunakan beberapa kaedah analisis. Seterusnya, sifat-sifat terma fizikal nano pelincir

Al2O3/PAG disiasat untuk kepekatan sehingga 1.0% dan suhu kerja bermula daripada 30

hingga 80 °C. Sifat-sifat tribologikal nano pelincir Al2O3/PAG sehingga 0.3% kepekatan

juga dinilai. Prestasi dan penjimatan tenaga AAC dinilai dengan kelajuan pemampat

dalam julat 900–2100 rpm, caj awal bahan pendingin antara 90 ke 170 g dan dengan

kepekatan bermula 0.006 hingga 0.014% nano pelincir Al2O3/PAG. Prestasi AAC dinilai

dengan menentukan keupayaan penyejukan, kerja pemampat, dan pekali prestasi (COP).

Sementara itu, penjimatan tenaga adalah diukur dari penggunaan kuasa. Pengoptimuman

parameter AAC adalah dilakukan dengan bantuan perisian statistik melalui analisis

ANOVA bagi menentukan kepentingan dan mengaitkan hubungan antara faktor-faktor

yang dikaji. Pendekatan “desirability” telah digunakan dalam menentukan keadaan

optimum faktor-faktor dan tindakbalas. Kekonduksian terma dan kelikatan adalah

meningkat dengan peningkatan kepekatan tetapi menurun dengan suhu. Penilaian

tribologi mendapati bahawa pelincir nano Al2O3/PAG dengan kepekatan 0.010%

mencapai keadaan optimum melalui pekali geseran (COF) dan kadar haus terendah.

Daripada sifat terma fizikal dan tribologikal, penilaian prestasi AAC dan penjimatan

tenaga dilakukan sehingga kepada kepekatan 0.014% sahaja. Keputusan akhir

menunjukkan bahawa peningkatan COP tertinggi adalah 31.46% dengan nilai purata

17.42% dicapai. Manakala penjimatan tenaga tertinggi adalah 23.89% dengan nilai purata

11.38%. Nilai COP dan penjimatan tenaga adalah tertinggi apabila kepekatan 0.010%

digunakan. Pengoptimuman parameter seperti pemampat kelajuan (1167 rpm), caj

permulaan (170 g) dan kepekatan (0.011%) telah menghasilkan tindakbalas yang

optimum dengan kapasiti penyejukan (1.303 kW), kerja pemampat (14.70 kJ/kg) dan

suhu keluar injap pengembangan (4.06 °C) dan penjimatan tenaga (7.12%) dengan nilai

“desirability” tertinggi sebanyak 0.819. Oleh itu, dapat disimpulkan bahawa nano pelincir

Al2O3/PAG berkepekatan 0.011% adalah yang paling optimum dan ianya disyorkan

untuk digunakan kepada sistem AAC untuk prestasi terbaik. Sistem operasi AAC juga

berjalan seperti biasa tanpa ada sebarang masalah semasa kerja-kerja eksperimen

dijalankan. Walau bagaimanapun, ujian ketahanan penuh sistem AAC adalah disyorkan

untuk kajian seterusnya di mana ianya tidak termasuk dalam skop kajian ini. Generasi

baru sistem AAC-teknologi pelincir nano dengan komponen yang lebih kecil dan

kecekapan yang lebih tinggi dijangka dihasilkan dalam masa terdekat

iv

ABSTRACT

Energy saving and fuel efficiency enhancement approach will lessen the reliance on fossil

fuel. One of the superlative approaches to enhance the fuel efficiency and eventually

saving the energy is by improving the performance of the automotive air conditioning

(AAC) system. The AAC system is the biggest supplementary load on a vehicle; extra

load employed by the AAC system signifies a decrease in efficiency, increase in fuel

consumption and escalates the greenhouse gas discharges. The current hot world

weathers and El-Nino affects escalate the use of AAC considerably. One of the novel

approaches in increasing AAC’s efficiency is by introducing nanoparticles into the

refrigeration system. The aim of the present study is to evaluate and optimize the AAC

performance and power saving using Aluminium Oxide/Polyalkylene Glycol

(Al2O3/PAG) nanolubricants. This can be achieved by stabilizing and characterizing the

Al2O3/PAG nanolubricant, investigating the performance and relative power

consumption and; finally optimizing the operating parameters of the AAC system. The

Al2O3/PAG nanolubricant is prepared by using the two-step method and colloidal

stability is evaluated and established by several methods of analyses. Next, the

thermophysical properties of Al2O3/PAG nanolubricant up to 1.0% volume

concentrations and 30 to 80 °C working temperatures were investigated. Adding to that,

the tribological properties of Al2O3/PAG nanolubricant up to 0.3% volume

concentrations was also evaluated. The AAC performances and power saving were

evaluated in the range of 900 to 2100 rpm compressor speed, 90 to 170 g initial refrigerant

charge and 0.006 to 0.014% Al2O3/PAG nanolubricant volume concentrations. The

performance of AAC was evaluated by determining the cooling capacity, compressor

work, and coefficient of performance (COP). Meanwhile, power saving was evaluated by

determining the relative power consumption. The optimization of the AAC parameter

was done by the help of statistical tool software employing ANOVA analysis for

determining the significant factors and established the relation between the factors. The

desirability approach was used in determining the optimal conditions of factors and its

responses. The thermal conductivity and viscosity increased with the increase in volume

concentrations but decreased with temperature. The tribological properties evaluations

found that 0.010% Al2O3/PAG nanolubricant showed optimal conditions with lowest

coefficient of friction (COF) and wear rates were achieved. From the outcome of

thermophysical and tribological evaluation, the investigation of AAC performances and

power saving are evaluated for up to 0.014% volume concentrations only. The results

found that the maximum and average COP enhancements are 31.46 and 17.42%,

respectively while the highest and average of power saving attained are 23.89 and

11.38%, respectively. Both COP and power saving was highest when 0.010% volume

concentration is used. Consequently, the optimization of the parameter namely,

compressor speed, initial refrigerant charge and volume concentrations of 1167 rpm,

170 g and 0.011% respectively yield the optimum responses of cooling capacity,

compressor work, expansion valve discharge temperature and power saving of 1.303 kW,

14.70 kJ/kg, 4.06 °C and 7.12% respectively with the highest desirability value of 0.819.

Finally, it can be concluded that 0.011% volume concentration is the optimum volume

concentration. Hence, it is recommended to use 0.011% Al2O3/PAG nanolubricant on to

the AAC system for the best performance. Nevertheless, full-blown durability run of

AAC system is recommended for future work which is not included in the scope of the

present study. New generation of nanolubricant technology AAC system with smaller

components and higher efficiency is anticipated in the near future.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xvii

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 4

1.3 Significance of Study 6

1.4 Objectives 7

1.5 Scope of Study 7

1.6 Thesis Overview 8

CHAPTER 2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Sustainable Energy and Energy Saving 9

2.3 Energy Efficient AAC 11

vi

2.3.1 Alternative Refrigerants 12

2.3.2 Nanoparticle Dispersion in Lubricant 14

2.4 Nanofluid and nanoparticle dispersion 15

2.4.1 Preparation of Nanolubricants 18

2.4.2 Stability Techniques 19

2.4.3 Characterization and Properties Evaluation 22

2.4.4 Tribology Evaluation 25

2.5 Refrigerants and Nanolubricants 25

2.5.1 Classification of refrigerants 26

2.5.2 Classification of Nanolubricants 28

2.6 Studies related to R134a refrigerant-nanolubricant 29

2.6.1 Al2O3/R134a refrigerant-nanolubricant 29

2.6.2 Other Types of Nanoparticles/R134a refrigerant-nanolubricant 31

2.7 Evolution in AAC System 34

2.8 Principal Operation of AAC System 36

2.9 AAC Components 39

2.9.1 Compressor 39

2.9.2 Condenser 41

2.9.3 Evaporator 42

2.9.4 Expansion Device 43

2.9.5 Receiver Drier (RD) 44

2.10 Performance and Energy Saving of Refrigeration using Nanolubricants 45

2.11 Response Surface Method (RSM) 49

2.11.1 Central Composite Designs 50

2.11.2 Desirability Approach for Optimization 50

2.12 Summary 51

vii

CHAPTER 3 METHODOLOGY 53

3.1 Introduction 53

3.2 Research Process Flow Chart 53

3.3 Preparation of Nanolubricant 56

3.3.1 Nanoparticle and Base Lubricant Properties 56

3.3.2 Nanolubricant Preparation 57

3.4 Stability of Nanolubricant 59

3.4.1 UV-Vis Spectrophotometer 60

3.4.2 Sedimentation Photographing Method 61

3.4.3 Micrographs for FESEM and TEM 61

3.4.4 Zeta Potential 62

3.5 Thermophysical Properties Measurements 62

3.5.1 Base Fluid Properties 63

3.5.2 Thermal Conductivity Measurement 63

3.5.3 Dynamic Viscosity Measurement 64

3.6 Tribological Properties Measurements 65

3.6.1 Investigation of the AAC Compressor 66

3.6.2 Sample Plate Preparation 67

3.6.3 Investigations of COF and Specific Wear Rate 67

3.7 AAC Experimental Setup 69

3.7.1 Instrumentation and Sensors 71

3.7.2 Sensor Calibrations 73

3.8 AAC Experimental Procedures 74

3.9 Experimental Data Analysis 76

3.9.1 Cooling Capacity 77

3.9.2 Compressor Work 78

viii

3.9.3 Coefficient of Performance 78

3.9.4 Power Saving 79

3.10 Consistency Analysis 80

3.11 Optimization by using RSM 81

3.11.1 Designing the Experiment 82

3.11.2 Data analyzing 83

3.11.3 Response Optimization 84

3.12 Conclusions 85

CHAPTER 4 RESULTS AND DISCUSSION 88

4.1 Introduction 88

4.2 Stability Analysis 89

4.2.1 UV-Vis Spectrophotometer Investigation 90

4.2.2 Sedimentation Photographing Observation 93

4.2.3 Micrograph Evaluation 94

4.2.4 Zeta Potential Evaluation 96

4.3 Thermophysical Properties 97

4.3.1 Thermal Conductivity of Nanolubricant 98

4.3.2 Relative Viscosity of Nanolubricant 100

4.3.3 Regression Equations 103

4.4 Tribological Evaluation 106

4.4.1 Coefficient of Friction (COF) Evaluation 106

4.4.2 Specific Wear Rate Evaluation 109

4.4.3 Topographic and Element Evaluation 111

4.5 Summary of Nanolubricant Characterization 114

4.6 Performance of AAC using Pure PAG Lubricant 115

ix

4.7 Nanolubricant with Refrigerant Charge 121

4.7.1 Cooling Capacity Evaluation 122

4.7.2 Compressor Work Evaluation 123

4.7.3 COP Evaluation 124

4.8 Nanolubricant with Compressor Speed 126

4.8.1 Cooling Capacity Evaluation 126

4.8.2 Compressor Work Evaluation 127

4.8.3 COP Evaluation 128

4.9 AAC Performance with Nanolubricant 129

4.9.1 Effect on Cooling Capacity 129

4.9.2 Effect on Compressor Work 130

4.9.3 Effect on COP 131

4.9.4 Summary of AAC Performance 133

4.10 Power Saving with Nanolubricant 135

4.10.1 Power Saving with Refrigerant Charge 135

4.10.2 Power Saving with Compressor Speed 136

4.10.3 Relationship between Power Consumption and Pressure 137

4.10.4 Summary of Power Saving 141

4.11 RSM Analysis on AAC Parameter 142

4.11.1 ANOVA Analysis on Cooling Capacity 146

4.11.2 ANOVA Analysis on Compressor Work 149

4.11.3 ANOVA Analysis on Expansion Valve Discharge Temperature 152

4.11.4 ANOVA Analysis on Power Saving 153

4.12 Optimization Evaluation of AAC System 155

4.12.1 Desirability Analysis 156

4.12.2 Experimental Validation 157

x

4.13 Effects of Nanolubricant on AAC Components 158

4.13.1 Effects on Cooling Coil 158

4.13.2 Effects on Thermal Expansion Valve 160

4.13.3 Effects on Compressor 161

4.14 Nanolubricant Impacts on Cost and Environment 162

CHAPTER 5 CONCLUSIONS 164

5.1 Introduction 164

5.2 Conclusions 164

5.3 Recommendations for Future Research 166

REFERENCES 168

APPENDIX A1 Thermocouple Calibration Analysis 183

APPENDIX A2 Pressure Sensor Calibration Analysis 184

APPENDIX A3 Flow Rate Sensor & Calibration Analysis 185

APPENDIX B Steady State Condition for AAC Experimental Analysis 186

APPENDIX C Zeta Potential Result 187

APPENDIX D Energy Dispersive Element (EDX) Analysis 188

APPENDIX E List of Publication 191

APPENDIX F1 Gold Award for MTE 2017 Certificate 195

APPENDIX F2 Winner of PIN 2017 Certificate 196

APPENDIX F3 Awards 197

APPENDIX G Patent Pending (UI 2017702161) 198

xi

LIST OF TABLES

Table 2.1 Summary of alternative refrigerants 13

Table 2.2 Colloidal condition based on zeta potential value 22

Table 2.3 Comparison properties of lubricant used in refrigeration systems 28

Table 2.4 Development and evolution of AAC system 35

Table 2.5 Summary of the refrigeration performance achieved by

researches 48

Table 3.1 Properties of Al2O3 nanoparticles 57

Table 3.2 Properties of Polyalkylene glycol (PAG 46) lubricant 57

Table 3.3 Properties of AAC compressor cylinder wall 67

Table 3.4 Decription of AAC test rig components 73

Table 3.5 Experimental parameters for the AAC system 75

Table 3.6 The uncertainties values of experimental sensors and measuring

equipment 80

Table 3.7 The consistency values of the experimental data 81

Table 3.8 The AAC system design parameter 82

Table 3.9 The experimental design in coded form with AAC system

responses 83

Table 3.10 Target for optimization of AAC parameters and responses 84

Table 3.11 The matrix testing for stability evaluation 86

Table 3.12 The matrix testing for properties measurements, AAC

performance analysis and AAC parameter optimization 87

Table 4.1 Percentage enhancement of cooling capacity for Al2O3/PAG

nanolubricants 133

Table 4.2 Percentage reduction of compressor work for Al2O3/PAG

nanolubricants 133

Table 4.3 Percentage enhancement of coefficient of performance (COP)

for Al2O3/PAG nanolubricants 133

Table 4.4 Percentage of power saving for Al2O3/PAG nanolubricant 141

Table 4.5 The AAC system design parameter and its level for central

composite design 143

Table 4.6 The un-coded experimental design and result of experiment 143

Table 4.7 Model summary for AAC system response surface model 146

Table 4.8 ANOVA analysis for cooling capacity response surface

quadratic model 147

Table 4.9 ANOVA analysis for compressor work response surface

quadratic model 150

xii

Table 4.10 ANOVA analysis for expansion valve discharge temperature

response surface quadratic model 152

Table 4.11 ANOVA analysis for power saving response surface linear

model 154

Table 4.12 Target value and limit for optimization of AAC performance 156

Table 4.13 Optimum response target value and limit for optimization of

AAC performances 157

Table 4.14 The predicted result versus the validation result through

experiment 158

Table 4.15 Fuel consumption and CO2 emission per vehicle 162

Table 4.16 Cost analysis for Al2O3 nanoparticle per sample 162

xiii

LIST OF FIGURES

Figure 2.1 Energy efficiency in AAC. 12

Figure 2.2 Nanoparticle applications in industries 15

Figure 2.3 Preparation of nanolubricant via two-step method 19

Figure 2.4 Nanofluid stabilization via surfactant 20

Figure 2.5 Nanorefrigerant classification according to refrigerant base 27

Figure 2.6 The evolution of the AAC system 36

Figure 2.7 The basic principle of the refrigeration system 37

Figure 2.8 Thermal Expansion Valve-Receiver Drier (TXV-RD) AAC

system 38

Figure 2.9 The fixed-displacement compressor 40

Figure 2.10 Serpentine condenser for a compact car 41

Figure 2.11 Serpentine evaporator 43

Figure 2.12 Thermal expansion valve (TXV) as expansion device 44

Figure 2.13 Receiver drier (RD) used in the AAC system 45

Figure 3.1 Research process flowchart 55

Figure 3.2 Packaging of (a) Al2O3 nanoparticle in 100 grams (b)

Polyalkylene gycol (PAG 46) in 1liter 57

Figure 3.3 Preparation process of Al2O3/PAG nanolubricant via the two-

step method 58

Figure 3.4 Apparatus used in preparation of nanolubricant 59

Figure 3.5 UV-Vis spectrophotometer 60

Figure 3.6 Malvern Zetasizer ZS 62

Figure 3.7 Thermal conductivity apparatus using thermal constant analyzer

technique. 64

Figure 3.8 Brookfield LVDV-III Ultra Rheometer 65

Figure 3.9 AAC compressor (a) before and (b) after disassembly 66

Figure 3.10 Dimension of sample plate 67

Figure 3.11 Tribology test rig 68

Figure 3.12 AAC system test rig 70

Figure 3.13 Water bath system 71

Figure 3.14 Schematic diagram of the AAC system 72

Figure 3.15 Schematic diagram of the experimental control room 72

Figure 3.16 T-s diagram of R134a vapour compression refrigeration cycle 77

Figure 3.17 DW 6092 Lutron power analyzer 80

xiv

Figure 3.18 RSM optimization flow chart 82

Figure 3.19 Response analysis process 84

Figure 4.1 Absorbance value against the wavelength for 0.2% Al2O3/PAG

nanolubricant 91

Figure 4.2 Maximum absorbance value against the volume concentration

for Al2O3/PAG nanolubricant 91

Figure 4.3 Concentration ratio against the sedimentation time for various

sonication time 92

Figure 4.4 Concentration ratio against the sedimentation time for various

concentration of Al2O3/PAG nanolubricant 92

Figure 4.5 Al2O3/PAG nanolubricant sedimentation photograph 94

Figure 4.6 FESEM image of dry Al2O3 nanoparticle at X 300,000

magnifications 95

Figure 4.7 TEM image of Al2O3 nanoparticle suspended in PAG lubricant

at X 80,000 magnifications 95

Figure 4.8 Stability of the Al2O3/PAG nanolubricant against the

classification of nanofluid based on zeta potential absolute value 97

Figure 4.9 Variation of thermal conductivity ratio as the function of

particle volume concentration at 30 °C 98

Figure 4.10 Thermal conductivity as a function of temperature for different

Al2O3/PAG nanolubricant volume concentrations 99

Figure 4.11 Variation of dynamic viscosity ratio as the function of volume

concentration at 40 °C 100

Figure 4.12 Comparison of experimental values of viscosity at various

temperatures 101

Figure 4.13 Viscosity against shear strain rate for volume concentration at

30 °C 102

Figure 4.14 Comparison of experimental value of low viscosity at various

temperatures 103

Figure 4.15 Comparison of nanolubricant thermal conductivity values

between present data and proposed equation 104

Figure 4.16 Comparison of nanolubricant viscosity values between present

data and Kedzierski (2013) model 104

Figure 4.17 Comparison of nanolubricant dynamic viscosity values between

present data and proposed equation 105

Figure 4.18 The effects of weight on the average of coeficient of friction

(COF) 107

Figure 4.19 The effects of volume concentration on the coeficient of friction 107

Figure 4.20 The effects of volume concentration on the reduction of

coeficient of friction (COF) 108

xv

Figure 4.21 The effects of weight on the specific wear rate 109

Figure 4.22 The effects of volume concentration on the Specific wear rate 109

Figure 4.23 The effects of volume concentration on the reduction of specific

wear rate 110

Figure 4.24 FESEM observation on five plates with different volume

concentrations 112

Figure 4.25 EDX analysis on three plates with different volume

concentrations 113

Figure 4.26 Summary process in deciding the volume concentration 115

Figure 4.27 Cooling capacity of PAG lubricant as a function of initial

refrigerant charge 116

Figure 4.28 Heat absorb per unit mass of PAG lubricant as a function of

initial refrigerant charge 117

Figure 4.29 Compressor work per unit mass of PAG lubricant as a function

of initial refrigerant charge 118

Figure 4.30 COP of PAG lubricant as a function of refrigerant charge 119

Figure 4.31 Thermal expansion valve discharge temperature of PAG

lubricant as a function of initial refrigerant charge 120

Figure 4.32 Power consumption of PAG lubricants as a function of initial

refrigerant charge 121

Figure 4.33 Cooling capacity as a function of initial refrigerant charge 122

Figure 4.34 Compressor work as a function of initial refrigerant charge 123

Figure 4.35 Coefficient of performance as a function of initial refrigerant

charge 124

Figure 4.36 Expansion valve discharge temperature as a function of initial

refrigerant charge 125

Figure 4.37 Cooling capacity as a function of compressor speed 126

Figure 4.38 Compressor work as a function of compressor speed 127

Figure 4.39 Coefficient performance (COP) as a function of compressor

speed 128

Figure 4.40 Cooling capacity of Al2O3/PAG nanolubricant as a function of

volume concentrations 129

Figure 4.41 Compressor work of Al2O3/PAG nanolubricant as a function of

volume concentrations 130

Figure 4.42 Coeficient of performance (COP) of Al2O3/PAG nanolubricant

as a function of volume concentrations 132

Figure 4.43 COP enhancement of Al2O3/PAG nanolubricant as a function of

volume concentrations 134

Figure 4.44 Power consumption as a function of initial refrigerant charge 135

Figure 4.45 Power consumption as a function of compressor speed 136

xvi

Figure 4.46 Evaporator pressure as a function of initial refrigerant charge 138

Figure 4.47 Condenser pressure as a function of initial refrigerant charge 138

Figure 4.48 Comparison of power consumption from experimental data and

regression estimation related to condenser pressure 140

Figure 4.49 Comparison of power consumption from experimental data and

regression estimations related to evaporator pressure 140

Figure 4.50 Power saving of Al2O3/PAG nanolubricant as a function of

volume concentrations 142

Figure 4.51 Box-cox plot power transformation for various responses 144

Figure 4.52 Normal probability plot for various responses 145

Figure 4.53 Interaction of AAC parameter between refrigerant charge and

volume concentration on Cooling capacity (Speed = 1500 rpm) 148

Figure 4.54 Cooling capacity as the function of refrigerant charge and

concentration 149

Figure 4.55 Interaction of the AAC parameter between speed and volume

concentration on Compressor work (Refrigerant charge = 130 g) 150

Figure 4.56 Compressor work as a function of speed and concentration 151

Figure 4.57 Thermal expansion valve discharge temperature as a function of

speed and initial refrigerant charge 153

Figure 4.58 Power saving as a function of speed and initial refrigerant

charge 155

Figure 4.59 Desirability value as a function of speed and concentration 157

Figure 4.60 Cross section view of the cooling coil (evaporator) after the

experiment 159

Figure 4.61 Cross section view of thermal expansion valve after the

experiment 160

Figure 4.62 Cross section view of compressor body after the experiment 161

xvii

LIST OF SYMBOLS

A Absorbance,

b Path length, m

Ratio of the nanolayer thickness to the original particle radius

c Molar concentration coefficient

Molar absorptivity

g Gravity acceleration, m/s2

h Enthalpy, kJ/kg

k Thermal conductivity, W/m.K

kr Thermal conductivity ratio kNL/kL

mRC Initial refrigerant charge, g

i Isentropic efficiency

v Volumetric efficiency

�̇�𝐿 Cooling capacity, kW

Volume concentration, %

𝜙𝜊 Initial volume concentration, %

𝜙𝑟 Volume concentration ratio, 𝜙 𝜙𝜊⁄

Volume concentration in fraction

𝑞𝐿 Heat Absorb, kW/kJ

Density, kg/m3

R Radius of the particle, nm

T Temperature, °C

µ Dynamic viscosity, mPa.s

𝜇𝑟 Viscosity ratio, 𝜇𝑁𝐿 𝜇𝐿⁄

Kinematic viscosity, cSt

V Sedimentation speed, m/s

𝑤𝑖𝑛 Compressor work, kJ/kg

Zeta potential value, mV

xviii

LIST OF ABBREVIATIONS

AAC Automotive air conditioning

AD Average deviation

ASHRAE American Society of Heating, Refrigerating and Air Conditioning

Engineers

ANOVA Analysis of variance

ANSI American National Standard Institute

Bf Base fluid

CCD Center composite design

CFC Chloroflourocarbon

CFD Computational Fluid Dynamic

COF Coefficient of friction

COP Coefficient of performance

DOE Design of experiment

EC Electrical conductivity

EDM Electrical discharge machine

EDX Energy dispersive X-ray

EER Energy efficiency ratio

Eff Effective

Eq Equation

Exp Experiment

f Fluid

FCD Faced Centered design

FDC Fixed-displacement compressor

FESEM Field emission scanning electron microscopy

GWP Global warming potential

HC Hydrocarbons

HCFC Hydroclorofluorcarbon

HFC Hydrofluorocarbon

HNBR Hydrogenated nitrile butadiene rubber

HVAC Heating, ventilation and air conditioning

L Lubricant

xix

l liquid

LPM Liter per minute

MO Mineral oil

NL Nanolubricant

OD Outer diameter

ODP Ozone depletion potential

OT Orifice tube

OT-AD Orifice tube-accumulator drier

P Nanoparticle

PAG Polyalkylene Glycol

PMI Positive material identification

POE Polyolester

r Ratio

RBR Pure rubber

rpm Revolution per minute

RSE Relative standard error

RSM Response surface methodology

SAE Society of Automotive Engineers

SEM Scanning electron microscope

TEM Transmission electron microscopy

TXV Thermal expansion valve

TXV-RD Thermal expansion valve-receiver drier

UMP University Malaysia Pahang

VCRS Vapor compression refrigeration system

VDC Variable-displacement compressor

XPS X-ray photoelectron spectroscopy

168

REFERENCES

Abdel-Hadi, E. A.-H., Taher, S. H., Torki, A. H. M., & Hamad, S. S. (2011). Heat transfer

analysis of vapor compression system using nano CuO-R134a. Paper presented

at the International Conference on Advanced Materials Engineering.

Abdolbaqi, M. K., Azmi, W. H., Mamat, R., Sharma, K. V., & Najafi, G. (2016).

Experimental investigation of thermal conductivity and electrical conductivity of

BioGlycol–water mixture based Al2O3 nanofluid. Applied Thermal Engineering,

102, 932-941.

Abdolbaqi, M. K., Mamat, R., Sidik, N. A. C., Azmi, W. H., & Selvakumar, P. (2017).

Experimental investigation and development of new correlations for heat transfer

enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat

tubes. International Journal of Heat and Mass Transfer, 108, Part A, 1026-1035.

Al‐Rabghi, O. M., & Niyaz, A. A. (2000). Retrofitting R‐12 car air conditioner with R‐134a refrigerant. International journal of energy research, 24(6), 467-474.

Alahmer, A., Abdelhamid, M., & Omar, M. (2012). Design for thermal sensation and

comfort states in vehicles cabins. Applied Thermal Engineering, 36, 126-140.

Alawi, O. A., & Sidik, N. A. C. (2015). Applications of nanorefrigerant and

nanolubricants in refrigeration, air-conditioning and heat pump systems: A

review. International Communications in Heat and Mass Transfer, 68, 91-97.

Aldrich, S. (2013). Safety Data Sheet. Aluminium Oxide.

Ali, M. K. A., Xianjun, H., Mai, L., Bicheng, C., Turkson, R. F., & Qingping, C. (2016a).

Reducing frictional power losses and improving the scuffing resistance in

automotive engines using hybrid nanomaterials as nano-lubricant additives.

Wear, 364–365, 270-281.

Ali, M. K. A., Xianjun, H., Mai, L., Qingping, C., Turkson, R. F., & Bicheng, C. (2016b).

Improving the tribological characteristics of piston ring assembly in automotive

engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives.

Tribology International, 103, 540-554.

Alkan, A., & Hosoz, M. (2010). Comparative performance of an automotive air

conditioning system using fixed and variable capacity compressors. International

Journal of Refrigeration, 33(3), 487-495.

Angayarkanni, S., & Philip, J. (2015). Review on thermal properties of nanofluids: recent

developments. Advances in colloid and interface science, 225, 146-176.

ASHRAE. (2011). Standard 41.9-2000: ASHRAE.

169

ASTM-B209-14. (2014). ASTM B209 -14 Standard Specification for Aluminum and

Aluminum-Alloy Sheet and Plate. West Conshohocken, PA, : ASTM.

ASTM-E18-17e1. (2017). ASTM E18-17e1 Standard Test Methods for Rockwell

Hardness of Metallic Materials. West Conshohocken, PA, : ASTM.

ASTM-E1476. (2014). Standard Guide for Metals Identification, Grade Verification, and

Sorting: ASTM.

ASTM G181-11, ASTM International, West Conshohocken, PA,. (2011). Standard Test

Method for Conducting Friction Tests of Piston Ring and Cylinder Liner

Materials Under Lubricated Conditions ASTM International, .

Atik, K., & Aktas, A. (2011). An experimental investigation of the effect of refrigerant

charge level on an automotive air conditioning system. Journal of Thermal

Science and Technology, 31, 11-17.

Azmi, W. H., Sharma, K. V., Mamat, R., Najafi, G., & Mohamad, M. S. (2016). The

enhancement of effective thermal conductivity and effective dynamic viscosity of

nanofluids – A review. Renewable and Sustainable Energy Reviews, 53, 1046-

1058.

Barbato, G., Desogus, S., & Levi, R. (1978). Design and Performance of a Deadweight

Standard Rockwell Hardness Testing Machine.

Bartelt, K., Park, Y., Liu, L., & Jacobi, A. (2008). Flow-boiling of R-134a/POE/CuO

nanofluids in a horizontal tube. Paper presented at the International Refrigeration

and Air Conditioning Conference, Purdue University.

Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in a suspension

of spherical particles. Journal of Fluid Mechanics, 83(01), 97-117.

Beck, M. P., Sun, T., & Teja, A. S. (2007). The thermal conductivity of alumina

nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria, 260(2), 275-

278.

Bhattad, A., Sarkar, J., & Ghosh, P. (2018). Improving the performance of refrigeration

systems by using nanofluids: A comprehensive review. Renewable and

Sustainable Energy Reviews, 82(Part 3), 3656-3669.

Bhatti, M. S. (1999). Riding in comfort: Part II. Ashrae Journal, 41(9), 44.

Bi, S., Guo, K., Liu, Z., & Wu, J. (2011). Performance of a domestic refrigerator using

TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and

Management, 52(1), 733-737.

170

Bi, S., Shi, L., & Zhang, L. L. (2008). Application of nanoparticles in domestic

refrigerators. Applied Thermal Engineering, 28(14), 1834-1843.

Bobbo, S., Fedele, L., Fabrizio, M., Barison, S., Battiston, S., & Pagura, C. (2010).

Influence of nanoparticles dispersion in POE oils on lubricity and R134a

solubility. International Journal of Refrigeration, 33(6), 1180-1186.

Booser, E. R. (1994). CRC Handbook of Lubrication and Tribology, Volume III:

Monitoring, Materials, Synthetic Lubricants and Applications (Vol. 3). USA:

CRC Press LLC.

Botha, S. S. (2006). Synthesis and characterization of nanofluids for cooling

applications. University of the Western Cape.

Boyde, S., Randles, S., Gibb, P., Corr, S., Dowdle, P., McNicol, A., . . . Shoji, M. (2000).

Effect of lubricant properties on efficiency of refrigeration compressors.

Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The

Journal of Chemical Physics, 20(4), 571-571.

Brown, W. (1998). The Development of Lubricants for Automotive A/C Systems.

Brown, W. L. (1993). Polyalkylene glycols. CRC Handbook of Lubrication and

Tribology, 3, 253-267.

Burgdorf, K. (2011). Challenges and opportunities for the transition to highly energy-

efficient passenger cars: SAE Technical Paper.

Calloway, D. (1997). Beer-lambert law. J. Chem. Educ, 74(7), 744.

Carlson, R. B., Wishart, J., & Stutenberg, K. (2016). On-Road and Dynamometer

Evaluation of Vehicle Auxiliary Loads. SAE International Journal of Fuels and

Lubricants, 9(2016-01-0901), 260-268.

Celen, A., Çebi, A., Aktas, M., Mahian, O., Dalkilic, A. S., & Wongwises, S. (2014). A

review of nanorefrigerants: Flow characteristics and applications. International

Journal of Refrigeration, 44, 125-140.

Cengel, Y. A., & Boles, M. A. (2015). Thermodynamics: An Engineering Approach. New

York: Mc Graw Hill.

Cesur, İ., Ayhan, V., Parlak, A., Savaş, Ö., & Aydin, Z. (2014). The Effects of Different

Fuels on Wear between Piston Ring and Cylinder. Advances in Mechanical

Engineering, 6, 503212.

171

Chandrasekar, M., Suresh, S., & Bose, A. C. (2010). Experimental investigations and

theoretical determination of thermal conductivity and viscosity of Al2O3/water

nanofluid. Experimental thermal and fluid science, 34(2), 210-216.

Cheah, L., & Heywood, J. (2011). Meeting US passenger vehicle fuel economy standards

in 2016 and beyond. Energy Policy, 39(1), 454-466.

Chen, H., Ding, Y., He, Y., & Tan, C. (2007). Rheological behaviour of ethylene glycol

based titania nanofluids. Chemical Physics Letters, 444(4), 333-337.

Cho, H., Lee, H., & Park, C. (2013). Performance characteristics of an automobile air

conditioning system with internal heat exchanger using refrigerant R1234yf.

Applied Thermal Engineering, 61(2), 563-569.

Choi, J., & Kim, Y. C. (2002). The effects of improper refrigerant charge on the

performance of a heat pump with an electronic expansion valve and capillary tube.

Energy, 27(4), 391-404.

Choi, U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In D. A.

Siginer & H. P. Wang (Eds.), Developments and Applications of Non-Newtonian

Flows (Vol. FED-vol. 231/MD-Vol. 66, pp. 99–105). New York: American

Society of Mechanical Engineers (ASME).

Chung, S. J., Leonard, J. P., Nettleship, I., Lee, J.-K., Soong, Y., Martello, D. V., & Chyu,

M. K. (2009). Characterization of ZnO nanoparticle suspension in water:

effectiveness of ultrasonic dispersion. Powder Technology, 194(1), 75-80.

Costa, N., & Garcia, J. (2016). Using a multiple response optimization approach to

optimize the coefficient of performance. Applied Thermal Engineering, 96, 137-

143.

Dow. (2013). Material Safety Data Sheet. Ucon Refrigerant Lubricant 213.

Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J., & Lee, S. (1997). Enhanced thermal

conductivity through the development of nanofluids. Paper presented at the Proc.

Symposium Nanophase and Nanocomposite Materials II, Boston, MA.

Einstein, A. (1956). Investigations on the theory of the Brownian movement: Courier

Corporation.

Esmaeilzadeh, E., Almohammadi, H., Nasiri Vatan, S., & Omrani, A. N. (2013).

Experimental investigation of hydrodynamics and heat transfer characteristics of

γ-Al2O3/water under laminar flow inside a horizontal tube. International Journal

of Thermal Sciences, 63, 31-37.

172

Fischer, S. K., & Sand, J. R. (1997). Total environmental warming impact (TEWI)

calculations for alternative automotive air-conditioning systems: SAE Technical

Paper.

Fisher, S. (1995). Comparison of global warming impacts of automobile air-conditioning

concepts: Oak Ridge National Laboratory.

Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumption and CO2 emissions

from passenger cars in Europe – Laboratory versus real-world emissions.

Progress in Energy and Combustion Science, 60, 97-131.

Frey, D. D., & Wang, H. (2006). Adaptive one-factor-at-a-time experimentation and

expected value of improvement. Technometrics, 48(3), 418-431.

Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability

properties and characterization in stationary conditions. International Journal of

Heat and Mass Transfer, 54(17–18), 4051-4068.

Global Environmental Change Report, A Brief Analysis of the Kyoto Protocol. (1997).

IX(24).

Habibzadeh, S., Kazemi-Beydokhti, A., Khodadadi, A. A., Mortazavi, Y., Omanovic, S.,

& Shariat-Niassar, M. (2010). Stability and thermal conductivity of nanofluids of

tin dioxide synthesized via microwave-induced combustion route. Chemical

Engineering Journal, 156(2), 471-478.

Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-

component systems. Industrial and Engineering Chemistry Fundamentals, 1(3),

187-191.

Han, X. H., Li, P., Xu, Y. J., Zhang, Y. J., Wang, Q., & Chen, G. M. (2013). Cycle

performances of the mixture HFC-161+ HFC-134a as the substitution of HFC-

134a in automotive air conditioning systems. International Journal of

Refrigeration, 36(3), 913-920.

Henderson, K., Park, Y. G., Liu, L., & Jacobi, A. M. (2010). Flow-boiling heat transfer

of R-134a-based nanofluids in a horizontal tube. International Journal of Heat

and Mass Transfer, 53(5), 944-951.

Hiemenz, P. C. (1986). Principles of colloid and surface chemistry (Vol. 188): M. Dekker

New York.

Hosoz, M., & Direk, M. (2006). Performance evaluation of an integrated automotive air

conditioning and heat pump system. Energy Conversion and Management, 47(5),

545-559.

173

Hung, Y.-H., Teng, T.-P., & Lin, B.-G. (2013). Evaluation of the thermal performance of

a heat pipe using alumina nanofluids. Experimental Thermal and Fluid Science,

44, 504-511.

Hwang, Y.-j., Lee, J., Lee, C., Jung, Y., Cheong, S., Lee, C., . . . Jang, S. (2007). Stability

and thermal conductivity characteristics of nanofluids. Thermochimica Acta,

455(1), 70-74.

Ijam, A., Saidur, R., Ganesan, P., & Golsheikh, A. M. (2015). Stability, thermo-physical

properties, and electrical conductivity of graphene oxide-deionized

water/ethylene glycol based nanofluid. International Journal of Heat and Mass

Transfer, 87, 92-103.

Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions of carbon

nanotubes. Journal of Colloid and Interface Science, 260(1), 89-94.

Jiang, W., Ding, G., & Peng, H. (2009a). Measurement and model on thermal

conductivities of carbon nanotube nanorefrigerants. International Journal of

Thermal Sciences, 48(6), 1108-1115.

Jiang, W., Ding, G., Peng, H., Gao, Y., & Wang, K. (2009b). Experimental and model

research on nanorefrigerant thermal conductivity. HVAC&R Research, 15(3),

651-669.

Johnson, V. H. (2002). Fuel used for vehicle air conditioning: a state-by-state thermal

comfort-based approach: SAE Technical Paper.

Joudi, K. A., Mohammed, A. S. K., & Aljanabi, M. K. (2003). Experimental and

computer performance study of an automotive air conditioning system with

alternative refrigerants. Energy Conversion and Management, 44(18), 2959-

2976.

Jung, D., Park, B., & Lee, H. (1999). Evaluation of supplementary/retrofit refrigerants

for automobile air-conditioners charged with CFC12. International Journal of

Refrigeration, 22(7), 558-568.

Jung, J.-Y., Kim, E. S., & Kang, Y. T. (2012). Stabilizer effect on CHF and boiling heat

transfer coefficient of alumina/water nanofluids. International Journal of Heat

and Mass Transfer, 55(7), 1941-1946.

Jwo, C. S., Jeng, L. Y., Teng, T. P., & Chang, H. (2009). Effects of nanolubricant on

performance of hydrocarbon refrigerant system. Journal of Vacuum Science &

Technology B, 27(3), 1473-1477.

174

Karimi, F., Rafiee, S., Taheri-Garavand, A., & Karimi, M. (2012). Optimization of an air

drying process for Artemisia absinthium leaves using response surface and

artificial neural network models. Journal of the Taiwan Institute of Chemical

Engineers, 43(1), 29-39.

Karmakar, S., Chattopadhyay, S., Mitra, M., & Sengupta, S. (2016). Induction Motor

Fault Diagnosis: Approach Through Current Signature Analysis: Springer.

Kedzierski, M. (2011). Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer.

International Journal of Refrigeration, 34(2), 498-508.

Kedzierski, M., & Gong, M. (2009a). Effect of CuO nanolubricant on R134a pool boiling

heat transfer. International Journal of Refrigeration, 32(5), 791-799.

Kedzierski, M. A. (2009). Effect of CuO nanoparticle concentration on R134a/lubricant

pool-boiling heat transfer. Journal of Heat Transfer, 131(4), 043205.

Kedzierski, M. A. (2012a). Effect of diamond nanolubricant on R134a pool boiling heat

transfer. Journal of Heat Transfer, 134(5), 051001-051001.

Kedzierski, M. A. (2012b). R134a/Al2O3 nanolubricant mixture pool boiling on a

rectangular finned surface. Journal of Heat Transfer, 134(12), 121501.

Kedzierski, M. A. (2013). Viscosity and density of aluminum oxide nanolubricant.

International Journal of Refrigeration, 36(4), 1333-1340.

Kedzierski, M. A., Brignoli, R., Quine, K. T., & Brown, J. S. (2017). Viscosity, Density,

And Thermal Conductivity Of Aluminum Oxide And Zinc Oxide Nanolubricants.

International Journal of Refrigeration, 74, 3 -11.

Kedzierski, M. A., & Gong, M. (2009b). Effect of CuO nanolubricant on R134a pool

boiling heat transfer. International Journal of Refrigeration, 32(5), 791-799.

Khoobbakht, G., Najafi, G., Karimi, M., & Akram, A. (2016). Optimization of operating

factors and blended levels of diesel, biodiesel and ethanol fuels to minimize

exhaust emissions of diesel engine using response surface methodology. Applied

Thermal Engineering, 99, 1006-1017.

Kim, J. H., Cho, J. M., Lee, I. H., Lee, J. S., & Kim, M. S. (2007). Circulation

concentration of CO2/propane mixtures and the effect of their charge on the

cooling performance in an air-conditioning system. International Journal of

Refrigeration, 30(1), 43-49.

Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car engine

coolant. Experimental thermal and fluid science, 34(6), 677-683.

175

Kole, M., & Dey, T. K. (2011). Effect of aggregation on the viscosity of copper oxide–

gear oil nanofluids. International Journal of Thermal Sciences, 50(9), 1741-1747.

Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the

tribological and thermo-physical properties of coconut oil added with MoS2

nanoparticles at elevated temperatures. Wear, 330, 288-308.

Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-Newtonian flow in

suspensions of rigid spheres. Trans. Soc. Rheol, 3(1), 137-152.

Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012).

Application of TiO2 nanoparticles as a lubricant-additive for vapor compression

refrigeration systems – An experimental investigation. International Journal of

Refrigeration, 35(7), 1989-1996.

Kumar, D. S., & Elansezhian, R. (2012). Experimental study on Al2O3-R134a nano

refrigerant in refrigeration system. International Journal of Modern Engineering

Research, 2(5), 3927-3929.

Kumar, D. S., & Elansezhian, R. (2014). ZnO nanorefrigerant in R152a refrigeration

system for energy conservation and green environment. Frontiers of Mechanical

Engineering, 9(1), 75-80.

Lee, Hwang, Y., Cheong, S., Kwon, L., Kim, S., & Lee, J. (2009). Performance

evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral

oil. Current Applied Physics, 9(2, Supplement), e128-e131.

Lee, G. H., & Yoo, J. Y. (2000). Performance analysis and simulation of automobile air

conditioning system. International Journal of Refrigeration, 23(3), 243-254.

Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., & Choi, C. J.

(2008). Effective viscosities and thermal conductivities of aqueous nanofluids

containing low volume concentrations of Al2O3 nanoparticles. International

Journal of Heat and Mass Transfer, 51(11–12), 2651-2656.

Lee, S., Choi, U. S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of

fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289.

Li, G., Eisele, M., Lee, H., Hwang, Y., & Radermacher, R. (2014). Experimental

investigation of energy and exergy performance of secondary loop automotive

air-conditioning systems using low-GWP (global warming potential) refrigerants.

Energy, 68, 819-831.

Li, X., Zhu, D., & Wang, X. (2007). Evaluation on dispersion behavior of the aqueous

copper nano-suspensions. Journal of Colloid and Interface Science, 310(2), 456-

463.

176

Li, Y., Tung, S., Schneider, E., & Xi, S. (2009). A review on development of nanofluid

preparation and characterization. Powder Technology, 196(2), 89-101.

Liu, H., Zhou, Q., Liu, Y., Wang, P., & Wang, D. (2015). Experimental study on cooling

performance of air conditioning system with dual independent evaporative

condenser. International Journal of Refrigeration, 55, 85-92.

Luo, T., Wei, X., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of

Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40(5),

7143-7149.

Mahbubul, I. M., Elcioglu, E. B., Saidur, R., & Amalina, M. A. (2017). Optimization of

ultrasonication period for better dispersion and stability of TiO2–water nanofluid.

Ultrasonics Sonochemistry, 37, 360-367.

Mahbubul, I. M., Fadhilah, S. A., Saidur, R., Leong, K. Y., & Amalina, M. A. (2013a).

Thermophysical properties and heat transfer performance of Al2O3/R-134a

nanorefrigerants. International Journal of Heat and Mass Transfer, 57(1), 100-

108.

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the

viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4),

874-885.

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013b). Heat transfer and pressure drop

characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular

tube. Procedia Engineering, 56, 323-329.

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013c). Influence of particle

concentration and temperature on thermal conductivity and viscosity of

Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass

Transfer, 43, 100-104.

Manna, I. (2012). Synthesis, characterization and application of nanofluid—an overview.

Journal of the Indian Institute of Science, 89(1), 21-33.

Mansour, M. K., Musa, M. N., Hassan, M. N. W., & Saqr, K. M. (2008). Development

of novel control strategy for multiple circuit, roof top bus air conditioning system

in hot humid countries. Energy Conversion and Management, 49(6), 1455-1468.

Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal

conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu

Bussei, 4(4), 227-233.

Matlock, P. L., Brown, W. L., & Clinton, N. A. (1999). Polyalkylene glycols. Chemical

Industries-New York-Marcel Dekker, 159-194.

177

Maxwell, J. C. (1904). A Treatise on Electricity and Magnetism (2nd ed.). Cambridge,

U.K.: Oxford University Press.

Meng, Z., Zhang, H., Lei, M., Qin, Y., & Qiu, J. (2018). Performance of low GWP

R1234yf/R134a mixture as a replacement for R134a in automotive air

conditioning systems. International Journal of Heat and Mass Transfer, 116,

362-370.

Mohd Yusof, T., & Azizuddin, A. A. (2010). Performance Analysis Of A Domestic

Refrigerator.

Mukherjee, S., & Paria, S. (2013). Preparation and stability of nanofluids-A Review.

IOSR Journal of Mechanical and civil engineering, 9(2), 63-69.

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface

methodology: process and product optimization using designed experiments (3rd

ed.). New Jersey: John Wiley & Sons.

Nabil, M., Azmi, W., Hamid, K., Zawawi, N., Priyandoko, G., & Mamat, R. (2017).

Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: A

comprehensive review on performance. International Communications in Heat

and Mass Transfer, 83, 30-39.

Nair, V., Tailor, P. R., & Parekh, A. D. (2016). Nanorefrigerants: A comprehensive

review on its past, present and future. International Journal of Refrigeration, 67,

290-307.

Namburu, P. K., Kulkarni, D. P., Misra, D., & Das, D. K. (2007). Viscosity of copper

oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental

thermal and fluid science, 32(2), 397-402.

NHTSA, N. H. T. S. A. (2010). Light-duty vehicle greenhouse gas emission standards

and corporate average fuel economy standards; final rule. Federal Register, 40,

25323-25728.

Official Journal of the European Union Directive 2006/40/EC of the European Parliament

and of the Council (2006).

Oh, B. R., Seo, J. W., Choi, M. H., & Kim, C. H. (2008). Optimization of culture

conditions for 1, 3-propanediol production from crude glycerol by Klebsiella

pneumoniae using response surface methodology. Biotechnology and Bioprocess

Engineering, 13(6), 666-670.

Padmanabhan, V. M. V., & Palanisamy, S. (2012). The use of TiO2 nanoparticles to

reduce refrigerator irreversibility. Energy Conversion and Management, 59, 122-

132.

178

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids

with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-

170.

Pandian, M., Sivapirakasam, S. P., & Udayakumar, M. (2011). Investigation on the effect

of injection system parameters on performance and emission characteristics of a

twin cylinder compression ignition direct injection engine fuelled with pongamia

biodiesel–diesel blend using response surface methodology. Applied Energy,

88(8), 2663-2676.

Park, C., Lee, H., Hwang, Y., & Radermacher, R. (2015). Recent advances in vapor

compression cycle technologies. International Journal of Refrigeration, 60, 118-

134.

Park, K. J., & Jung, D. (2007). Boiling heat transfer enhancement with carbon nanotubes

for refrigerants used in building air-conditioning. Energy and Buildings, 39(9),

1061-1064.

Peng, H., Ding, G., Hu, H., & Jiang, W. (2010a). Influence of carbon nanotubes on

nucleate pool boiling heat transfer characteristics of refrigerant–oil mixture.

International Journal of Thermal Sciences, 49(12), 2428-2438.

Peng, H., Ding, G., Hu, H., Jiang, W., Zhuang, D., & Wang, K. (2010b). Nucleate pool

boiling heat transfer characteristics of refrigerant/oil mixture with diamond

nanoparticles. International Journal of Refrigeration, 33(2), 347-358.

Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009). Heat transfer characteristics of

refrigerant-based nanofluid flow boiling inside a horizontal smooth tube.

International Journal of Refrigeration, 32(6), 1259-1270.

Qi, Z., Zhao, Y., & Chen, J. (2010). Performance enhancement study of mobile air

conditioning system using microchannel heat exchangers. International Journal

of Refrigeration, 33(2), 301-312.

Rasheed, A. K., Khalid, M., Rashmi, W., Gupta, T. C. S. M., & Chan, A. (2016).

Graphene based nanofluids and nanolubricants – Review of recent developments.

Renewable and Sustainable Energy Reviews, 63(Supplement C), 346-362.

Ratts, E. B., & Brown, J. S. (2000). An experimental analysis of the effect of refrigerant

charge level on an automotive refrigeration system. International Journal of

Thermal Sciences, 39(5), 592-604.

Raveshi, M. R., Keshavarz, A., Mojarrad, M. S., & Amiri, S. (2013). Experimental

investigation of pool boiling heat transfer enhancement of alumina–water–

ethylene glycol nanofluids. Experimental thermal and fluid science, 44, 805-814.

179

Ravikumar, A., Karwall, N., & Shah, R. (2005). Recent developments in automotive

condensers and receiver-dryer technology: SAE Technical Paper.

Reddy, V. R., Ravikumar, A. S., and Shah, R. K. (2006, January 4–6). Recent Technology

Developments in Automotive Air-Conditioning Evaporators. Paper presented at

the 7th ISHMT-ASME Heat and Mass Transfer

Conference, Guwahati, India.

Roscher, M. A., Leidholdt, W., & Trepte, J. (2012). High efficiency energy management

in BEV applications. International Journal of Electrical Power & Energy

Systems, 37(1), 126-130.

Rudnick, L. R. (2013). Synthetics, mineral oils, and bio-based lubricants: chemistry and

technology: CRC press.

Rugh, J. P., Hendricks, T. J., & Koram, K. (2001). Effect of solar reflective glazing on

Ford Explorer climate control, fuel economy, and emissions. Paper presented at

the Proceedings of the International Body Engineering Conference.

Sabareesh, R. K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. (2012). Application of

TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration

systems–An experimental investigation. International Journal of Refrigeration,

35(7), 1989-1996.

SAEJ2765, S. I. S. (2008). SAE J2765 - Procedure for Measuring System COP

[Coefficient of Performance] of a Mobile Air Conditioning System on a Test

Bench (pp. 20): SAE internationals.

Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., & Mohammed, H. A. (2011). A

review on the performance of nanoparticles suspended with refrigerants and

lubricating oils in refrigeration systems. Renewable and Sustainable Energy

Reviews, 15(1), 310-323.

Sanukrishna, S., Murukan, M., & Jose, P. M. (2018a). An overview of experimental

studies on nanorefrigerants: Recent research, development and applications.

International Journal of Refrigeration, 88, 552-577.

Sanukrishna, S., & Prakash, M. J. (2018). Experimental studies on thermal and

rheological behaviour of TiO2-PAG nanolubricant for refrigeration system.

International Journal of Refrigeration, 86, 356-372.

Sanukrishna, S., Vishnu, S., & Prakash, M. J. (2018b). Experimental investigation on

thermal and rheological behaviour of PAG lubricant modified with SiO2

nanoparticles. Journal of Molecular Liquids, 261, 411-422.

180

Sgroi, M., Gili, F., Mangherini, D., Lahouij, I., Dassenoy, F., Garcia, I., . . . Kraft, G.

(2015). Friction Reduction Benefits in Valve-Train System Using IF-MoS2

Added Engine Oil. Tribology Transactions, 58(2), 207-214.

Shah, R. K. (2009). Automotive air-conditioning systems—Historical developments, the

state of technology, and future trends. Heat Transfer Engineering, 30(9), 720-

735.

Shigley, J. E. (2011). Shigley's mechanical engineering design: Tata McGraw-Hill

Education.

Sidik, N. A. C., Mohammed, H., Alawi, O. A., & Samion, S. (2014). A review on

preparation methods and challenges of nanofluids. International Communications

in Heat and Mass Transfer, 54, 115-125.

Sreejith, K. (2013). Experimental Investigation of A Domestic Refrigerator Having

Water-Cooled Condenser Using Various Compressor Oils. International Journal

of Engineering and Science, Vols, 2, 27-31.

Subramani, N., & Prakash, M. (2011). Experimental studies on a vapour compression

system using nanorefrigerants. International Journal of Engineering, Science and

Technology, 3(9), 95-102.

Sukri, M., Musa, M., Senawi, M., & Nasution, H. (2015). Achieving a better energy-

efficient automotive air-conditioning system: a review of potential technologies

and strategies for vapor compression refrigeration cycle. Energy Efficiency, 8(6),

1201-1229.

Sun, B., & Yang, D. (2013). Experimental study on the heat transfer characteristics of

nanorefrigerants in an internal thread copper tube. International Journal of Heat

and Mass Transfer, 64, 559-566.

Thulukkanam, K. (2013). Heat exchanger design handbook: CRC Press.

Tian, C., Dou, C., Yang, X., & Li, X. (2005). Instability of automotive air conditioning

system with a variable displacement compressor. Part 1. Experimental

investigation. International Journal of Refrigeration, 28(7), 1102-1110.

Tian, C., & Li, X. (2005). Numerical simulation on performance band of automotive air

conditioning system with a variable displacement compressor. Energy

Conversion and Management, 46(17), 2718-2738.

Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, Y. V., Sprunt, S.,

Lopatina, L. M., & Selinger, J. V. (2007). Thermal conductivity and particle

agglomeration in alumina nanofluids: experiment and theory. Physical Review E,

76(6), 061203.

181

Tsuzuki, T. (2009). Commercial scale production of inorganic nanoparticles.

International journal of nanotechnology, 6(5-6), 567-578.

Tuomas, R. (2006). Properties of oil and refrigerant mixtures lubrication of ball bearings

in refrigeration compressors.

US-EIA, E. a. I. A. (2018, 29/12018). Gasoline and Diesel Fuel Update. from

https://www.eia.gov/petroleum/gasdiesel/

Vjacheslav, N., Rozhentsev, A., & Wang, C.-C. (2001). Rationally based model for

evaluating the optimal refrigerant mass charge in refrigerating machines. Energy

Conversion and Management, 42(18), 2083-2095.

Wang, Wu, Q., & Wu, Y. (2010). Use of nanoparticles to make mineral oil lubricants

feasible for use in a residential air conditioner employing hydro-fluorocarbons

refrigerants. Energy and Buildings, 42(11), 2111-2117.

Wang, B. X., Zhou, L. P., & Peng, X. F. (2003). A fractal model for predicting the

effective thermal conductivity of liquid with suspension of nanoparticles.

International Journal of Heat and Mass Transfer, 46(14), 2665-2672.

Wang, S. K., & Wang, S. K. (2000). Handbook of air conditioning and refrigeration.

Wang, X., Xu, X., & Choi, U. S. (1999). Thermal conductivity of nanoparticle-fluid

mixture. Journal of thermophysics and heat transfer, 13(4), 474-480.

Williams, J., & Le, H. (2006). Tribology and MEMS. Journal of Physics D: Applied

Physics, 39(12), R201.

Wongwises, S., Kamboon, A., & Orachon, B. (2006). Experimental investigation of

hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning

system. Energy Conversion and Management, 47(11), 1644-1659.

Wu, D., Zhu, H., Wang, L., & Liu, L. (2009). Critical issues in nanofluids preparation,

characterization and thermal conductivity. Current Nanoscience, 5(1), 103-112.

Wu, M., Yuan, X., Xu, Y., Qiao, X., Han, X., & Chen, G. (2014). Cycle performance

study of ethyl fluoride in the refrigeration system of HFC-134a. Applied Energy,

136, 1004-1009.

Xing, M., Wang, R., & Yu, J. (2014). Application of fullerene C60 nano-oil for

performance enhancement of domestic refrigerator compressors. International

Journal of Refrigeration, 40, 398-403.

Yu, P., & Chang, Y. (2002). Influence Of Lubricant Viscosity Of POES On The

Performance Of Hermetic Reciprocating Compressors.

182

Yu, W., & Choi, U. S. (2003). The role of interfacial layers in the enhanced thermal

conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle

Research, 5(1-2), 167-171.

Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms,

and applications. Journal of Nanomaterials, 2012, 1.

Yusof, T., & Yusoff, A. (2011). Analysis for optimum refrigerant charge of a mini bar

refrigerator using experimental method. Journal of Engineering & Technology,

4, 1-12.

Yusri, I. M., Mamat, R., Azmi, W. H., Najafi, G., Sidik, N. A. C., & Awad, O. I. (2016).

Experimental investigation of combustion, emissions and thermal balance of

secondary butyl alcohol-gasoline blends in a spark ignition engine. Energy

Conversion and Management, 123, 1-14.

Zakaria, I., Azmi, W., Mohamed, W., Mamat, R., & Najafi, G. (2015). Experimental

investigation of thermal conductivity and electrical conductivity of Al2O3

Nanofluid in Water-Ethylene Glycol Mixture for Proton Exchange Membrane

Fuel Cell Application. International Communications in Heat and Mass Transfer,

61, 61-68.

Zakaria, I., Azmi, W. H., Mamat, A. M. I., Mamat, R., Saidur, R., Abu Talib, S. F., &

Mohamed, W. A. N. W. (2016). Thermal analysis of Al2O3–water ethylene glycol

mixture nanofluid for single PEM fuel cell cooling plate: An experimental study.

International Journal of Hydrogen Energy, 41(9), 5096-5112.

Zhmud, B., & Pasalskiy, B. (2013). Nanomaterials in lubricants: an industrial perspective

on current research. Lubricants, 1(4), 95-101.