75

Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Embed Size (px)

Citation preview

Page 1: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 2: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Penny Coombes

Sarah Wharton

Gary Davies

Simon White

River Bee, Desing

FLOOD ALLEVIATION FEASIBILITY

Page 3: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Location

Cardiff

Desing

Page 4: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Introduction• Existing Situation

– Hydrological Data– River Model– Damage Assessment

• Flood Alleviation Proposals– Off-line Storage– On-line options– Economic Appraisal

Page 5: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 6: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Hydrology

• Determine relationship between water level and flow

• Predict peak discharges at various return periods

• Provide inflow data during storm periods

Page 7: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Determine relationship

• Existing broad-crested weir

• Rating datah Q m m3/s

0.108 0.2210.109 0.2140.188 0.490.268 0.8710.354 1.3850.357 1.5130.586 3.7210.597 3.64

Page 8: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Determine relationship

• Weir equation

5.1705.1 hCbCQ dv5.1hkCQ f

5.1hC

Qk

f

5.1165.7 hCQ f

Page 9: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6

h (m)

Q (m3/s)

Q given Q formula

Page 10: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Maxima Data

• Maximum river level of each year for previous 25 years

• Use equation to calculate flows

• Use statistical analysis to calculate corresponding return periods

Page 11: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Relationship between peak flow and return period

-catchment characteristics-maxima data

• Region curves using mean annual flood from:

• Extreme value distribution

• Synthetic hydrographs

Page 12: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Extreme Value Distribution

• Linear scale in the form of:

ayuQ

Where u and a are statistical functions based on the maxima data

y is a function of the return period

yQ 646.1166.7

Page 13: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

4

5

6

7

8

9

10

11

12

13

14

-2 -1 1 2 3 4

y

Q

(m3 / s)

Q maxima data

Q = u + ay

Page 14: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Region curves

• Maxima data

Mean annual flood = 8.12 m3/s

Relationship between mean annual flood and floods of various return periods

Page 15: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

7

12

17

22

27

32

0 2 4 6

y=-ln(-ln(1-1/Tr))

Q (m3 /s)

EVD: Q=u+ay

Maxima dataQbar/Q(T)

CharacteristicsQbar/Q(T)

Page 16: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

7

9

11

13

15

17

19

21

23

0 1 2 3 4 5 6 7

y

Q (m3 / s)

Page 17: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Synthetic hydrographs

• No runoff or rainfall data

• Use catchment characteristics to calculate a synthetic hydrograph

• Hydrograph-variation of flow with time

Page 18: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Time (hours)

Discharge

(m3/s)

2 5 10 25 50 100 200 500 1000

Page 19: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Estimated Maximum Flood

• Not the impossible flood

• Very small probability of being exceeded

• Time to peak reduced by third

• Snowmelt added but not ground-frost

Page 20: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

10,000 Year Flood

• Based on region curves

• Estimated to be 10 times the mean annual flood

Page 21: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

050

100150200250300

0 5 10 15 20 25 30 35 40

Time (hours)

Q

(m3/s)

synthetic hydrograph EMF adjusted EMF 10,000 year flood

Page 22: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 23: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

• Cross-sectional data entered

• 5000m long reach modelled

• Data for 2 culverts entered

• Model calibrated using 1990 storm

Creating the HEC-RAS modelDesing

Bee

5000m

3000m

1000m

0m

Reach Plan

Culvert 1

Culvert 2

-120 -100 -80 -60 -40 -20 0 2045

46

47

48

49

50

51

design project Plan 41 Flow: Dam 1 in 500 year eventupstream end of main reach

Station (m)

Elev

atio

n (m

)

Legend

Ground

Bank Sta

Channel cross-section

-120 -100 -80 -60 -40 -20 0 2042

43

44

45

46

47

48RS=3.010 Upstream (Culvert)

Station (m)

Elev

ation

(m)

Legend

Ground

Ineff

Bank Sta

-120 -100 -80 -60 -40 -20 0 2039

40

41

42

43

44

45RS=1.010 Upstream (Culvert)

Station (m)

Elev

atio

n (m

)

Legend

Ground

Ineff

Bank Sta

Culvert 1 (downstream)

Culvert 2 (upstream)

Page 24: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Trial model

47.08

42.78

44.20

41.34

41.91

44.72

45.65

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 1.000 2.000 3.000 4.000 5.000 6.000

Chainage (km)

Ele

vatio

n (m

AO

D)

Series1Recorded level

Page 25: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Trial model

47.08

45.65

44.72

41.91

41.34

44.20

42.78

45.35

41.33

47.30

45.85

44.19

43.02

42.06

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 1.000 2.000 3.000 4.000 5.000 6.000

Chainage (km)

Ele

va

tio

n (

mA

OD

)

Recorded profile HEC-RAS predicted profile

Page 26: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Calibrated model

47.08

45.65

44.72

42.78

44.20

41.34

41.91

47.19

45.71

44.82

44.22

42.91

41.36

41.89

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 1.000 2.000 3.000 4.000 5.000 6.000

Chainage (km)

Ele

va

tio

n (

mA

OD

)

Recorded profile HEC-RAS predicted profile

Page 27: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr Bed level

Culvert 1

Culvert 2

Page 28: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr Bed level

Culvert 1

Culvert 2

Page 29: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr Bed level

Culvert 1

Culvert 2

Page 30: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr Bed level

Culvert 1

Culvert 2

Page 31: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr Bed level

Culvert 1

Culvert 2

Page 32: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr 1 in 100yr Bed level

Culvert 1

Culvert 2

Page 33: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr 1 in 100yr1in 200yr Bed level

Culvert 1

Culvert 2

Page 34: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Running the storm events

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr1 in 100yr 1in 200yr Bed level 1 in 500 yr

Culvert 1

Culvert 2

Page 35: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 36: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Net Present Value

• Interest Rate - 6%

• Time period - 60 years

• Annuity rate - 16.16

Page 37: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Preliminary Damage EstimateMethod 1• Averaging previous flood damages• NPV = £5.17 million

Method 2• Using Depth/Damage relationship from

previous flood events• NPV = £6.43 million

Page 38: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Depth/Damage Model

• Created as spreadsheet

• Estimates Direct, Tangible Damages

• Based on depth/damage graphs

• Calculates damage every 50m

• 2 sites of 100m x 2km– Residential– Business and Retail

Page 39: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Residential Layout

320 Terrace Houses

(6.25m x 20m)

300 Semi-detached Houses

(10m x 20m)

40 Detached Houses

(15m x 20m)

Page 40: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Business/Retail Layout

4 Offices

(25m x 100m)

Clothing Store

(50m x 160m)

Electrical Store

(20m x 250m)

Household Store

(20m x 400m)Supermarket

(50m x 180m)

Page 41: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

NPV - Direct Damages

£0

£500,000

£1,000,000

£1,500,000

£2,000,000

£2,500,000

£3,000,000

£3,500,000

0 2 4 6 8 10

Y=-ln(-ln(1-1/Tr))

NP

V

NPV = £2.91 million

Page 42: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 43: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Off-Site Storage

• Purpose - attenuate river flows

• Requirements

• Predominate EquationINFLOW - OUTFLOW = STORAGE• Outlet Devices

• Energy Dissipation

Page 44: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Requirements• Dam must not be overtopped by

PMF/10,000 year flood

• Dam will stop all flooding at 50 year return period

• Water level behind reservoir must not reach 58.0 m AOD

Page 45: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Equation Terms• INPUT - OUTPUT = STORAGE

• INPUT– Hydrograph data– Return periods:

2,5,10,25,50,100,200,500,10 000, PMF

• STORAGE– Contours– Areas– Volumes

Page 46: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

OUTPUT

• Bankfull Discharge

• Device 1– Radial Gate– 5.2 m3/s– 4 m x 0.235m

• Device 2– Weir and spillway– For additional discharge– 30m wide

Radial ‘Tainter’ Gate

‘Ogee’ Spillway

00.5

11.5

22.5

33.5

44.5

55.5

66.5

77.5

88.5

99.510

10.511

11.512

12.513

13.514

14.515

15.5

0 10 20 30 40 50 60 70

Time(hrs)

Inflow

Outflow total

MAXIMUM ALLOWABLE DISCHARGE:

5 . 2 m3/S

Inflow, Storage and Outflow from the Storage Structure

Page 47: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Off-site Storage Dam

• 100m wide• Slope of 1 in 2.5• 29m breadth

• Safety Fencing• Up-stream Rip-rap

protection• Down-stream grass

protection

Plan of the storage structure

Page 48: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Energy Dissipation• Create a hydraulic jump• Convert super-critical flow to sub-critical flow• Abrupt drop in level of stilling basin• Dependant on Froude Number, water depth

and step height

Abrupt Drop Energy Dissipator

Page 49: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 50: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Existing water levels

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr1 in 100yr 1in 200yr Bed level 1 in 500 yr

Culvert 1

Culvert 2

Page 51: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Widening the culverts

2.5m

3m

Page 52: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Widening the culverts

3.5m

3m

Page 53: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Widening the culverts

3.5m

3.5m

Page 54: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Widening the culverts

3.5m

6.75m

Page 55: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Widening the culverts

Gabions

Page 56: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Without culverts widened

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr1 in 100yr 1in 200yr Bed level 1 in 500 yr

Culvert 1

Culvert 2

Page 57: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

40.00

41.00

42.00

43.00

44.00

45.00

46.00

47.00

48.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Chainage (km)

Wa

ter

su

rfa

ce

lev

el (

mA

OD

)

1 in 2yr 1 in 5yr 1 in 10yr 1 in 25yr 1 in 50yr

1 in 100yr 1in 200yr Bed level 1 in 500 y

Culvert 1

Culvert 2

With fully widened culverts

Page 58: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Flood wall

1m

No dam1 in 200 year

Page 59: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Flood wall

1m

No dam1 in 500 year

Page 60: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Flood wall

1.2m

No dam1 in 500 year

Page 61: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Flood wall

1m

With dam1 in 500 year

Page 62: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Flood wall

0.5m

With dam1 in 200 year

Page 63: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 64: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Economic Appraisal

• 7 different alleviation schemes

• Total cost = Construction Costs + Residual Damages

• Do-nothing option = £2.91m

• Cost/benefit ratios calculated

Page 65: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme A

Widening the Culverts

• Damages prevented < 1 in 2 year flood

• Total Cost = £1.7m

• Cost/benefit = 0.77

Page 66: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme B

Widening the Culverts and 1m Flood Wall

• Damages prevented < 1 in 500 year flood

• Total Cost = £2.13m

• Cost/benefit = 0.96

Page 67: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme C

Widening the Culverts and 1.2m Flood Wall

• Damages prevented 1 in 500 year flood

• Total Cost = £2.42m

• Cost/benefit = 1.1

Page 68: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme D

Dam and Storage Reservoir

• Damages prevented 1 in 50 year flood

• Total Cost = £1.3m

• Cost/benefit = 0.59

Page 69: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme E

Dam and Widening the Culverts

• Damages prevented 1 in 50 year flood

• Total Cost = £1.76m

• Cost/benefit = 0.8

Page 70: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme F

Dam, Widening the Culverts and

1m Flood Wall

• Damages prevented 1 in 500 year flood

• Total Cost = £3m

• Cost/benefit = 1.37

Page 71: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Scheme G

Dam, Widening the Culverts and

0.5m Flood Wall

• Damages prevented < 1 in 500 year flood

• Total Cost = £2.4m

• Cost/benefit = 1.1

Page 72: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Comparison of Schemes

£0

£500,000

£1,000,000

£1,500,000

£2,000,000

£2,500,000

£3,000,000

£3,500,000

- A B C D E F G

To

tal

Co

st

ResidualDamages

ConstructionCosts

Page 73: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Warning Systems

• 4 hour warning £2.55m Damages =12% reduction

• Combined with Scheme E:– Construction Cost £1.57m– Residual Damages £170,000– Total Cost £1.74m

• Cost/benefit = 0.6

Page 74: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY
Page 75: Penny Coombes Sarah Wharton Gary Davies Simon White River Bee, Desing FLOOD ALLEVIATION FEASIBILITY

Conclusion

• Construction of Dam

• Widening of Culverts

• Establish 4 hour warning system

• Total Cost = £1.74m

• Cost effective

• Environmentally sound