55
Peering into Moore’s Crystal Ball: Crystal Ball: Transistor Scaling beyond beyond the 15nm node Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology Portland Technology Development Intel Corporation Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

Peering into Moore’s Crystal Ball:Crystal Ball...2010/09/29  · Crystal Ball:Crystal Ball: Transistor Scaling beyond the 15nm node Kelin J. Kuhn Intel Fellow Director of Advanced

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Peering into Moore’s Crystal Ball:Crystal Ball:

    Transistor Scaling beyondbeyond

    the 15nm node

    Kelin J. KuhnIntel Fellow

    Director of Advanced Device TechnologygyPortland Technology Development

    Intel Corporation

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

  • AGENDA• Scaling • Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

  • Consistent 2-year scaling

    22nm WIDE

    90nm – TALL

    65nm – WIDE - 0.57 m245nm – WIDE

    0.346 m232nm – WIDE

    0.171 m222nm – WIDE

    0.092 m2

    90nm TALL1.0 m2 90 nm

    200390 nm2003

    45 nm200745 nm2007

    65 nm200565 nm2005

    22 nm2011

    projected

    22 nm2011

    projected

    32 nm200932 nm2009

    90: 765: 8

    32: 945: 9

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 2

  • Changes in ScalingTHEN

    • Scaling drove down costNOW

    • Scaling drives down costScaling drove down cost• Scaling drove performance• Performance constrained

    Scaling drives down cost• Materials drive performance• Power constrained

    • Active power dominates• Independent design-process

    • Standby power dominates• Collaborative design-process

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    130nm 90nm 65nm 45nm 32nm

    3

  • Consistent SRAM Density Scaling

    10.00

    m2 )

    rea

    (m

    1.00

    tcel

    l Ar

    2X bitcell area

    0.10

    Bit 2X bitcell area

    scaling

    90nm 65nm 45nm 32nm

    Process generation22nm

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    K. Zhang, ISCC, 2009; M. Bohr IDF 2010

    g

    4

  • AGENDA• Scaling

    G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 5

  • Short Channel Control: HiK-MG

    45 nm High-k/MG enabled 0.7X T E li hil d iHK+MG ToxE scaling while reducing Ig >> 25X for NMOS and 1000X for PMOS

    e 2 02 0

    1000X for PMOS

    0 1

    1

    10

    100

    te L

    eaka

    ge SiON/Poly 65nm

    SiON/Poly 1.5

    2.0

    1.5

    2.01.0 V, 100 nA IOFF

    45nm32nm

    65nm

    mA

    /um

    )0 0001

    0.001

    0.01

    0.1

    mal

    ized

    Gat

    HiK+MG 45nm

    HiK+MG45nm

    65nm

    0.5

    1.0

    0.5

    1.090nm

    NMOS

    130nme

    curr

    ent (

    65nm: Bai 2004 IEDM

    0.00001

    0.0001

    -1.2 -0.8 -0.4 0 0.4 0.8 1.2

    VGS (V)

    Nor

    m NMOS PMOS

    0.0

    0.5

    1001000 Gate Pitch (nm)

    0.0

    0.5

    PMOSDriv

    e

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    VGS (V) Gate Pitch (nm)

    6

  • Ultra-thin bodyith RSD

    Benefitswith RSD

    Extension of l t h lplanar technology

    (less disruptive to manufacturing)

    Improved RDF (low doped

    channel)

    C tibl

    channel)

    Compatible with RSD

    technology

    Excellent channel

    Potential for body bias

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    controly

    7

  • ChallengesUltra-thin bodyith RSD

    V i ti

    with RSDCapacitance

    (Increased fringe to Variation:(film thickness changes affect VT and DIBL)

    (Increased fringe to contact/facet)

    Rext: (Xj/Tsi

    limitations)

    VT and DIBL)

    limitations)

    Strain:(strain transfer from

    Manufacturing:

    (strain transfer from S/D into the channel) Performance:

    (transport challenges with thin Tsi)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    g(requires both thin Tsi and thin BOX)

    with thin Tsi)

    8

  • Ultra-thin bodyBarral – CEA-LETI / L2MP / SOITEC – IEDM 2007

    Ch IBM VLSI 2009Cheng – IBM – VLSI 2009

    Lg=25nmTsi=6nm

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 9

  • MuGFET Benefits

    Nearly ideal sub-th h ld l

    Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

    threshold slope (gates tied together)

    (less scattering, improved VT shift)

    Improved RDF (low doped

    channel)channel)

    Excellent channel controlCan be on

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    controlCan be on bulk or SOI

    10

  • MuGFET with RSD

    Benefitswith RSD

    Nearly ideal sub-th h ld l

    Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

    threshold slope (gates tied together)

    (less scattering, improved VT shift)

    Improved RDF (low doped

    channel)channel)

    Compatible with RSD

    technology

    Excellent channel control

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    gy control

    10A

  • MuGFET Benefits

    Possibility for i d d t t

    Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

    independent gate operation

    (less scattering, improved VT shift)

    Improved RDF (low doped

    channel)channel)

    Excellent channel control

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    control

    10B

  • MuGFET ChallengesVariation

    (Mitigating RDF but acquiring Gate wraparound(Endcap coverage)Capacitance Hsi/Wsi/epi) (Endcap coverage)Capacitance (fringe to contact/facet)

    (Plus, additional “dead space” elements)

    Small fin pitch

    space elements)

    Small fin pitch (2 generation scale?)

    Fin/gate fidelity on 3’D(Patterning/etch)

    Rext: (Xj/Wsi

    Topology(Polish / etch challenges)

    Fin Strain engr.(Effective strain

    t f f fi

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    ( jlimitations)

    challenges)transfer from a fin into the channel)

    11

  • Kawasaki – Toshiba / IBM – IEDM 2009 MuGFET

    Sim

    Jurczak – IMEC - SOI 2009

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 12

  • Nanowire Benefits

    Nearly ideal sub-th h ld l

    Nanowire further

    threshold slope (gates tied together)

    Nanowire further relaxes Tsi / Wsi

    requirementsImproved RDF

    (low doped channel)channel)

    Excellent channel control

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    control

    13

  • BenefitsNanowire

    Nearly ideal sub-th h ld l

    Nanowire further

    threshold slope (gates tied together)

    Nanowire further relaxes Tsi / Wsi

    requirementsImproved RDF

    (low doped channel)channel)

    Compatible with RSD

    technology

    Excellent channel control

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    gy control

    13A

  • Nanowire ChallengesGate conformality

    Capacitance (fringe to contact/facet)

    Gate conformality(dielectric and metal)

    (Plus, additional “dead space” elements)

    Integrated wire fabrication

    Wire stability(bending/warping)

    Variation(Mitigating RDF but

    wire fabrication (Epitaxy? Other?)

    (bending/warping)

    acquiring a myriad of new sources)Mobility degradation

    (scattering)

    Fi / t fid lit 3’D

    Rext:

    Fin Strain engr.(Effective strain

    transfer from wire

    Fin/gate fidelity on 3’D(Patterning/etch)

    Topology

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    (Xj/Wsi limitations)

    into the channel)Topology

    (Polish / etch challenges) 14

  • Nanowire FETsDupre – CEA-LETI – IEDM 2008

    Bangsaruntip – IBM – IEDM 2009

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 15

  • Nanowire FETsHashemi/Hoyt – MIT IEDM 2008 EDL/ESSDRC 2009IEDM 2008 EDL/ESSDRC 2009

    Moselund – Ecole Polytechnique, SwitzerlandIEDM 2007

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 16

  • Vertical Architectures

    BenefitsArchitectures

    Vertical orientation50% reduction in

    “plan view” density

    Vertical orientation may enable new circuit concepts

    Reduced vertical i t t

    Possibility for different N/P materials/orientations

    interconnect capacitance

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 17

  • Vertical Architectures

    ChallengesArchitectures

    Rext: (Xj/Wsi

    Thermal processing (Top layer may need to

    Gate conformality(dielectric and metal)(Xj/Wsi

    limitations)(Top layer may need to

    be processed over existing bottom layer)

    (dielectric and metal)

    Fin/gate fidelity on 3’DContacts

    (Diffusion-diffusion,Gate gate contactsTopology

    Fin/gate fidelity on 3 D(Patterning/etch)

    Gate-gate contacts extremely challenging)

    Topology(Polish / etch challenges)

    Lithography(May double the number

    of FE critical layers) Capacitance (fringe to contact/facet)

    Strain engineering(more challenging

    Variation(Mitigating RDF but

    (fringe to contact/facet)(Plus, additional “dead

    space” elements)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    (more challenging than single layer)

    ( g gacquiring a myriad

    of new sources) 18

  • VerticalBatude – CEA LETI - IEDM 2009 – stacked 110/100

    Jung – Samsung - IEEE TED 2010 – 3‘D stacked 6T

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 19

  • TFET (Tunneling Field-Effect Transistor)

    Vd

    VgPrinciple of operation• Band-to-band- tunneling through source

    barrier, modulated by gate field

    Gate

    Source Drain

    Vd

    P+ i-InAs Nbarrier, modulated by gate field

    Advantages• Steep (< 60 mV/dec) sub-threshold slope

    L I /I ff ti• Large Ion/Ioff ratio

    Disadvantages• Low drive currentsLow drive currents• Ambipolar conduction• Unidirectional conduction• Potentially high hot-e- effects

    Technology Intercept• Unlikely candidate for Si, Ge, or Si1-xGex

    systems (drive currents too low)Tunneling barrierssystems (drive currents too low)

    • Probably needs III-V band-gap engineering, perhaps with “broken-gap”

    Courtsey M. Luisier (Purdue) M. Luisier and G. Klimeck, EDL, 2009

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 20

    M. Luisier and G. Klimeck, EDL, 2009

  • Sensitivity to Source Doping VariationTFET Source Doping Gradient

    1E+20

    1E+21

    G

    TFETTSi = 5nm, Lg = 20nm, Vds = 0.5V

    1E-071E-061E-05

    TFET behavior is very

    1E+16

    1E+17

    1E+18

    1E+19Grad 0Grad 1Grad 2

    1E-131E-121E-111E-101E-091E-08

    Ids

    (A/u

    m)

    Grad0

    TFET behavior is very sensitive to the source

    doping “shape”

    1E+14

    1E+15

    1E 16

    -4 -2 0 2 4 6X (nm)

    1E-171E-161E-151E-141E 13

    0.0 0.2 0.4 0.6 0.8 1.0

    Grad0Grad1Grad2

    Vgs (V)

    MOSTSi = 5nm, Lg = 20nm, Vds = 0.5V

    1E-02MOS Source Doping Gradient

    1E+21

    1E-05

    1E-04

    1E-03

    (A/u

    m)

    1E+19

    1E+20 Grad0Grad1Grad2

    MOS behavior has little sensitive to the source

    doping “shape”

    1E 09

    1E-08

    1E-07

    1E-06

    Ids

    Grad0Grad1Grad21E+17

    1E+18

    -4 -2 0 2 4 6

    p g p

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    1E-090.0 0.2 0.4 0.6 0.8 1.0

    Vgs (V)

    -4 -2 0 2 4 6X (nm)

    21

  • Best Demonstrated TFETs• Still MUCH lower drive currents

    than conventional MOSR i b d i i

    1 .0 0 E -0 4

    1 .0 0 E -0 3

    1 .0 0 E -0 2

    32nm MOS@ Vds = 0.8V

    • Require band-gap engineering with hetero-junction layers

    • Sub-threshold slope still poor1 .0 0 E -0 7

    1 .0 0 E -0 6

    1 .0 0 E -0 5

    [1]

    1 .0 0 E -0 8

    0 0 .2 0 .4 0 .6 0 .8 1

    S. Mookerjea et al., IEDM ‘09

    [1] K. Jeon, et al., VLSI (11.4.1.-1) 2010 [2] W. Choi et al., IEEE-EDL vol.28, no.8, p.743 (2007)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    [ ] , , , p ( )[3] F. Mayer et al., IEDM Tech Dig., p.163 (2008)[4] T. Krishnamohan et al., IEDM Tech Dig., p.947 (2008)

    22

  • AGENDA• Scaling

    G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 23

  • Transistor Performance Trend1.5

    1.0 V, 100 nA I OFF32nm

    Strain

    Drive1.0

    45nm

    65nm

    Strain

    Hi-k-MG

    OtherDrive Current (mA/um) 0.5

    65nm

    90nm

    130nm

    “Classic” scaling

    0.0

    PMOS

    St i i iti l i di t i d t i t li

    1001000Gate Pitch (nm)

    Strain is a critical ingredient in modern transistor scalingStrain was first introduced at 90nm, and its contribution has

    increased in each subsequent generation

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    q g

    24

  • Strain in modern d i

    Stress memorization

    devices

    Wei, VLSI 2007

    Ghani, IEDM 2003

    Mayuzumi, IEDM 2007Mayuzumi, IEDM 2007

    Auth VLSI 2008

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    Yang, IEDM 2008Auth, VLSI 2008

    25

  • ORIENTATION(110) surface – top down(100) surface – top down

    Non standard

    Non-standard

    (110) Surface

    Standard wafer / direction(100) Surface / channel

    (100) Surface / Three possible channel directions and

    (100) (110)(100) Surface / 100 (a “45 degree” wafer)

    Both directions are the samesame.

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 26

  • ORIENTATION(110) surface – top down(100) surface – top down

    Non standard

    Non-standard

    (110) Surface

    Standard wafer / direction(100) Surface / channel

    (100) Surface / Three possible channel directions and

    (100) (110)(100) Surface / 100 (a “45 degree” wafer)

    Both directions are the samesame.

    (100) BEST NMOS (110) BEST PMOS

    YangAMD/IBM EDST 2007

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 26A

  • Orientation and Strain:More complex for non-(100) orientations

    (001) Surface (k=0) (001) Surface Vg=-1V(001) Surface

    Vg=-1V, Sxx=-1GPa(100)

    More complex for non (100) orientations

    (110) Surface (k=0) (110) Surface Vg=-1V(110) Surface

    Vg=-1V, Sxx=-1GPa(110)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 89

    BULK 1’D CONFINED 1’D CONFINEDSTRAINED

    Kuhn/Packan, Intel, IEDM 2008 27

  • Si vs Ge MOSFETs

    Gate

    Drainn-Ge

    Gate

    Drainn-GeSource

    DrainSource

    Drain

    The introduction of manufacturable HiK-MG

    Intel 45nm HiK-MG Si device [43] Intel HiK-MG Ge device

    transistors has led to the reconsideration of Ge channels

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 28

  • Ge Historical Issues: Still critical today

    (eV)

    Still critical today

    4

    5

    n A

    ffini

    ty

    150

    200

    V/c

    m

    Si (no strain)Ge 100%Ge 55%SiGe 25%

    2

    3

    d El

    ectr

    on

    100

    ITY

    @1M

    cm2/

    V.s)

    SiGe 25%

    0

    1

    ndga

    p an

    d

    0

    50

    MO

    BIL (

    c

    0Si Ge InP GaAs InSbB

    an

    010 15 20

    TOXE (A)

    Narrow Bandgap Poor Quality Dielectric

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 29

  • Narrow Bandgap

    1.2

    V)

    100000

    V.s)

    BTBTSourceAdapted from Fischetti [7], Krishnamohan [60]

    Adapted from Saraswat [59], Krishnamohan [60]

    0.6

    0.8

    1

    andg

    ap (e

    V

    10000

    ity (c

    m^2

    /V

    Eg

    ||h e

    Krishnamohan [60]

    1 E 05

    1.E-04

    1.E-03

    m]0.2

    0.4

    0.6

    Ener

    gy B

    a

    1000

    Hol

    e m

    obiliEg

    Eg

    Drain

    DRAIN

    1.E-07

    1.E-06

    1.E-05

    Id, I

    s [A

    /um DRAIN

    High Junction Leakage

    00 20 40 60 80 100

    SiGe (PERCENTAGE)

    100

    HSource

    1.E-09

    1.E-08

    -1.5 -0.5 0.5 1.5Vg - Vt [V]

    SourceS Ge ( C G )

    Band-to-band tunneling: challenge for low Eg materials

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 30

  • Dielectric Quality

    GeGe to

    GeGe/GeGeOO22

    GeGeOO22(110)

    sub‐oxide oxide transition

    GeGe(111)

    Heynes, 2008 [9]

    Since HiK-MG dielectrics typically form with a bilayer (the HiK + yp y y (an interface layer) the challenge of germanium oxide still exists.Germanium oxide exists in several morphologies, unfortunately,

    most are hydroscopic and/or volatile

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    most are hydroscopic and/or volatile.

    31

  • Ge Benchmarking

    B t il

    Irisawa2005

    Romanjek2008

    1.E-04

    1.E-03Yamamoto

    2007

    Batail2009

    Nicholas 2007

    1.E-06

    1.E-05

    ff (A

    /um

    )

    Wang

    1.E-08

    1.E-07IofWang

    2007 Zimmerman2006

    1.E-090 200 400 600 800 1000

    Ion (mA/um)

    Tezuka2006

    A d i

    Hellings2009

    Andrieu2005

    Harris2007

    Mitard2009

    Liao2008

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    2007

    32

  • III-V: The Lure of High Mobility

    nd

    ty (

    eV)

    ctro

    n2-

    V.s)

    4

    5 1000000

    ndga

    pa

    on A

    ffini

    and

    Elec

    ity (c

    m2

    2

    3

    4

    1000

    Ban

    Elec

    tro

    Hol

    e a

    Mob

    il

    0

    1

    Si Ge InP GaAs InSb1

    Ad t d f J K li I t l VLSI SC 2007

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    Adapted from J. Kavalieros – Intel - VLSI SC 2007K. Kuhn – ECS 2010

    33

  • III-V MOSFETs:“D it f t t b ttl k”

    From R. Kim

    “Density-of-states bottleneck”

    O t f MOSFET• On-current of a MOSFET

    • Velocity υ

    I Q

    y– Diffusive : mobility μ, υ = μE– Ballistic: injection velocity υinj– Light m* → high μ, high υinj

    • Charge Q G hQ C V V g Q– MOS limit (CQ » Cox), C ≈ Cox– Light m* → less D (CQ), less C, less Q

    M i f hi id (l )

    1 1 1

    G th

    Q

    Q C V V

    C C C

    – More important for thin oxide (large Cox),

    “DOS bottleneck”2

    ox Q

    Q

    C C C

    C q D

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 34

  • Use of L-valleys: GaAs From R. Kim

    • GaAs 4 nmkyy

    [001][011]

    single band from Γ

    Small DOS with high vinjHigh DOS with low vinj

    8 L-valleys

    kx[010]

    Γ

    (100)

    ky[ 1 12]

    ( )

    [-1-12][-211] Multiple bands from

    Γ and LMore DOS with high vinj

    kx[-110]

    (111)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    ( )

    35

  • Different body thicknesses (EOT=1.0 nm)

    4 nm2 nm 8 nm

    GaAs>InGaAs>GaSb>Ge>Si GaSb,InGaAs>Ge,GaAs>Si InGaAs>GaSb>Ge,GaAs>Si

    Diff t b d thi k (EOT 0 5 )Different body thicknesses (EOT=0.5 nm)

    42 84 nm2 nm 8 nm

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    GaSb>GaAs>Ge>Si>InGaAs GaSb>Ge>GaAs>Si,InGaAs GaSb>Ge>GaAs, InGaAs>Si

    From R. Kim

  • AGENDA• Scaling

    G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 37

  • Planar Resistive Elements

    RCONTACTRCONTACTRCONTACT

    RSILICIDE

    RCONTACT

    RSILICIDE

    RINTERFACERINTERFACE

    RACCUMULATIONR

    REPI RACCUMULATIONR

    REPI

    RSPREADINGRSPREADING

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38

  • Planar Resistive ElementsRacc: Sub-melt Laser Anneal

    1E+19

    1E+20

    1E+21

    1E+22

    trat

    ion

    (ato

    ms/

    cm3)

    #0 - No Laser#4 - 91%, 60us#5 - 88%, 60us#6 - 85%, 60us#7 - 54%, 200us

    q

    RCONTACTRCONTACT1E+17

    1E+18

    0 10 20 30 40 50 60

    Depth (nm)

    Con

    cent

    Phosphorus

    Depth (nm)

    Kuhn IWJT 20010RCONTACT

    RSILICIDE

    RCONTACT

    RSILICIDE

    Kuhn, IWJT 20010

    RINTERFACERINTERFACE1E+20

    1E+21

    (cm

    -3)

    Racc: Solid-phase Epi Regrowth

    RACCUMULATIONR

    REPI RACCUMULATIONR

    REPI1E+17

    1E+18

    1E+19

    Con

    cent

    ratio

    n

    B in Si

    RSPREADINGRSPREADINGKuhn, IWJT 20010

    0 40 80 120Depth (nm)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38A

  • Planar Resistive ElementsRacc: Sub-melt Laser AnnealRinterface: Reduction inS h ttk B i H i ht

    BN

    qR expinterface

    1E+19

    1E+20

    1E+21

    1E+22

    trat

    ion

    (ato

    ms/

    cm3)

    #0 - No Laser#4 - 91%, 60us#5 - 88%, 60us#6 - 85%, 60us#7 - 54%, 200us

    q

    1.1

    1.3Schottky theoryExperiment

    4th period transition 6th period transition 5th period transition

    metals

    Pt78;6

    Ir

    Schottky Barrier Height DNinterface

    RCONTACTRCONTACT1E+17

    1E+18

    0 10 20 30 40 50 60

    Depth (nm)

    Con

    cent

    Phosphorus

    Depth (nm)

    Kuhn IWJT 20010i(e

    .v.)

    0.7

    0.9

    metals metalsmetals

    Ti22;4

    V23;4

    Cr

    Nb41;5

    Ni28;4

    Co27;4Fe

    26;4Mn25;4

    Ir77;6

    Os76;4

    Re75;6

    W74;6

    Ta

    Pd46;5

    Rh45;5Ru

    44;5Mo42;5

    Desired for PMOS

    RCONTACT

    RSILICIDE

    RCONTACT

    RSILICIDE

    Kuhn, IWJT 20010

    nS

    Si Mid-Gap

    0.3

    0.5Lanthanides

    Cr24;4 Zr

    40;5

    Y39;5

    73;6Hf72;6

    Er68;6

    Dy66;6

    Gd64;6

    Yb70;6

    RINTERFACERINTERFACE1E+20

    1E+21

    (cm

    -3)

    Racc: Solid-phase Epi Regrowth

    0.1

    0.1

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    Desired for NMOS

    RACCUMULATIONR

    REPI RACCUMULATIONR

    REPI1E+17

    1E+18

    1E+19

    Con

    cent

    ratio

    n

    B in Si

    Schottky Barrier Height Reduction is a critical area for development. Techniques under investigation include

    exotic alloys, implants, and Fermi-unpinning layersRSPREADINGRSPREADING

    Kuhn, IWJT 20010

    0 40 80 120Depth (nm)

    y , p , p g y

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38B

  • Planar Resistive Elements

    Rcontact: Decreased Resistance of the Contact Metal

    RCONTACTRCONTACT Kuhn IWJT 20010

    of the Contact Metal

    RCONTACT

    RSILICIDE

    RCONTACT

    RSILICIDE

    Kuhn, IWJT 20010

    RINTERFACERINTERFACE

    RACCUMULATIONR

    REPI RACCUMULATIONR

    REPI Topol, VLSI 2006Copper Contacts

    RSPREADINGRSPREADINGKuhn, IWJT 20010

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38C

  • Schottky barrier S/D – an option? Electron leakage set by Eg-SBH • In a metal SB MOS S/D• In a metal SB-MOS, S/D

    forms an atomically abrupt Schottky-barrier having the height bheight b.

    • The extreme limit for metal in the S/D regions (with

    i t d i t iassociated improvements in Rext)

    • Unconventional operation

    Metallic SD Conventional

    p(field emission device in the ON state)

    • Needs complementaryLarson – Spinnaker

    TED 2006Hole barrier set by SBH

    Needs complementary devices (midgap silicide or two silicides)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 47

    y

    39

  • Schottky barrier S/D – an option? Zh IEEE TED M 2009

    • In a metal SB MOS S/D

    Electron leakage set by Eg-SBH

    Zhu IEEE TED May 2009

    • In a metal SB-MOS, S/D forms an atomically abrupt Schottky-barrier having the height bheight b.

    • The extreme limit for metal in the S/D regions (with

    i t d i t i Two possible conduction paths:

    Thermionic over the barrier good SS slopeassociated improvements in Rext)

    • Unconventional operation

    Thermionic – over the barrier – good SS slope Tunneling – through the barrier – poor SS slope

    p(field emission device in the ON state)

    • Needs complementaryMetallic SD Conventional

    Needs complementary devices (midgap silicide or two silicides)

    Larson – SpinnakerTED 2006Hole barrier

    set by SBH

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 48

    y

    39A

  • Schottky barrier S/D – an option? Electron leakage set by Eg-SBH

    Benefits

    • Low bulk resistance contacts to the channelLow bulk resistance contacts to the channel• Very abrupt junctions • No random s/d dopant fluctuation effects• Minimize s/d carrier-carrier scattering effects

    Challenges

    g

    • Poor experimental drive currents• Requires bandedge Schottky barriers • Ambipolar conduction

    Metallic SD Conventional

    Ambipolar conduction (high drain-body leakage for bulk devices)

    • Early contact formation limits midsection process temperatures

    Larson – SpinnakerTED 2006Hole barrier

    set by SBH

    p p• Need alternative approach for s/d stressors

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    y

    39B

  • AGENDA• Scaling

    G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 40

  • Planar Capacitive Elements

    Cfringe to Contact

    CjunctionCfringe to

    facet

    Cfringe to diffusion (of/if)

    Gated-edge junction Cxud - device

    component of Cov

    ( )

    Cchannel component

    (XUD-based)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    Area junction of Cgate

    Kuhn, Intel, IEDM SC 2008 41

  • Planar Capacitive Elements

    Cfringe to Contact

    CjunctionCfringe to

    facet SiBCN (Low-K) SPACERKo –TSMC

    Cfringe to diffusion (of/if)

    VLSI 2008

    Gated-edge junction Cxud - device

    component of Cov

    ( )

    Cchannel component

    (XUD-based)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

    Area junction of Cgate

    Kuhn, Intel, IEDM SC 2008 41A

    SPACER REMOVALLiow – NUS Singapore

    EDL 2008

  • AGENDA• Scaling

    G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 42

  • Looking ForwardLooking ForwardLow risk

    E h t i t i t h lEnhancements in strain technologyEnhancements in HiK/MG technology

    Medium RiskOptimized substrate and channel orientation

    Reduction in MOS parasitic resistanceReduction in MOS parasitic resistanceReduction in MOS parasitic capacitance

    High riskUTB devices / MuGFETS

    NanowiresNanowires3’D Stacked Devices

    Advanced materials (Ge/III-V)

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 43

  • Q&AQ&A

    Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 44