PDF Conference 12

Embed Size (px)

Citation preview

  • 8/17/2019 PDF Conference 12

    1/58

    Seppo Honkanen, Brian R. West,Seppo Honkanen, Brian R. West,

    and Sanna Yliniemiand Sanna Yliniemi

    Optical Sciences CenterOptical Sciences Center

    University of ArizonaUniversity of Arizona

    Recent Advances on Ion-Exchanged Glass Waveguidesand Devices

  • 8/17/2019 PDF Conference 12

    2/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 22

     Acknowledgements Acknowledgements

    David Geraghty, Jose CastroDavid Geraghty, Jose Castro

    ECE, University of ArizonaECE, University of Arizona

    Nasser Peyghambarian, Axel Schulzgen, Pratheepan Madasamy, MikeNasser Peyghambarian, Axel Schulzgen, Pratheepan Madasamy, MikeMorrell and Jason AuxierMorrell and Jason Auxier

    Ray Kostuk, James Carriere, Jesse FrantzRay Kostuk, James Carriere, Jesse Frantz

    OSC, University of ArizonaOSC, University of Arizona

    NicholasNicholas BorelliBorelli

    Corning, Inc.Corning, Inc.

    Joseph HaydenJoseph Hayden

    Schott North AmericaSchott North America

    Funding: Arizona State Photonics Initiative, NSF, Corning, BAE SFunding: Arizona State Photonics Initiative, NSF, Corning, BAE Systemsystems

  • 8/17/2019 PDF Conference 12

    3/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 33

    OverviewOverview

    •• Historical background and reviewHistorical background and review

    •• Ion exchange processesIon exchange processes

    •• Process modelingProcess modeling

    •• Optical modeling of waveguidesOptical modeling of waveguides

    •• Parameter extractionParameter extraction

    •• Model validationModel validation

    •• Channel waveguide examplesChannel waveguide examples•• Device DemonstrationsDevice Demonstrations

    •• Outlook and ConclusionOutlook and Conclusion

  • 8/17/2019 PDF Conference 12

    4/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 44

    Ion ExchangeIon ExchangeHistorical BackgroundHistorical Background

  • 8/17/2019 PDF Conference 12

    5/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 55

    Historical BackgroundHistorical Background

    •• First known useFirst known use – – coloring of earthenwarecoloring of earthenware(6(6thth century Egypt)century Egypt)

    •• Staining of window glassStaining of window glass (Europe, middle ages)(Europe, middle ages)•• First engineering applicationFirst engineering application – – improvingimproving

    surfacesurface--mechanical properties ofmechanical properties of

    structural glassstructural glass (1913, 1960s)(1913, 1960s)

    •• Related application: improving thermal shockRelated application: improving thermal shock

    resistance of laser glassesresistance of laser glasses

  • 8/17/2019 PDF Conference 12

    6/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 66

    Historical BackgroundHistorical Background

    •• First published results of opticalFirst published results of optical

    waveguide fabrication by ion exchangewaveguide fabrication by ion exchange

    (thermal exchange + field assisted burial)(thermal exchange + field assisted burial)Izawa, T., and H.Izawa, T., and H. NakagomeNakagome,, “ “Optical waveguide formed by electricallyOptical waveguide formed by electricallyinduced migration of ions in glass plates,induced migration of ions in glass plates,” ”  Appl Appl. Phys.. Phys. LettLett.. 2121, pp. 584, pp. 584--

    586 (1972).586 (1972).

    •• First published results of silver ionFirst published results of silver ion--

    exchanged waveguidesexchanged waveguidesGiallorenziGiallorenzi, T. G., E. J. West, R. Kirk, R., T. G., E. J. West, R. Kirk, R. GintherGinther, and R. A. Andrews,, and R. A. Andrews,

     “ “Optical waveguides formed by thermal migration of ions in glass,Optical waveguides formed by thermal migration of ions in glass,” ” 

     Appl Appl. Opt.. Opt. 1212, pp. 1240, pp. 1240--1245 (1973).1245 (1973).

  • 8/17/2019 PDF Conference 12

    7/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 77

    Ion ExchangeIon Exchange

    Waveguide CharacteristicsWaveguide Characteristics•• Low attenuationLow attenuation (

  • 8/17/2019 PDF Conference 12

    8/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 88

    StateState--of of --thethe--art Ionart Ion--ExchangedExchanged

    Waveguide DevicesWaveguide Devices

    Performance of 1XN splittersTypical Y-branch configuration

    1 x N Splitters by Teem Photonics (France)

  • 8/17/2019 PDF Conference 12

    9/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 99

     Amplified splitter by Teem Photonics (France)

    StateState--of of --thethe--art Ionart Ion--ExchangedExchanged

    Waveguide DevicesWaveguide Devices

  • 8/17/2019 PDF Conference 12

    10/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1010

    Ion ExchangeIon ExchangeProcessesProcesses

  • 8/17/2019 PDF Conference 12

    11/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1111

    Ion ExchangeIon Exchange

    ProcessesProcessesThermal exchange from a molten saltThermal exchange from a molten salt

    • Waveguide geometry is defined by openings in an oxidized metal mask 

    • The sample is placed in a melt containing silver ions

    • Ag+ is driven into the substrate by a chemical potential gradient, andNa+ is released into the melt to preserve charge neutrality

    • Ag+ is distributed within the substrate by thermal diffusion

    Na+

     Ag+

  • 8/17/2019 PDF Conference 12

    12/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1212

    Ion ExchangeIon Exchange

    ProcessesProcessesFieldField--assisted thermal exchangeassisted thermal exchangefrom a molten saltfrom a molten salt

    • Ion exchange is enhanced by application of an electric field across thesubstrate

    • Ion migration is dominated by drift rather than diffusion, resulting in amore step-like profile

    Na+

     Ag+

    Va

  • 8/17/2019 PDF Conference 12

    13/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1313

    Ion ExchangeIon Exchange

    ProcessesProcesses

    FieldField--assisted burialassisted burial

    • Substrate is placed into a melt containing Na+ ions

    • Under the influence of an applied field, Ag+ ions are driven further untothe substrate and are replaced by Na+ ions at the surface

    • Buried waveguide has lower loss and birefringence (mode interactionwith the surface is reduced), and better mode matching to optical fiber(waveguide profile becomes rounded)

    Na+

    Na+ Ag+

    Va

  • 8/17/2019 PDF Conference 12

    14/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1414

    Ion ExchangeIon Exchange

    ProcessesProcesses

    Thermal annealingThermal annealing

    • Substrate is held at an elevated temperature

    • Silver ions are redistributed through thermal diffusion

    • Birefringence is reduced as the waveguide becomes more circular

  • 8/17/2019 PDF Conference 12

    15/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1515

    Ion ExchangeIon ExchangeProcess ModelingProcess Modeling

  • 8/17/2019 PDF Conference 12

    16/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1616

    Ion ExchangeIon Exchange

    Process ModelingProcess ModelingBinary ion exchange is described by a nonlinear differential equation

     Ag

     Ag

     Ag

     Ag

     Ag

     Ag AgC 

    kT 

    q

    C  M 

    C  M C 

    C  M 

     D

    C ext

    2

    2

    )1(1

    )()1(

    )1(1

    E

    • C  Ag  is normalized concentration of silver ions (C  Ag = 1 at glass/melt interface)

    • D  Ag  is self-diffusion coefficient of silver ions in substrate glass

    • D Na  is self-diffusion coefficient of sodium ions in substrate glass

    • M = D  Ag  / D Na 

    • Eext is applied electric field

    • T = absolute temperature, k = Boltzmann’s constant, q = electron charge

    thermal diffusioninternal field due to dissimilar D external applied field

  • 8/17/2019 PDF Conference 12

    17/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1717

    Ion ExchangeIon Exchange

    Process ModelingProcess ModelingSolving the Diffusion EquationSolving the Diffusion Equation

    The most common situation requires solution in two (transverse)dimensions only - slow variation of waveguide geometry in the

    propagation direction implies negligible ion transport

  • 8/17/2019 PDF Conference 12

    18/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1818

    Ion ExchangeIon Exchange

    Process ModelingProcess ModelingSolving the Diffusion EquationSolving the Diffusion Equation

    The Peaceman-Rachford Alternating Direction Implicit(PR-ADI) method combines elements of both explicit

    and implicit algorithms• Each time step is divided into two half-steps

    • In the first half-step, derivatives are calculated explicitly in onedirection and implicitly in the other - in the second half-step, theprocedure is reversed

    • As a result, one needs only to solve nx matrices of size ny by ny, then nymatrices of size nx by nx

    • These matrices are tridiagonal – very efficient solution methods exist

  • 8/17/2019 PDF Conference 12

    19/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 1919

    Ion ExchangeIon Exchange

    Process ModelingProcess ModelingBoundary Conditions

     AgC 

    0 AgC 

    0 AgC 

    0 AgC 

    0

     y

    C  Ag

    (burial)0

    exchange)(1 AgC 

  • 8/17/2019 PDF Conference 12

    20/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2020

    Ion ExchangeIon Exchange

    Electrostatic ModelingElectrostatic Modeling

    kT 

    qc D 2 

    Ionic conductivity is calculated using the Nernst-Einstein equation

    Both species of mobile ions contribute to the conductivity

     Ag Ag Na Ag Ag   y xC  y xC C  y x       ),(]),(1[),,(  

    Combining the above two equations

    ),(),(1

    1),,(

    2

    0 y xC  y xC 

     M kT 

    qc DC  y x  Ag Ag

     Ag

     Ag 

    Potential profile is described by a non-standard Laplace equation

    0),(),,(),(),,( 2   y xC  y x y xC  y x  Ag Ag       

  • 8/17/2019 PDF Conference 12

    21/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2121

    Ion ExchangeIon Exchange

    Electrostatic ModelingElectrostatic Modeling

    U  d 

    hV U  a

    V a = applied voltageh = domain thickness

    d = substrate thickness

    0 y

     

    Boundary Conditions

    Electrical potential (color scale) and electric field lines

    Space charge layer

    0 x

     

  • 8/17/2019 PDF Conference 12

    22/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2222

    Ion ExchangeIon Exchange

    Electrostatic ModelingElectrostatic ModelingExample

    Thermal Exchange

    D  Ag = 6 x 10-16 m2 /s M = 0.15 t = 20 min W m = 3 μm

  • 8/17/2019 PDF Conference 12

    23/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2323

    Ion ExchangeIon Exchange

    Electrostatic ModelingElectrostatic ModelingSelective Field-Assisted Burial

    D  Ag = 3 x 10-16 m2 /s M = 0.15 t = 45 min T = 523 K V a = 250 V d = 2 mm

  • 8/17/2019 PDF Conference 12

    24/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2424

    Optical ModelingOptical Modeling

    of of IonIon--Exchanged WaveguidesExchanged Waveguides

  • 8/17/2019 PDF Conference 12

    25/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2525

    ),()()(),,( 0sub   y xC nn y xn  Ag     

    For small changes in ion concentration, there is a linear relationshipbetween silver concentration and refractive index

    Optical ModelingOptical Modeling

    of Ionof Ion--Exchanged WaveguidesExchanged Waveguides

    This allows normalized values to be used for silver ion concentration 

     All eigenmodes and propagation constants (quasi-TE and -TM modes) ofthe waveguide can be solved for using the Helmholtz equation

    nnn   E  E k 222

    )(    

     

      ),(2   y xnk  

    with

  • 8/17/2019 PDF Conference 12

    26/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2626

    Optical ModelingOptical Modeling

    of Ionof Ion--Exchanged WaveguidesExchanged WaveguidesSelectively-Buried Waveguide

    (midpoint)

    λ = 1550 nm, n sub = 1.507,  Δ n 0 = 0.075

    Fundamental mode – n eff = 1.5123

  • 8/17/2019 PDF Conference 12

    27/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2727

    Parameter ExtractionParameter Extraction

  • 8/17/2019 PDF Conference 12

    28/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2828

    Parameter ExtractionParameter Extraction

    •• To evaluate the diffusion equation, we must knowTo evaluate the diffusion equation, we must know D D  Ag  Ag andand M M 

    •• To convert the concentration profile to an index profile,To convert the concentration profile to an index profile,

    we must knowwe must know  Δ  Δ n n 00•• These parameters are dependent on glass composition,These parameters are dependent on glass composition,

    melt composition, and temperaturemelt composition, and temperature

    Glass manufacturers do not routinely provide this dataGlass manufacturers do not routinely provide this data

  • 8/17/2019 PDF Conference 12

    29/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 2929

    Parameter ExtractionParameter Extraction

    •• Ion exchange parameters can beIon exchange parameters can bedetermined by matching thedetermined by matching themeasured index profile of slabmeasured index profile of slabwaveguides (thermally exchanged)waveguides (thermally exchanged)to trial modeling resultsto trial modeling results

    ••  A simple, non A simple, non--destructive methoddestructive methodof determining index profile is byof determining index profile is byreconstructingreconstructing n n ((y y ) from mode) from modeindices measured using a prismindices measured using a prismcouplercoupler

    •• In practice, it is more accurate toIn practice, it is more accurate tocalculate mode indices from a givencalculate mode indices from a givenindex profileindex profile

    •• Previously, onlyPreviously, only brute forcebrute forcemethods have been used to adjustmethods have been used to adjustthe parametersthe parameters

    Guess at parameters

    Simulate IX 

    Calculate modes

     Agree with measurement?

    no

    stop

     yes

    Subsequent guesses require a great deal of intuition

  • 8/17/2019 PDF Conference 12

    30/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3030

    Parameter ExtractionParameter Extraction

    Genetic AlgorithmGenetic Algorithm

    •• Parameter optimization canParameter optimization canbe automated using abe automated using agenetic algorithmgenetic algorithm

    •• The user needs only toThe user needs only tospecify aspecify a rangerange andandresolutionresolution for eachfor eachparameterparameter

    •• Solution of the diffusionSolution of the diffusionequation in 1D (no appliedequation in 1D (no appliedfield) is fastfield) is fast

    Create first generationof trial parameters

    Simulate IX 

    Calculate modes

     Acceptable FOM? no

    stop

     yes

    Calculate figure of merit

    Create nextgeneration of 

    trial parameters

  • 8/17/2019 PDF Conference 12

    31/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3131

    Parameter ExtractionParameter Extraction

    Genetic AlgorithmGenetic AlgorithmCalculate figure of merit

     

     

      

       

    m

    meff meff m   n N wF 2

    ,,exp

    • N eff,m are mode indices calculated from the simulated IX with trial parameters

    • n eff,m are mode indices measured from fabricated slab waveguides

    • w m are weights that determine the relative importance or confidence of each mode(modes that lie near the substrate index may be difficult to accuratelymeasure)

    • Sum of squared errors ensures that errors of either sign provide a positivecontribution to F 

    • exponential factor serves to bias the following generation toward larger vales of F 

  • 8/17/2019 PDF Conference 12

    32/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004

    3232

    ModelModel Validation Validation

  • 8/17/2019 PDF Conference 12

    33/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004

    3333

    Model ValidationModel Validation

    The parameter extraction, process modeling, and optical modeling havebeen validated by comparison with a fabricated waveguide

    Parameter Extraction

    n sub = 1.4574 λ = 1550 nm T = 300 C t = 1 h

    D  Ag = 1.1 X 10-15 m2 /s M = 0.72  Δ n 0 = 0.034

    0.6

    0.8

    1

    1.2

    1.4

    x 10-15

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.03

    0.032

    0.034

    0.036

    0.038

    0.04

    D Ag

    M

                n        0

  • 8/17/2019 PDF Conference 12

    34/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3434

    Model ValidationModel Validation

    Thermal Exchange

    D  Ag = 1.1 x 10-15 M = 0.72 t = 60 min W m = 5 μm

    Field-Assisted Burial

    D  Ag = 5 x 10-16 M = 0.72 t = 5 min V a = 275 V

  • 8/17/2019 PDF Conference 12

    35/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3535

    Model ValidationModel Validation

       H  e   i  g   h   t   [       m   ]

    a) Width [m]

    -10 -5 0 5 10

    -10

    -5

    0

    5

    10

       H  e   i  g   h   t   [       m   ]

    b) Width [m]

    -10 -5 0 5 10

    -10

    -5

    0

    5

    10

    -10 -5 0 5 10

    -10

    -5

    0

    5

    10

       H  e   i  g   h   t   [       m   ]   )

    a) Width [m])-10 -5 0 5 10

    -10

    -5

    0

    5

    10

       H  e   i  g   h   t   [       m   ]   )

    b) Width [m]

    Modeled Intensity Profile

    n eff,0 = 1.4638

    n eff,1 = 1.4575

    Measured Intensity Profile

    n eff,0 = 1.4637

    n eff,1 = 1.4575

  • 8/17/2019 PDF Conference 12

    36/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3636

    Experiments withExperiments with

    Buried IonBuried Ion--ExchangedExchanged

    Channel WaveguidesChannel Waveguides

  • 8/17/2019 PDF Conference 12

    37/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3737

    Burial Depth vs. WaveguideBurial Depth vs. Waveguide

    WidthWidth

    -7.5

    -7

    -6.5

    -6

    -5.5

    -5

    -4.5

    -4

    0 1 2 3 4 5 6 7 8 9 10Mask opening width (µm)

       B  u  r   i  a   l   d  e  p   t   h   (  µ  m   )

     Experimental

    Modeling(M=0.2)

    Modeling(M=0.5)

    Modeling(M=1)

    Linear fit(Exp)

    Linear fit(M=0.2)

    Lineat f it(M=0.5)

    Linear f it(M=1)

  • 8/17/2019 PDF Conference 12

    38/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3838

    Waveguide Birefringence vs.Waveguide Birefringence vs.

    Waveguide WidthWaveguide Width

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10

    mask opening w idth ( m )

      n   T   E

      -  n   T   M    (

       1   0  -   6   )

    model experiment

  • 8/17/2019 PDF Conference 12

    39/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 3939

    Effect of Annealing on WaveguideEffect of Annealing on Waveguide

    BirefringenceBirefringence

    -10

    -5

    0

    5

    10

    15

    1 3 5 7 9 11

    mask opening w idth ( 

    m )

      n   T   E

      -  n   T   M    (

       1   0  -   6   )

    0 min 15 min 45 min 75 min 105 min @250 C

  • 8/17/2019 PDF Conference 12

    40/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4040

    Experiments with QuantumExperiments with Quantum

    Dot Doped IonDot Doped Ion--ExchangedExchangedChannel WaveguidesChannel Waveguides

  • 8/17/2019 PDF Conference 12

    41/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004

    PbSPbS QDQD--doped glassesdoped glasses

    • Small bandgap - 0.4 eV (3m) @ room temperature• Strong quantum-confinement: R Bohr~18 nm

    • Less prone to surface effects• Tunable from 3 m to visible

    PbS doped glass

    ~ 5-10 nm

    Thermal treatment of an oxide molten glass:• Sizes 2R = 5-10 nm, R ~ 5%

    • n ~ 1-5 ·1016

     /cm3

  • 8/17/2019 PDF Conference 12

    42/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4242

    Fabrication by K Fabrication by K ++ -- NaNa++ IonIon

    ExchangeExchange

    Single mode waveguides

    Propagation loss: < 0.5 dB/cm

    Measured Mode Profile

  • 8/17/2019 PDF Conference 12

    43/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4343

     Are the Are the QDsQDs destroyed?destroyed?

    1100 1200 1300 1400

    0.01

    0.1

    1

     Wvgd

     IonX

     Sample2

     Abs.

    L uminescence - PbS QD-doped glass

       I  n   t  e  n  s   i   t  y   (  a .  u .   )

    Wavelength (nm)

    0.0

    0.1

    0.2

    0.3

        A   l  p   h  a   (  c  m   -   1

       )

  • 8/17/2019 PDF Conference 12

    44/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4444

    IonIon--Exchanged WaveguideExchanged WaveguideDevice ExamplesDevice Examples

  • 8/17/2019 PDF Conference 12

    45/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4545

    Multimode Interference (MMI)Multimode Interference (MMI)

    DeviceDevice

    MMI devices are a guided-wave analogy of Talbot imaging

    • Guided modes are approximately periodic in the transverse (x -) direction

    • Quadratic distribution of propagation constants (in the paraxial approximation)produces a series of self-imaging planes

    • Used primarily for short power splitting applications (no lengthy s-bends required)

    • Other applications in pump/signal multiplexing, mode coupling, sensing

  • 8/17/2019 PDF Conference 12

    46/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4646

    Multimode Interference DevicesMultimode Interference Devices

    Self Self --Imaging TheoryImaging Theory

    0

     x

     L MMI 

     x1

     x2

     x N 

    W in

    W  N 

    1 X N MMI Power Splitter

    ),()0,,(   y xa z y x    

     

     

     y x y x

     y x y x z y xa

    dd),(

    dd),()0,,(

    2

     

     

     

     

     

    Field of input waveguide can beexpressed as an orthogonal expansionof multimode waveguide modes

     

     

           

     L3

    )2(0

    Propagation constants are quadratic in ν  

    10      

      

     L

     After propagating a distance L , the

    field distribution is

       

      

       

         

      

        

     L

     Li y xa L y x

    3

    )2(exp),(),,(

     “Mode Propagation Analysis” 

  • 8/17/2019 PDF Conference 12

    47/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4747

    Multimode Interference DevicesMultimode Interference Devices

    WeaklyWeakly--Guided MMI DevicesGuided MMI Devices

    When the multimode section is weakly guiding, or contains an index gradient(as with ion exchange):

    • Higher-order modes have progressively larger effective widths

    • Distribution of effective indices becomes sub-parabolic

    • This results in a longitudinal shift of the self-imaging planes, as well as atransverse shift of the optimum positions of the output waveguides

     An additional problem arises in buried ion-exchanged MMI devices, as theburial depth is dependent upon the waveguide width – there will be a verticaloffset between the wide multimode waveguide and the narrow access

    waveguides.

  • 8/17/2019 PDF Conference 12

    48/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4848

    Multimode Interference DevicesMultimode Interference Devices

    Designed by Genetic AlgorithmDesigned by Genetic AlgorithmThe nonlinear relation between MMI device geometry and operational characteristicssuggests that an iterative optimization algorithm would be beneficial in the design

    0

     x

     L MMI 

     x1

     x2

     x N 

    W in

    W  N 

    Pre-determined parameters:

    • MMI section width

    • Fabrication process

    Parameters to optimize:

    • MMI section length L MMI • Input waveguide width W in • Output waveguide positions x i • Output waveguide widths W i 

    For symmetric devices, the number of parameters is reduced to N +2:

    N odd: N  /2 output waveguide positions & N  /2 output waveguide widths

    N even: (N -1)/2 output waveguide positions & (N +1)/2 output waveguide widths

  • 8/17/2019 PDF Conference 12

    49/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 4949

    Multimode Interference DevicesMultimode Interference Devices

    Designed by Genetic AlgorithmDesigned by Genetic Algorithm

    Self-Imaging Design Genetic Algorithm Design

    0.0010.016PDL (dB)

    0.0071.225Power imbalance (dB)

    1.9012.088Excess loss (dB)250 N/AGenerations

    15 N/ASims per generation

    6.65.0 x2 (μm)

    15.115.0 x1 (μm)

    4.55.0W 2 (μm)

    6.05.0W 1 (μm)

    11.310.0W in

    (μm)

    446.7395.7 L MMI  (μm)

    GAS-IParameter

  • 8/17/2019 PDF Conference 12

    50/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5050

    Device DemonstrationsDevice Demonstrations

    •• Add Add--Drop Wavelength FilterDrop Wavelength Filter

    •• ErEr--doped Waveguide laser arraydoped Waveguide laser array

    •• Tapered ErTapered Er--doped Waveguide Laserdoped Waveguide Laser

  • 8/17/2019 PDF Conference 12

    51/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5151

     Add Add--Drop Wavelength FilterDrop Wavelength Filter

    Output

     AddDrop

    Input

    OutputInput

    On Resonance

    Off Resonance

     Asymmetric Y branches- Wide guide excites even mode- Narrow guide excites odd mode

    Tilted Grating- Breaks orthogonality of the 2 modes- UV written gratings

  • 8/17/2019 PDF Conference 12

    52/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5252

     Add Add--Drop Wavelength FilterDrop Wavelength Filter

    • 20 dB Extinction

    • 0.4 nm 3 dB Bandwidth

    1562 1564 1566 1568-20

    -15

    -10

    -5

    0

       R  e   l  a   t   i  v

      e   P  o  w  e  r   (   d   B   )

    Wavelength (nm)

    1562 1564 1566 1568-20

    -15

    -10

    -5

    0

       R  e   l  a   t   i  v

      e   P  o  w  e  r   (   d   B   )

    Wavelength (nm)

    1562 1564 1566 1568-20

    -15

    -10

    -5

    0

       R  e   l  a   t   i  v

      e   P  o  w  e  r   (   d   B   )

    Wavelength (nm)

    PASS ADDDROP

    Pass

     AddDrop

    Input

  • 8/17/2019 PDF Conference 12

    53/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5353

    ErEr--Doped Waveguide Devices byDoped Waveguide Devices by

     Ag Ag--Film Ion ExchangeFilm Ion Exchange

    +V

    GND

    a) Spin-coat Photo Resist b) Mask Patterning c) Ag film deposition

    d) Electric Field Assisted

    Ion-Exchangef) Thermal Diffusione) Ag Removal

    PR 

    Er-Doped

    Phosphate Glass

    Ag

    Ag

    Surface Waveguide

  • 8/17/2019 PDF Conference 12

    54/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5454

    MultiMulti--Wavelength WaveguideWavelength Waveguide

    Laser ArrayLaser Array

    975 nm

     pump

    Laser

    output

    1

    2

    4

    3

    HR coating

    Ion exchanged waveguides

    Surface relief grating

    Wavelength range: 2.1 nm (1548.6 - 1550.7 nm)

    - covers 5 ITU grid wavelengths (50 GHz spacing )

    Output Power: 11 mW

    Threshold: 60 mW

    Slope Efficiency: 13 %

  • 8/17/2019 PDF Conference 12

    55/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5555

    Tapered MMTapered MM--Pumped ErPumped Er--DopedDoped

    Waveguide LaserWaveguide Laser

    Erbium/Ytterbium

    codoped glass

    Ion exchanged waveguide

    Undoped glass

    Single mode waveguide

    Multimode section (100 µm)

    Dielectric mirror (R>99%)

    10 mm 30 mm 10 mm

    Surface Relief Bragg

    grating (R = 72 %)

    965 nm

     pump

  • 8/17/2019 PDF Conference 12

    56/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5656

    Output Power vs. Pump PowerOutput Power vs. Pump Power

    0

    10

    20

    30

    40

    50

    60

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    Pump power (W)

       O  u   t  p  u   t  p  o  w  e  r   (  m

       W   ) Wavelength = 1538 nm

    Slope = 4.9 %

    Threshold = 280 mW

    Output power = 54 mW

  • 8/17/2019 PDF Conference 12

    57/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5757

    Outlook Outlook 

    •• New device innovationsNew device innovations•• ModeMode--locked waveguide laserslocked waveguide lasers

    •• MMMM--pumped multipumped multi--λλ laser arrayslaser arrays•• Tunable dispersion compensatorsTunable dispersion compensators

    •• All All--optical header recognition chipoptical header recognition chip

    •• Exotic host glassesExotic host glasses•• Integration with other materialsIntegration with other materials

  • 8/17/2019 PDF Conference 12

    58/58

    GOMD Meeting, Florida, November 12, 2004GOMD Meeting, Florida, November 12, 2004 5858

    ConclusionConclusion

    •• IonIon--Exchange in GlassExchange in Glass

    •• A Proven Low A Proven Low--Cost Integrated OpticsCost Integrated OpticsTechnologyTechnology

    •• Offers Unique Advantages for VariousOffers Unique Advantages for Various

    Passive and Active Waveguide DevicesPassive and Active Waveguide Devices