35
The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice P.C.W. Holdsworth Ecole Normale Supérieure de Lyon 1. The Wien effect 2. The dumbbell model of spin ice. 3. The Wien effect in a magnetic Coulomb gas Vojtech Kaiser, Steven Bramwell, Roderich Moessner,

P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice

P.C.W. Holdsworth Ecole Normale Supérieure de Lyon

1.  The Wien effect 2.  The dumbbell model of spin ice. 3.  The Wien effect in a magnetic Coulomb gas

Vojtech Kaiser, Steven Bramwell, Roderich Moessner,

Page 2: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

The Wien effect: L. Onsager, “Deviations from Ohm’s law in weak electrolytes”. J. Chem. Phys. 2, 599,615 (1934)!

Non-Ohmic conduction in low density charged fluids

n = nf + nb

E

Page 3: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Ion-hole conduction

Page 4: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Length scales

Three length scales appear naturally:

The Bjerrum length :

Field drift length: lE =kBTqE

Particles separated by r < lT are bound

lT =q2

8πε0kBT

Debye screening length

lD =2πε0kBTa

3

q2n f

⎝ ⎜ ⎜

⎠ ⎟ ⎟

1/ 2

Page 5: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Three species - bound particles, - free particles - unoccupied sites

Lattice Coulomb gas:

nb = nb+ + nb

nf = nf+ + nf

nu

nu

nf

Page 6: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

nu + nb + nf = 1

[nu ]⇔ [nb+ ,nb

− ]⇔ [nf+ ]+ [nf

− ]

K =k⇒

k⇐ =n f2

nb

The Wien effect

nb = nb+ + nb

− nf = nf+ + nf

− nu

L. Onsager, “Deviations from Ohm’s law in weak electrolytes”. J. Chem. Phys. 2, 599,615 (1934)!

dnfdt

= k⇒nb − k⇐nf

2 = 0

Page 7: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

nu + nb + nf = 1

[nu ]⇔ [nb+ ,nb

− ]⇔ [nf+ ]+ [nf

− ]

K0 =k0⇒

k0⇐ = nb

nu

K =k⇒

k⇐ =n f2

nb

The Wien effect

nb = nb+ + nb

− nf = nf+ + nf

− nu

L. Onsager, “Deviations from Ohm’s law in weak electrolytes”. J. Chem. Phys. 2, 599,615 (1934)!

Page 8: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

The Wien effect

b = lTlE

∝ q3ET 2

K(E)K(0)

= I2 (2 b )2b

=1+ b +O(b2 )

L. Onsager, “Deviations from Ohm’s law in weak electrolytes”. J. Chem. Phys. 2, 599,615 (1934)!

K0 (E) =k0⇒

k0⇐ = nb

nu≈ K0 (0) K = k

k⇐ =nf2

nb≈ K(0)+O(E)

for lD >> lE, lT

Linear in E For small field

Page 9: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

The Wien effect

b∝ q3ET 2

L. Onsager, “Deviations from Ohm’s law in weak electrolytes”. J. Chem. Phys. 2, 599,615 (1934)!

Linear in E For small field – this is a non-equilibrium effect

nf (E)nf (0)

≈ I2 (2 b )2b

=1+ b2+O(b2 )

n = nf + nb

E

Page 10: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

The linear field dependence => A non-equilibrium effect => Compare with Blume-Capel paramagnet.

Η = −H Si + Δ Si( )2 , Si = 0,±1∑i∑

n(0) = n↑ + n↓ =2exp(−βΔ)1+ 2exp(−βΔ)

n(H ) = n↑(H )+ n↓(H ) =n(0)2(exp(βH )+ exp(−βH ))

= n(0)+O(H 2 )

This scalar quantity changes quadratically with applied field

Page 11: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

+ +

Lattice Electrolyte - Coulomb gase

1.  Electrolyte

E

Hopping on a diamond lattice

H ≈ U(rij )− µ N̂i> j∑

A grand canonical Coulomb gas.

Weak electrolyte limit: µ > kBTn = N

N0

<< kBT

Page 12: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Results: Kaiser, Bramwell, PCWH, Moessner, Nature Materials, 12, 1033-1037, (2013)

Linear in to lowest order E

0.00 0.02 0.04 0.06 0.08 0.10 0.12E ⇤

0

1

2

3

4

�n f(B

)/n f(0)

Onsager’s theory

Simulations

Lattice Electrolyte

Page 13: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Linear term is renormalized away by Debye screening:

E > D

Δnfnf

= −(1−γ )

Negative offset

E*

T *

Crossover

0.00 0.02 0.04 0.06 0.08 0.10 0.12E ⇤

0

1

2

3

4

�n f(B

)/n f(0)

Onsager’s theory

Simulations

Page 14: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Relative conductivity falls below prediction

Theory relies on mobility, being field independent

σ = q2κnf

κ

Page 15: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Field dependent mobility: Blowing away of Debye screening cloud (1st Wien effect)

Velocity max for Metropolis

Fuoss-Onsager theory + Metropolis

Page 16: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Spin ice- a magnetic Coulomb gas

H = JSi.Sj +D

Si.Sjrij3 −

3(Si.rij )(Sj.rij )

rij5

⎣⎢⎢

⎦⎥⎥ij

∑ij∑

Spin Ice – a dipolar magnet

Long range interactions are almost but not quite screened den Hertog and Gingras, PRL.84, 3430 (2000), Isakov, Moessner and Sondhi, PRL 95, 217201, 2005

Six equivalent configs for each tetrehedron

Page 17: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

SP = NkB12ln 32

Magnetic ice rules => Pauling entropy.

Magnetic « Giauque and Stout » experiment:

Ramirez et al, Nature 399,333, (1999)

Glassy behaviour: Schiffer et al, Castelnovo Moessner Sondhi, Cugliandolo et al, Davis et al,

Page 18: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Extension of the point dipoles into magnetic needles/dumbbelles Möller and Moessner PRL. 96, 237202, 2006, Castelnovo, Moessner, Sondhi, Nature, 451, 42, 2008

Configurations of magnetic charge at tetrehedron centres

NS

m

Magnetic ice rules two-in two-out

a

An extensive degeneracy of states satisfy these rules – Monopole vacuum

DSI Needles

Gingras et al

Page 19: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

∇ .

M = 0 M= divergence free field

Ice rules, topological constraints S. V. Isakov, K. Gregor, R. Moessner, !and S. L. Sondhi PRL 93, 167204, 2004

M =

∇∧A =

MdEmergent gauge field

Monopole vacuum has divergence free configurations - « Coulomb phase » Physics.

Pinch Points:

T. Fennell et. al., Magnetic Coulomb Phase in the Spin Ice Ho7O2Ti2 Science, 326, 415, 2009.

Topological sector fluctuations: Jaubert et. al. Phys. Rev. X, 3, 011014, (2013)

Page 20: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Topological excitations back to paramagnetic phase space Castelnovo, Moessner, Sondhi, Nature, 451, 42, 2008 -CMS, Ryzhkin JETP, 101, 481, 2005.

Extensive phase space of topologically constrained states = Vacuum for quasi-particle excitations

Page 21: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Topological constraints Excitations back to paramagnet….

Page 22: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

ΔE ≈ 4Jeff

3 out- 1 in

3 in 1 out

Topological constraints Spin flip creates two defects

Page 23: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

ΔE ≈ 0

3 out- 1 in

3 in 1 out

Topological constraints Spin flip creates two defects

ΔE ≈ 4Jeff

Page 24: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

H ≈ U(rij )− µN̂i> j∑

Castelnovo, Moessner, Sondhi, Nature, 451, 42, 2008 (Ryzhkin JETP, 101, 481, 2005)

A grand canonical Coulomb gas of quasi particles.

ΔM = 2m ⇒

µ(J,m,a)

Topological defects carry magnetic charge – magnetic monopoles

In which case one should expect « electrolyte » physics + constraints - magnetolyte (Castelnovo)

U(r) = µ04π

Qi Qj

r; Qi = ± 2m

a

Page 25: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

N N

+ +

Electrolyte and Magnetolyte Coulomb gases

1.  Electrolyte

2.  Magnetolyte

Chemical potential /particle for Dy2Ti2O7 /particle for Ho2Ti2O7

µ1 = −4.35K

E

H

CMS, Phys. Rev. B 84, 144435, 2011, Melko, Gingras JPCM, 16 (43) R1277–R1319 (2004)

µ1 = −5.7K

Page 26: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Monopole dynamics polarizes the medium

Coulomb gas physics with transient currents Ryzhkin JETP, 101, 481, 2005. Jaubert and Holdsworth, Nature Physics, 5, 258, 2009

Time τmj = d

Mdt

= 1τm

H −

MχT

⎛⎝⎜

⎞⎠⎟

Page 27: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Switching on field at t=0 Electrolyte Magnetolyte

Time scale: 1 MCS = 1 ms for DTO Jaubert and Holdsworth, Nature Phyiscs, 5, 258, 2009

Wien effect in the magnetolyte: Kaiser et al, to appear in Phys Rev Lett.

Page 28: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Square AC field – 8.2 secs

Page 29: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

0.0000

0.0005

0.0010

0.0015

0.0020

n(t)

[]

DTO @ 0.5 K

0.0 0.2 0.4 0.6 0.8 1.0t [1000 MC steps ' s]

�0.020.00

0.02

m(t)[]

�60�40�200204060

B(t)[m

T]

Monopole concentration with time

1τm

1τ L

Page 30: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

0.00 0.02 0.04 0.06 0.08 0.10 0.12E ⇤

0

1

2

3

4

�n f(B

)/n f(0)

Onsager’s theory

Simulations

Electrolyte DTO 0.43 K Magnetolyte DTO 0.5 K

Page 31: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

An experimental signal ?

χ(H,ω ) = χ0 (ω )+ χ1 (ω )H2 + .......In equilibrium

Wien contribution χ(H,ω ) = χ0 (ω )+ χ1 (ω )H + .......

χB (ω0 )χ0 (ω0 )

≈nf (<

B >)

nf (0)

H = H0 sin(ωt)

Page 32: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

τm ∝ τ 0nf (H )

j = d

Mdt

1τm

H −

MχT

⎛⎝⎜

⎞⎠⎟

dnfdt

= k⇒nb −12k⇐nf

2 ⇒ 1nf0

dΔnfdt

∝ h −m(t) −Δnf

0

nf0

⎝⎜⎞

⎠⎟

Analytic approach –two coupled equations

Page 33: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Deconfined monopole charge via Bramwell et al, Nature, 461, 956, 2009 The Wien effect

δσ(E)σ

⇒ δν(B)ν

=BQ3µ0

16πkB2T 2

Muon relaxation

Highly controversial !

Dunsiger et al, Phys Rev. Lett, 107, 207207, 2011 Sala et al, Phys. Rev. Lett. 108, 217203, 2012 Blundell, Phys. Rev. Lett. 108, 147601, 2012

Page 34: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Large internal fields even in the absence of charges

M = ∇ψ +

∇∧A =

Mm +

Md

∇.H = −

∇.M = ρ( )

When ρ = 0,M =

Md

Monopolar and dipolar parts (largely) decoupled and dynamics is from monopole movement

Perfect Coulomb gas within frequency window 1

τ L<ω < 1

τm

Page 35: P.C.W. Holdsworth Ecole Normale Supérieure de Lyonnew-noneq2015.ws/Japan-France/... · 2015. 8. 13. · P=Nk B 1 2 ln 3 2 Magnetic ice rules => Pauling entropy. Magnetic « Giauque

Conclusions

1.  The Wien effect is a model non-

equilibrium process.

2.  The Wien effect emerges from the magnetic Coulomb gas.

3.  Spin ice proves to be a perfect, symmetric Coulombic system.

Franco-Japanese seminar, Kyoto, August 2015

0.0000

0.0005

0.0010

0.0015

0.0020n(t)

[]

DTO @ 0.5 K

0.0 0.2 0.4 0.6 0.8 1.0t [1000 MC steps ' s]

�0.020.00

0.02

m(t)[]

�60�40�200204060

B(t)[m

T]