29
Patrick Krejcik LCLS FAC [email protected] du April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik LCLS [email protected] April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Breakout Session: Controls

Physics Requirements Overview

P. Krejcik

Page 2: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Key accelerator physics factors driving controls design

Precision beams low emittance, short bunch lengths

Stringent stability requirementsFeedback control of

orbit, charge energy and bunch length

Single pass beams unlike storage ring, every pulse potentially different

Precision timing requirements

Page 3: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Key facility factors driving controls design

Undulator machine protectionSingle pulse abort capability

Compatibility with non-LCLS beamsStraight through beams some months of the year

Hybridize new controls with old SLC controls

Page 4: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Design solutions for specialized diagnostics

Low emittance beams requirePrecision wire scanners

Average projected emittance

Almost non-invasive diagnostic

Profile monitor Single pulse full beam profile

OTR screens inhibit sase operation

Low energy injector beams require YAG screens

Slice emittance reconstructionTransverse RF deflecting cavity with profile monitor

Page 5: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Design solutions for specialized diagnostics

Short bunch, high peak current beams require

Longitudinal bunch profile measurement with sub-picosecond resolution

Transverse RF deflecting cavityElectro optic bunch length measurement

A non-invasive bunch length monitoring system for pulse-to pulse feedback control

Spectral power detectors for CSR and CDR

A detector sensitive to micro-bunch instabilitiesCSR spectrum

Page 6: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Bunch length diagnostic comparisonDevice Type Invasive

measurementSingle shot measurement

Abs. or rel. measurement

Timing measurement

Detect bunchin

g

RF Transverse Deflecting Cavity

Yes: Steal 3 pulses

No: 3 pulses Absolute No No

Coherent Radiation Spectral power

No for CSR Yes for CTR

Yes Relative No Yes

Coherent RadiationAutocorrelation

No for CSR Yes for CTR

No Absolute(2nd moment

only)

No No

Electro Optic Sampling

No Yes Absolute Yes No

Energy Wake-loss

Yes No Relative No No

Page 7: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Feedback global requirements

Description of feedback types and locationsOrbit

charge

energy

bunch length

Control system response time120 Hz single pulse data transfer, zero latency

Page 8: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Energy and Bunch Length Feedback Loops

L0 L1

DL1

DL1Spectr. BC1 BC2

L2 L3

BSY 50B1

DL2

Vrf(L0)

Φrf(L2)Vrf(L1) Φrf(L3)E E E

Φrf(L2) zΦrf(L1) zE

Page 9: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Antidamp

Damp

Gain bandwidth for different loop delays- L. Hendrickson

Closed Loop Response of Orbit Feedback

Page 10: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Beam Position Monitoring requirements

Page 11: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Beam Position Monitoring requirements

Page 12: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Linac type stripline BPMs

LCLS range

Resolution achievable with existing processor

New BPM processor design challenges:

• large dynamic range• Low noise, high gain• 20 ps timing jitter limit

Page 13: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Cavity beam position monitors in the undulator and LTU

Coordinate measuring machine verification of cavity interior

• X-band cavity shown

• Dipole-mode couplers

• X-band cavity shown

• Dipole-mode couplers

• Raw digitizer records from beam measurements at ATF

• Raw digitizer records from beam measurements at ATF

R&D at SLAC – S. Smith

Page 14: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Assembled X-band cavity BPM

Mechanical center of RF BPM well correlated to electrical center – more accurately than for stripline BPMS

Mechanical center of RF BPM well correlated to electrical center – more accurately than for stripline BPMS

Page 15: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Preliminary beam calibration data from a C-band cavity tested at ATF

• cavity BPM signal versus predicted position

• bunch charge 1.6 nC

• cavity BPM signal versus predicted position

• bunch charge 1.6 nC

• plot of residual deviation from linear response• << 1 m LCLS resolution requirement

• plot of residual deviation from linear response• << 1 m LCLS resolution requirement

25 m

200 nm

R&D at SLAC – S. Smith

Page 16: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Bunch Length Measurements with the RF Transverse Deflecting CavityBunch Length Measurements with the RF Transverse Deflecting Cavity

yy

Asymmetric parabola indicates incoming tilt to beam

Y = A * (X - B)**2 + CA = 1.6696E-02 STD DEV = 1.3536E-03B = 28.23 STD DEV = 3.084C = 1328. STD DEV = 8.235RMS FIT ERROR = 23.63

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

****

***

**

**

*

****

********

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

E

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

-80 -40 0 40 80

SBST LI29 1 PDES (S-29-1)

1.7

1.6

1.5

1.4

1.3

X103

E

MANUAL STEPPING. STEPS = 30

1-APR-03 20:21:16

Cavity on

Cavity off

Cavity on- 180°

Bunch length reconstructionMeasure streak at 3 different phases

z = 90 m

(Str

eak

size

)2

0 180

2.4 m 30 MW

Page 17: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Calibration scan for RF transverse deflecting cavity

Beam centroid[pixels]

Cavity phase [deg. S-Band]

• Bunch lenght calibrated in units of the wavelength of the S-band RF

Further requirements for LCLS:

•High resolution OTR screen•Wide angle, linear view optics

Page 18: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

OTR Profile Monitor in combination withRF Transverse Deflecting Cavity

Simulated digitized video image

Injector DL1 beam line is shown

Best resolution for slice energy spread measurement would be in adjacent spectrometer beam line.

Page 19: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

400 GHz1.2 mm

BC1 Bunch Length Monitor

CSR Power spectral density signal for bunch length feedback

CSR Power spectral density signal for bunch length feedback

Spectral lines accompanying micro-bunching instability

– Z. Huang.

Spectral lines accompanying micro-bunching instability

– Z. Huang.

Page 20: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

4 THz

BC2 Bunch length monitor spectrum

BC2 bunch length feedback requires THz CSR detector

Demonstrated with CTR at SPPS

Page 21: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Dither feedback control of bunch length minimization - L. Hendrickson

Dither time steps of 10 seconds

Bunch length monitor response Feedback correction

signal

Linac phase

“ping”

optimum

Jitter in bunch length signal over 10 seconds ~10% rms

Jitter in bunch length signal over 10 seconds ~10% rms

Page 22: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Timing system requirements

Synchronization of fiducials in low-level RF with distribution of triggers in the control system

1/360 sLinac 476 MHzMain Drive Line Sector feed

Fiducialdetector

MasterPattern

Generator

SLCControlSystem Event

Generator360 Hz Triggers8.4 ns±10 ps

128-bit wordbeam codes

119 MHz

360 Hz fiducials phase locked to low level RF

Page 23: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

3 Levels in the Timing System

“coarse” triggers at 360 Hz with 8.4 ns delay step size and 10 ps jitter

Gated data acquisition (BPMs)Pulsed devices (klystrons)

Phase lock of the low-level RF0.05 S-band (50 fs) phase stability

Timing measurement of the pump-probe laser w.r.t. electron beam in the undulator10 fs resolution

Page 24: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Controls Issues for Power Supplies

16 types out of a total of 55 power suppliesTightest regulation tolerance is 5*10-5 (BC’s)

transductor regulation circuit

Able to use commercial supplies, with SLAC engineering effort for:

AC interlocks regulator circuits control interface

Page 25: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Controls Issues for Power Supplies

A few unique power supplies:Parallel supplies for linac quads to switch between LCLS operation at low current and HEP operation at full field.

Single Bunch Beam Dumper (SBBD) is a 120 Hz pulsed magnet supply

Fast orbit feedback requires power supplies and corrector magnets to respond in <8 ms (120 Hz).

Page 26: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

MPS - Beam Rate Limiting

Single bunch beam dumper (SBBD)Linac beam up to the dog-leg bend in the LTU can be maintained at 120 Hz

Favorable for upstream stability and feedback operation

Pulsed magnet allowsSingle shot, 1 Hz, 10 Hz, 120 Hz down the LTU line

Failure in pulsed magnet will turn off beam at gun

Tune-up dump at end of LTUMax. 10 Hz to tune-up dump

Stopper out will arm MPS for stopping beam with the SBBD

Page 27: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

MPS - Beam Rate Limiting

Conditions that will stop the beam at the SBBDTune-up dump at end of LTU is out, and:

Beam loss at detected by either by PLIC along the undulator chamber, or by the PIC’s between the undulator modules

Invalid readings from undulatorVacuum

Magnet movers

BPMs

Energy error in the LTU

PIC’s at the collimators

Launch orbit feedback failing

Magnet power supplies for some key elements

Page 28: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

end

Page 29: Patrick Krejcik LCLS FACpkr@slac.stanford.edu April 29, 2004 Breakout Session: Controls Physics Requirements Overview P. Krejcik

Patrick Krejcik

LCLS FAC [email protected]

April 29, 2004

Jitter determination from Electro Optic sampling

Er

Principal oftemporal-spatial correlation

Line image camera

polarizer

analyzer

EO xtal

seconds, 300 pulses: z = 530 fs ± 56 fs rms t = 300 fs rmsseconds, 300 pulses: z = 530 fs ± 56 fs rms t = 300 fs rms

single pulse

A. Cavalieri

centroidwidth