12
Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405 [email protected] My research: Particle Physics at Colliders CDF at the Fermilab Tevatron, near Chicago: colliding protons and anti-protons at ~2TeV. Currently the world’s highest energy collider. The international linear collider (ILC), the world’s next electron-position collider. Won’t start operation until ~2018!! 2

Particle P hysics - University of Edinburghvjm/Lectures/ParticlePhysics2007_files/...Particle P hysics Lecture 1: Introduction to P article Physics ... Introduction to Elementary P

Embed Size (px)

Citation preview

Nuclear and Particle Physics 3:

Particle PhysicsLecture 1: Introduction to Particle Physics

February 5th 2007

Particle Physics (PP)a.k.a. High-Energy Physics (HEP)

1

Dr Victoria MartinJCMB room 4405

[email protected]

My research: Particle Physics at Colliders

• CDF at the Fermilab Tevatron, near Chicago: colliding protons and anti-protons at ~2TeV. Currently the world’s highest energy collider.

• The international linear collider (ILC), the world’s next electron-position collider. Won’t start operation until ~2018!!

2

CDF and the Tevatron

CDF

p p

1.96 TeV

3

International Linear Collider

A future project

Many elements still under design and discussion, including...

•location

•cost

•will we build it at all?

e!

e+

4

Course Contents

Lecture 1 - Introduction

The fundamental particles and forces

Lecture 2 - Tools

Natural Units

Kinematics

Antiparticles

Lecture 3 - Feynman Diagrams

The electromagnetic force

Feynman Diagrams

Lecture 4 - Interactions with matter

Particle accelerators, detectors and experiments.

Lecture 5 - Quarks

Mesons, Baryons

Isospin and strangeness

Lecture 5 - Strong Interactions

Colour, gluons

confinement, running coupling constant

Lecture 7 - Weak Interactions

Muon and tau decay

Heavy quarks, CKM mechanism

Lecture 8 - Neutrinos

Neutrino Mass and oscillations

Lecture 9 - Electroweak Theory

W and Z bosons

LEP

Spontaneous Symmetry Breaking and the Higgs Boson

5

Books!

Particle Physics, second edition, by B.R. Martin & G. Shaw. 2nd edition (Wiley 1997)

7 copies in JCMB Library.

Introduction to High Energy Physics - D.H. Perkins, 4th edition (CUP 2000)

Introduction to Elementary Particles - D. Griffiths (Wiley 1987)

Quarks and Leptons –F. Halzen & A.D. Martin (Wiley 1984)

For more information that you could ever need on every particle ever: http://durpdg.dur.ac.uk/lbl/

• In conjunction with attending the lectures you will need to read around the subject to fully understand the material.

6

Particle physics collisions recreate conditions just after the big bang; the closest we’ll ever get to the big bang on earth.

Matter and anti-matter were made in equal amounts: so why does the universe look like

Motivation

To be able to explain what’s correct and

what’s not in this book

What’s the interest in particle physics?

THIS NOTTHIS

& ?

Technology spin-offs CERN: where the web was born!

Medical applications: e.g. PETMagnetic resonance imaging (MRI)

7

Particle Physics still deals with the last four of these questions!

The Questions of Particle Physics

8

•How does these particles interact?

• What are electromagnetic forces?

• What holds nucleus together?

• What causes radioactivity?

• How does gravity act at such large distances?

atoms

nucleus &electrons

protons &neutrons

• What is matter made from?

quarks and electrons

particle physics

9

The simplest classification of the fundamental particles and their interactions

Matter - the fundamental constituents of the universe

• All mater elementary particles are fermions, spin !"

• leptons e#, !

• quarks u, d proton = uud

• Every particle has an antiparticle e.g. positron(e+), antiproton (p ")

Forces - the interactions between elementary particles

• Interactions between quarks and leptons are mediated by exchange of gauge bosons–spin 1"

• Electromagnetic interaction - photons (!)

• Strong force - gluons (g)

• Weak force - W and Z

• Gravity - graviton

• Every force couples to a property of the fermions, e.g. electromagnetic force acts on the electric charge

Standard Model of Particle Physics

Nuclear and Particle Physics Franz Muheim 6

Standard Model ofStandard Model of

Particle PhysicsParticle Physics!"#$%&'(')*#+,*%-./0*&-,1

!"#$%&'()!*+,%&,2*/.3#-(#45*/%'#5*#)6-%*')*#.&)*5,0'#5,.#*&7')85**'%

9/,.57',*5:#0-,)*&*/',*)#-(#;,&<'%)'#=':'7',*5%3#>5%*&0:')

9-%0')$5)&0#(-%0')#-(#45*/%'#? &,*'%50*&-,) @'*A'',#':'7',*5%3#>5%*&0:')

"&7#*-#(&,.#)&7>:')*#0:5))&(&05*&-,#-(#(/,.57',*5:#>5%*&0:')#5,.#*6'&%#&,*'%50*&-,)

-"$$(#BA-#*3>')#-( ('%7&-,) = )>&,#CD'>*-,)E '=F#!G/5%H)E /F#. >%-*-,#I#J//.K",*&75**'%E >-)&*%-,#J'LKF#5,*&>%-*-,

./#&(,+,*'%50*&-,)#@'*A'',#M/5%H)#5,.#:'>*-,)5%'#7'.&5*'.#@3#'N065,O'#-(#O5/O'#@-)-,) ? )>&,#P

Q:'0*%-75O,'*&0 >6-*-,)2*%-,O O:/-,)R'5H R 5,.#ST%5<&*3 O%5<&*-,

10

The Electron

Electron - elementary particle

• Point-like: size < 10#6 fm (10#21m)

• Stable: lifetime > 4.6$1026 yrs

• Electric charge,

• Mass,

me = 0.510998918(44) MeV/c2

= 9.11$10#31 kg

• Spin, intrinsic property: !"

The electron is a fermion i.e. electrons satisfy Pauli exclusion principle.

Discovered in 1897 by J. J. Thomson

qe = !e

= !1.60217653(14)" 10!19 C

1916 Noble Prize in Physics

11

Compton scattering:

Photon - elementary particle

• pointlike: size < 10#6 fm (10#21m)

• stable

No electric charge

Massless

Energy

Spin intrinsic property spin-1"

The Photon

m! ! 6 " 10!17 eV/c2 # 10!52 kg

q! ! 5 " 10!30

qe

E! = h! = hc/"

1927 Noble Prize in Physics

Nuclear and Particle Physics Franz Muheim 8

The PhotonThe Photon

!"#$%&'(')*"+*,-./*01*2343*5%678%+

!"#$#%&' ()*+*%$,-.&!,-$/0)*9%"+8:";'< #"='*>*,?@A B6***C,?@., 6D

E8F0:'<

G:'$8("$*$HF(I'J%*$HF(I'< K! >*L*MN,?

@O? '

PF##

PF##@:'##< 6! >*A*N,?@,Q 'R

G+'(I1G*L*H! L*H$S"

E7"+T+8("+#"$*7(%7'(81< #7"+*,

U%#%+V*#F8"#B"'# U%#'@G"+#8'"+ #8F8"#8"$#

1#+2$#%&*33*0$9H%8%+*#$F88'(#*%BB

':'$8(%+*CF8*('#8D

'' ee #$# !!

%&!

eee

ee

ee

ee

Ep

pE

pEE

EEmE

%

%%

%%

,,Eliminate

sinsin'

coscos'

)frameLab('

onconservatimomentumandEnergy

'

#'

#'#

( )

wavelengthCompton

1086.3where

)cos1('

cos11

1'

13

2

mcm

cm

EEE

e

c

c

e

*+''

*#'

*#

'

!"

%"""

%!

!! !! =h

mec(1! cos "!)

Particulate nature of light was confirmed in 1924 by A. H. Compton.

! e! ! ! e!

photons are bosons

12

Antiparticles

Compared its matter partner, an antiparticle has:

• equal mass

• opposite electric charge

• opposite “additive” quantum numbers

Example: positron (e+) antiparticle of the electron (“anti-electron”)Discovered in 1931 by Carl Anderson

Notation: bar over symbol or minus↔plus

e.g. e!

! e+

u ! u !e ! !e

Every particle has a corresponding antiparticle

Antiparticles of the SM particles are antimatterPositron “track”

13

Elementary Particles

Particle SymbolElectric Charge

Type

Electron e! !1 lepton

Neutrino #e 0 lepton

Up-quark u +2/3 quark

Down-quark d !1/3 quark

Basic Constituents of MatterFour spin-! fermions

The particles that you know already; describes (most) of nuclear physics.

LeptonsElectron and neutrino

QuarksNucleons are bounds states of up- and down-quarks

Beta Decay

n ! p + e! + !e

d ! u + e! + !e

dd

d

uuue!W#e

d$W#u % e !"e

14

GenerationsNature replicates itself: there are three generations of quarks and leptons

1st Generation 2nd Generation 3rd Generation charge

electron neutrino #e

muonneutrino #& tau neutrino #' 0

electron e! muon &! tau '! !1

up quark u charm quark c top quark t +(

down quark d strange quark s bottom quark b !)

Ordinary Matter: built from the 1st generation

Higher Generations:

• copies of (%e, e#, u, d)

• undergo identical interactions

• only difference is mass of particles

• generations are successively heavier

Why 3 generations?symmetry/structure not understood!

15

LeptonsLeptons are particles that do not interact via the strong force.

Fermions - spin !"

There are six distinct flavours:

• electron and its electron neutrino partner

• muon

• tau: even heavier 3500 $ me

Unstable: lifetime is 291 fs

Lepton Symbol Charge Mass Lepton Family Numbere (MeV/c2) Le Lµ L!

Electron Neutrino !e 0 < 0.001 +1 0 0Electron e! !1 0.511 +1 0 0Muon Neutrino !µ 0 < 0.001 0 +1 0Muon µ!

!1 105.7 0 +1 0Tau Neutrino !! 0 < 0.001 0 0 +1Tau "!

!1 1777 0 0 +1

discovered by Anderson in 1936 in cosmic rays.

Very similar to electrons but ~200 times heavier

Unstable: lifetime is 2.2µs

The additive quantum numbers are charge, Q, and Lepton Family Number, Le, Lµ, L!

• muon neutrino partner

• tau neutrino partner

16

Charge and lepton family number are conserved in all interactions.

Question: how does a muon decay?

Charged leptons interact via electromagnetic and weak forces.

Neutrinos interact only via weak force.

• neutrinos are almost massless

• !e and !!e are distinct particles with different quantum numbers

Leptons Properties

µ+ ! e+!e !µµ! ! e!!e !µ

µ+ ! e+!

Le(!e) = +1 Le(!e) = !1

FORBIDDEN

ALLOWED

17

Quarks• Quarks are fundamental fermions with spin-!"

• Six distinct flavours: u, d, s, c, t, b. Fractional charge: +2/3 e or #1/3 e

• Quark carry isospin, quark flavour and electric charge quantum numbers

Quark Symbol Charge Mass Isospin Quark Flavoure (I, Iz) quantum number

up u +2/3 1.5 - 4.5 MeV/c2 (1/2, +1/2) -down d !1/3 5 - 8.5 MeV/c2 (1/2, !1/2) -charm c +2/3 1 - 1.4 GeV/c2 - C = +1strange s !1/3 80 - 155 MeV/c2 - S = !1top t +2/3 171.4 ± 2.1 GeV/c2 - T = +1bottom b !1/3 4 - 4.5 GeV/c2 - B = !1

• Quarks interact via the strong, electromagnetic and weak forces

• Quarks are never found isolated, they always combine into bound states called “hadrons” - confinement

• Quarks carry a new quantum number known as colour -

• each quark has either red, blue or green colour charge

• anti-quarks have anti-red, anti-blue or anti-green colour charge

m(proton) = 938 MeV/c2

18

Mesons = qq"

Bound states of quark anti-quark pair

Bosons: spin 0, 1", 2"

e.g. pions

Baryons = qqq

Three quark bound states

Fermions: spin 1/2", 3/2" ...

e.g. proton (uud), neutron (ddd)

anti-baryons e.g. anti-proton

• Free quarks have never been observed - quarks are locked inside hadrons

• Hadrons are bound states of quarks: either (qqq) or (qq ")

• Charge of hadron is always integer multiple of electric charge, e

• Colour charge of hadron is always neutral

• Two types of hadrons – mesons and baryons

Hadrons: Mesons & Baryons

!+ = (ud)!! = (ud)!0 = 1

"

2(uu ! dd)

p = (uud)n = (udd)p = (uud)

q"

q

qq

q

19

Interactions: Classical & QuantumClassical Interactions

electromagnetism and gravity - action at a distance"...that one body may act upon another at a distance through a vacuum without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that, I believe no man, who has in philosophic matters a competent faculty of thinking, could ever fall into it."

(Newton in a letter to Richard Bentley, 25 Feb. 1693)

Nuclear and Particle Physics Franz Muheim 15

InteractionsInteractions

!"#$$%&#"'()*+,#&*%-)$!"#$%&'()*+#%,-(.)+/.*&)0,%1

2.)$%.34'+.)+'%5#&.)%.)./,-%)+$#.2.

2.*&#)%.)6-3&/,%1.2 7#8%'+

()*+,#&*%-)$./-,&+$'%)'0#,*%&"+'012$%&$93)&:-.)+/."#4%'+-.,+%#&)$%.0,).

%5#.#;$5)+*# '<.*)3*#.6'-'+-

3#45+'6-$-)$=#$%'&.6'-'+-.> ?4,+.@

A#/,)%'&-.'<.-%&'+*.B*"3'+CD

#"#$%&'()*+#%,$.B45'%'+CD

8#):.BEF G.HIC ,+%#&)$%,'+

J'&$# K)3*#.L'-'+ ?1(6'" M5)&*#

#

A)--

K#=N$OP#")%,0#.?%&#+*%5

?%&'+* Q.*"3'+- * F F

F

R@S@QTU

QFSVOW

F

@

!"#$%&'.()*+#%,$

X5'%'+ ! F @FYO

H#): Z+%#&(#/,)%#.0#$%'&.6'-'+-

EF

HI

F

I@

[@FYT

K&)0,%1 K&)0,%'+ ! F [@FYVF

3#45+'7-$-)$3#45+'7-$-)$

Interactions and Forces in Particle Physicsquarks and leptons interact via exchange of spin-1" gauge bosonsgravity does not (yet) fit into this framework

Force Gauge Symbol Charge Mass Relativeboson e GeV/c2 strength

Strong (8) gluons g 0 0 1Electro- photon ! 0 0 ! 10!2

magentic

Weak ‘intermediate Z0 0 91.188 ! 10!7

vector bosons’ W ± ±1 80.40Gravity graviton 0 0 ! 10!40

20

!

"#$%&%'()%*$+,+)-+.-%$)&$/0#1%'23'4$%56%')7%&#$89:$;%<=$!>* ?+&&3#$(%#$?-3*%$%&30(1$#3$&0?-%0*$#3$2%%-$#1%$*#'3&($23'?%$*)(&)2)?+&#-@$A #1%'%23'%$B30-37.$*?+##%')&($437)&+#%*C$D%%$E0#3')+-$F0%*#)3&$G

HI::I"0

8?1+'(%$J$K:I%$G=

L30-4$&%%4$1)(1%'$)&?)4%&#! %&%'()%*$#3$*%%$%22%?#*$32$#1%$*#'3&($23'?%M$N1)?1$6'340?%*$-+'(%$4%,)+#)3&*$2'37$*)76-%$B30-37.$*?+##%')&(

OC(C$L1+#$23'?%*$?3&#').0#%$)&$! 6+'#)?-%$*?+##%')&($2'37$&0?-%)!

D#'%&(#1$32$23'?%*$+#$4)22%'%&#$4)*#+&?%$*?+-%*$

/%,)*)3&$32$*37%$.+*)?$?3&?%6#*

P0+&#07$7%?1+&)?*

Q *@*#%7$4%*?').%4$.@$N+,%$20&?#)3&$"85M#=$3.%@)&($#)7%$4%6%&4%&#$D?1'R4)&(%'$%F0+#)3&$8ESDO=

),(),(),(2

2

22

txt

itxtxVxm

#$$=#

!"#

+$$

$%&% !!

Q 3.*%',+.-%$J$61@*)?+-M$7%+*0'+.-%$F0+&#)#@$$& 36%'+#3'

%5+76-%*#3#+-$%&%'(@$$$& T+7)-#3&)+&

63*)#)3&$$&-)&%+'$737%&#07$$&

+&(0-+'$737%&#07$$&

TU

5U6UVWU

Q *#+#)?$63#%&#)+-$X *#+#)3&+'@$*#+#%*$%5)*#C$S%*?').%4$.@$*6+#)+- N+,%20&?#)3&$"85=$3.%@)&($#)7%$)&4%6%&4%&#$D?1'R4)&(%'$%F0+#)3&$8EYDO=

=58!O=58!TU

=58!O=58!=58<45

4

7V

OO

OOV

VV

=

=!"#

+$%&

% !

%)(%&,+-0% %F0+#)3& 3&-@$*+#)*2)%4$.@$?%'#+)&$,+-0%*$32$O

%&%'(@$)*$PZ"[EYDOS

7%+*0'%7%&#*$32$#3#+-$%&%'(@$?+&$3&-@$@)%-4$,+-0%*$N1)?1$+'%

%)(%&,+-0%* 32$T+7)-#3&)+&$36%'+#3'

%)(%&20&?#)3& %)(%&,+-0%

The Fundamental Forces

Strong Force (gluon, g)

• Acts on colour charge i.e. only on quarks

• Holds hadrons together and nuclei together

Weak Force (W & Z)

• Acts on “weak hypercharge” i.e. on all quarks and leptons

• Responsible for fission, fusion and radioactive decays

Electromagnetic force (photon, ")

• Acts on electric charge i.e. on all charged particles

• Hold atoms and molecules together

Gravity (graviton)

• Acts on mass ... i.e. on all particles except the photon and gluons

• v. weak on subatomic scales

• Responsible for large scale structure of the universe

21

• fermions

• 3 generations of quarks & leptons

• Antimatter

• Quarks form into hadrons - mesons and baryons

Summary

An elegant theory that describes accurately (almost) all measurements in particle physics

The Standard Model of Particle Physics

Quarks and Leptons Charge, e

%e

e%µ

µ%&

&

0#1

ud

cs

tb

+2/3#1/3

InteractionGauge Bosons

Charge, e

Strong gluons 0

Electro-magnetic

Photon 0

Weak W, Z 0, ±1

Gravity graviton 0

Matter Forces

• mediated by the exchange of gauge bosons

22

Standard Model of Particle Physics

Boson-mediated

FORCES

Gravity ?

Electro-magnetism photon

Weak

Strong

Z0

*

gluons

23