23
le Distribution Modification by TAE mode and Resonant Particl POSTECH 1 , NFRI 1,2 M.H.Woo 1 , C.M.Ryu 1 , T.N.Rhee 1,,2

Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Embed Size (px)

Citation preview

Page 1: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Particle Distribution Modification by TAE mode and Resonant Particle Orbits

POSTECH1, NFRI1,2

M.H.Woo1, C.M.Ryu1, T.N.Rhee1,,2

Page 2: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Outlines

-Hybrid scheme:ideal MHD background and energetic particles

-Tokamak Equilibrium and TAE

-Distribution function modification by TAE -Resonance particle interactions with the TAE wave Bouncing, circulating and potato orbits

-Conclusions

Page 3: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Hybrid Code Structure

Equilibrium (EFIT data)

Re-normalization of Equilibrium(Chease)

TOKAMAK Experiment

Ideal MHD Solution (KINX)

Non-inductive heating & Alpha particle

TRANSP Data etc. Hot Particle Distribution

Mode Frequency & Growth rate

Test Particle code (ORBIT)

Monte-Carlo Distribution

Page 4: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Calculation of Mode Frequency Modification

0||)(2

1 )()(3220

2 nak

ak WWxd

Dispersion Relation for TAE

]Re[2

1 )()(

00

nak

akr WW

K

Calculation of Mode Growth Rate

( )

0

1[Im ]

2na

i kWK

))((ln

4

|)~(4

2)(

||

2

*

2)(

ppk

k

jj

hak

kl l

l

kk

jj

hnak

FE

E

VBW

vk

JE

E

VBW

Mode Growth-rate

( ) ( )[1 ( ) ]

( ) (damping)i d

A t A t t t

t

All the values shown here can be estimated from Simulation

Kinetic & Fluid Contributions

Page 5: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Why Hybrid Code ?

• Full Particle simulation is not available• Saving computation time• Individual particle trajectory• Immediate validation & examination of analytical theory• Essential issues about energetic particle• Alpha particle heating• Turbulence

Limitations

• Only perturbative treatment• Not fully self-consistent• Scale larger than Gyro-radius• Slow time scale behaviors ( Drift scale, Not gyration scale)

Page 6: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Ideal MHD mode

Page 7: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Relation between displacement and Magnetic perturbation

)(, Ingmq

nqmmn

Total Perturbation Dominant m=1 Perturbation

Page 8: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Particle Distribution Modification by TAE mode

Page 9: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

• Electron distribution for ECRH• Ion distribution for NBI• Electron & Ion distribution for ICRH• Fusion Born Alpha particle distribution

b=0.1

Example: Initial Maxwellian distribution (2000 particles) in simulation

b=8

Page 10: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

•Interpolation of test particle distribution

•Smooth radial and energy profile

•These equations are used for analytical calculation of mode frequency and growth rate

2 2 2 21

1 1( , )

( ) ( )

N

pk p pk k

F Ea E E b

2 2 2 21

2( ) 1

( ) ( )

Np pk

kp p pk k

F

a E E b

2 2 2 21

2( ) 1

( ) ( )

Np pk

k p pk k

E EF

E a E E b

Page 11: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Initial Distribution

First orbit loss of the particles

Final Distribution

Pitch Distribution

Energy Distribution

• Energy is conserved

• Particles with pitch around 0are dominantly lost• Large bounce orbit is the main reason for loss

Page 12: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Radial Distribution

Theta Distribution

• Radially flattened due tofinite bounce orbit

• Barely trapped or circulatingparticles are mainly lost

Page 13: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

For the perturbation

Energy distribution

Resonance line

•More particles near the resonance line. •Some particles gain very high energy•High energetic particles (>150 keV) are lost

Radial distribution

•Particles near the edge are lost•Flattened compared to the no B perturbation case

3/ 10B B

Page 14: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Particle loss due to perturbation

•Dominant particle loss begins around •First orbit loss is about 40%

210

•In average, particle gains energy•Energy gain process shows a jump

Page 15: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Circulating-Passing particles: High energy

800

4transit

alpha p

t t

m m

•No perturbation•Clear precession•outward-shift of orbit

|| ||

100

/ 0.7

E keV

v v

parameters

Page 16: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Non-Circulating, passing particles

Same parameters with low energy 1E keV

800

4transit

alpha p

t t

m m

||

100

0.3

E keV

•This is the orbit of the particle that interact most strongly with TAE mode

Page 17: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

||

3

0.3

100

0.7

/ 10

A

E keV

B B

Particle trajectory with B perturbation

Non-Resonant case, large perturbation

Orbit modification is not much.

Page 18: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Resonant case with small perturbation

||

4

0.3

100

0.454

/ 10

A

E keV

B B

• Particle has a little bit smaller velocity• Particles are lost due to resonant interaction

0 00.3 2 0.3 2wave AV R B

Wave phase velocity is about

/ 0.455wave partV V

Here is alpha particle velocitypartV

Page 19: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Resonant case with small perturbation -jumping orbit

•A sudden jump to other smaller orbit

||

100

4

0.43(smaller pitch)

/ 0.455

/ 10

waveV V

B B

Page 20: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Resonant case with small perturbation- jumping orbit

||

5

0.475 ( greater pitch )

10B

B

For a very small perturbation, resonant particles change the direction of the movement,jumping to other stable orbit with pitch reversed.

Page 21: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Detailed Motion of Resonant Particles

Phase trajectories of particles with different pitches

Bouncing

Potato

Circulating

Page 22: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Conclusions

•Modification of particle distribution by the TAE mode is under investigation. •A hybrid scheme of ideal MHD and energetic particle motion is used.•Particles tend to jump from one orbit to other stable orbit•Resonant particles interacting with TAE strongly mainly come from the potato orbit.•Some particles with low pitch gain large energy and move in the reverse direction.

Page 23: Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2

Thank you for your attention!