44
The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah Corridor One: An Integrated Distance Visualization Environment for SSI and ASCI Applications Startup Thoughts and Plans Rick Stevens Argonne/Chicago Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

  • Upload
    jam

  • View
    31

  • Download
    0

Embed Size (px)

DESCRIPTION

Corridor One: An Integrated Distance Visualization Environment for SSI and ASCI Applications Startup Thoughts and Plans Rick Stevens Argonne/Chicago. Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah. CorridorOne: An Overview. The Team Our Goals Applications Targets - PowerPoint PPT Presentation

Citation preview

Page 1: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Corridor One: An Integrated Distance Visualization Environment for SSI and ASCI

Applications

Startup Thoughts and Plans

Rick StevensArgonne/Chicago

Participants:

Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

Page 2: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

CorridorOne: An Overview

• The Team

• Our Goals

• Applications Targets

• Visualization Technologies

• Middleware Technology

• Our Testbed

• Campaigns

• Timetable and First Year Milestones

Page 3: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

The TeamRick Stevens Argonne National Lab [email protected] Brown University of Illinois [email protected] Tom DeFanti University of Illinois [email protected] Adam Finkelstein Princeton University [email protected] Funkhouser Princeton University [email protected] Hansen University of Utah [email protected] Andy Johnson University of Illinois [email protected] Johnson University of Utah [email protected] Jason Leigh University of Illinois [email protected] Kai Li Princeton University [email protected] Dan Sandin University of Illinois [email protected] Ahrens Los Alamos National Laboratory [email protected] Deb Agarwal Lawrence Berkeley Laboratory [email protected] Terrence Disz Argonne National Laboratory [email protected] Ian Foster Argonne National Laboratory [email protected] Nancy Johnston Lawrence Berkeley Laboratory [email protected] Stephen Lau Lawrence Berkeley Laboratory [email protected]

Bob Lucas Lawrence Berkeley Laboratory [email protected] Mike Papka Argonne National Laboratory [email protected] Reynders Los Alamos National Laboratory [email protected] Tang Princeton Plasma Physics Lab [email protected]

Page 4: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Our Goals

• Grid Middleware and Advanced Networking

• Distributed Visualization and Data Manipulation Techniques

• Distributed Collaboration and Display Technologies

• Systems Architecture, Software Frameworks and Tool Integration

• Application Liaison, Experimental Design and Evaluation

Page 5: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Distributed Data and Visualization Corridor

Possible WANInterconnection Points

Page 6: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Applications Targets

• ASCI and SSI Applications Drivers– Climate Modeling (LANL)

– Combustion Simulation (LBNL and ANL)

– Plasma Science (Princeton)

– Neutron Transport Code ( LANL)

– Center for Astrophysical Flashes (ANL)

– Center for Accidental Fires and Explosions (Utah )

– Accelerator Modeling (LANL)

Page 7: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Climate Modeling: Massive data sizes and time series

• POP Ocean model – 3000 x 4000 x 100 cells per timestep,

1000’s of timesteps

Page 8: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Combustion Modeling: Adaptive Mesh Refinement

• Data is irregular, not given on a simple lattice

• Data is inherently hierarchical

Page 9: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

PROBLEM DESCRIPTION: Particle-in-cell Simulation of Plasma Turbulence

PPPL

• Key issue for Fusion is confinement of high temperature plasmas by magnetic fields in 3D geometry (e.g, donut-shaped torus)

• Pressure gradients drives instabilitiesproducing loss of confinement due to turbulent transport

• Plasma turbulence is nonlinear, chaotic, 5-D problem

• Particle-in-cell simulation

distribution function solved by characteristic methodperturbed field solved by Poisson equation

Page 10: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

With

GYROKINETIC TURBULENCE SIMULATIONS ON NEW MPP’SScience 281, 1835 (1998)

Turbulence reduction via sheared plasma flow, compared tocase with flow suppressed. Results obtained using full

MPP capabilities of CRAY T3E Supercomputer at NERSC

Flowow

Without Flow With Flow

Page 11: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

MC++ : Monte Carlo Neutronics

• Neutronics simulation of multi-material shell

• Runs all ASCI platforms

• Arbitrary number of particles

Page 12: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

What Is The FLASH Problem?

• To simulate matter accumulation on the surface of compact stars, nuclear ignition of the accumulated (and possibly stellar) material, and the subsequent evolution of the star’s interior, surface, and exterior• X-ray bursts (on neutron star surfaces)• Novae (on white dwarf surfaces)• Type Ia supernovae (in white dwarf interiors)

Page 13: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Neutron star surface X-ray Burst

Page 14: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

• Paramesh Data Structures

• Iris Explorer

• Isosurfaces

• Volume Visualization

• Animations 100’s timesteps

• Resolution moving to Billion

zone computations

Page 15: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Center for Accidental Fires and Explosions

Page 16: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Uintah Simulation Runs

Datasets Visualizations

SoftwareVersions

ConfigurationParameters

ComputingResources

Hypotheses

Interpretations

Assumptions

Insight

Fire Spread

ContainerDynamics

HEMaterials

Page 17: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

C-SAFE Uintah PSE

Page 18: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Distributed/Parallel Uintah PSE

Computed on remoteresources

Viewedlocally

Main Uintah PSE window on local machine

Page 19: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Accelerator Simulations

• Accelerator model– 300 million to 2 billion particles per

timestep, 1000’s of timesteps

• Phase space

• Electromagnetic fields

Page 20: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Distributed Visualization Technologies

• Remote and Distributed Rendering

• Protocols for Remote Visualization

• Progressing Refinement

• Deep Images and Image Based Rendering

• Compression for Visualization Streams

• Remote Immersive Visualization

• Data Organization for Fast Remote Navigation

• High-end Collaborative Visualization Environments

• Collaborative Dataset Exploration and Analysis

• User Interfaces and Computational Steering

• Distributed Network Attached Framebuffers

• Integration with Existing Tools

Page 21: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

CorridorOneS A N /LA N /W A N based

B ulk D ata T ransfer S erv ices and S tream ingD ata S erv ices

S A N /LA N /W A N basedB D TS + S D S + M ulticast

Co

ntro

l Ch

an

ne

l (ne

two

rk, s

erv

ice

s, s

erv

ers

, pe

rform

an

ce

)

S A N /LA N /W A N basedB D TS + S D S + M C + S tream C om press ion +

Q oS

R em oteV olum eC lien t

Im age-based

R enderingC lien t

G lyph C lient

P rogress iveR efinem ent

V isua liza tionC lien t

M an ipu la tionE ng ine

F ea tu reD etec tion

S am p lingE ng ine

D ata D ataD ata

V olum eV isua liza tion

E ngine

Im age-based

R enderingV isua liza tion

E ngine

G lyphV isua liza tion

E ngine

S urfaceV isua liza tion

E ngine

Large Form atTiled D isplays

W orkbench /I m m ersaDesk

CAVEs Desktops

NGINetworkServices

NGI

NGI

Data Servers M ass S to rage Ins trum en ts S upercom pu te rs

Data Analysis and Manipulation Servers T ransposers In te rpo la tion S am p ling F ea tu re D e tec tion

"Distance" Visualization ServersP ara lle l + H ardw are A cce le ra ted : V o lum e Im age S urfaces(P a ired w ith C lien ts fo r D is tance U ses)

"Distance" Visualization Clients P a ired w ith S erve rs In te rfaced w ith M u ltip le D isp lay

E nv ironm ents C ollabora tive C apab ilities

Display Devicesand User Environments Large F orm a t C ollabora tive Im m ers ive

• Data Servers

• Analysis and Manipulation Engines

• Visualization Backend Servers

• Visualization Clients

• Display Device Interfaces

• Advanced Networking Services

Page 22: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Protocols for Remote and Distributed Visualization

Database retrieval

Geometry processing

Rasterization Display

High-level primitives

3-D primitives

2-D primitives

Pixels

R en d ere r

A p p en d

D ec im ation

Isosu rface

R ead

R en d ere r

A p p en d

D ec im ation

Isosu rface

R ead• Distributed Scientific Visualization

• Passing data via messaging– Serialization of vtk data structures,

use C++ streams• structured points, grids, unstructured

grids, graphics

• Passing control via messaging– Update protocol

Model Based Remote Graphics

Page 23: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Example - Parallel Isosurface and Serial Rendering on a Linux Cluster

D ec im ation

Isosu rface

R ead

D ec im ation

Isosu rface

R ead

D ec im ation

Isosu rface

R ead

R en d erer

A p p en d

D ec im ation

Isosu rface

R ead

Page 24: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Progressive Refinement and Multi-resolution Techniques: Example Application

• Particle Accelerator Density Fields– wavelet-based representation of structured grids

– isosurface visualization with vtk

Page 25: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Multiresolution Display Development

High ResolutionInset Image

Background Image

• Match display to human visual system

most cones in 5 foveal spot

• Optimal use of rendering power resolution where you need it

• Match display to data resolutionresolution where the data is

Page 26: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Remote Volume Rendering

• “True” 3D presentation of 3D data

• Blending of user-defined color and opacity

• Reveals subtle details/structure in data that could be lost in isosurface rendering

Page 27: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Remote Visualization Using Image-Based Rendering

Front View Side View

Page 28: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

ActiveMural, Giant Display Wall

• Argonne, Princeton UIUC Collaboration

• 8’ x 16’ display wall– Jenmar Visual Systems BlackScreen™ technology, > 10000 lumens

– 8 LCD 15 DLP 24 DLP

– 8-20 MegaPixels

p 4 4 8 9 4 3 6 T 0 2 9

p 2 6 2 ( C e n tu ry)# 5 6 4 11 0 9 l b s / i n / 2 4 l b s8 2 l b s m a xL @ 5 0 l b s : 2 .8 i n

p 4 4 7 ( M c M a s te r)# 3 0 1 0 t2 7

p448 9436T029

Page 29: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Network Attached — Virtual Frame Buffer

3796p x 1436p (4x2)

5644p x 2772p (6x4)

...

VFB back-end Servers (mapped one-one on graphics output)

VBF front-end serverSerial semantics localframebuffer interface

- output partitioning- blending- serial parallel- flexible transport- shadow buffer

X-Windows ?OpenGL ?ggi ? Message passing, SM or DSM

Accelerator

RAMDAC

Projector

Accelerator

RAMDAC

Projector

Accelerator

RAMDAC

Projector

Accelerator

RAMDAC

Projector

VFB Net Command Interface

Page 30: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

The MicroMural

Portable Tiled Display forHigh Resolution Vis and Access Grid

Page 31: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Ambient mic(tabletop)

Presentermic

Presentercamera

Audience camera

Ambient mic(tabletop)

Presentermic

Presentercamera

Audience camera

Access Grid Nodes

• Access Grid Nodes Under Development– Library, Workshop– ActiveMural Room– Office– Auditorium

Page 32: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Components of an AG Node

DisplayComputer

Video CaptureComputer

Audio CaptureComputer

Mixer

EchoCanceller

Network

RGB Video

NTSC Video

Analog Audio

Digital Video

Digital Video

Digital Audio

Shared App,Control

ControlComputer

RS232 Serial

Page 33: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Collaborative Dataset Exploration and Analysis Collaboration & Network Aware Visualization Tools

• TIDE being built in collaboration with NCDM as a framework for navigating and viewing data-sets in Tele-Immersion.

– Low-Res navigation

– High-Res visualization

– Set viewpoints then raytrace

• Integrate annotation tools & multiperspective techniques.

• Support VTK and make it collaborative.

• Interface with other commonly used ASCI/SSI visualization tools such as HDF5.

TIDE showing Compressionof a Lattice (ASCI data)

Page 34: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Collaborative Dataset Exploration and Analysis Annotation and Recording

• How do you record discoveries in tele-immersion?

• V-Mail & Virtual Post-It notes attach to spaces, objects, or states.

• Recording states and checkpoints.

• Useful for documenting spatially located features.

• Useful for asynchronous collaboration.

• Querying in VR.

• People tend to treat recordings as if they were still there.

Viewing V-Mail in Tele-Immersion

Page 35: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Collaborative Dataset Exploration and Analysis Collaboration techniques & technology for navigating massive data-sets

• Explore human factors to motivate the design of collaborative tools.

• Take advantage of having more than 1 expert to help with interpretation and/or manipulation.Provide Multiple CooperativeRepresentations.

• e.g. Engineer and artist.

• e.g. Partition multi-dimensions across viewers.

• e.g. People with different security clearances.

• CAVE6D implementation and pilot study.

CAVE6D: Tele-Immersive tool forvisualizing Oceanographic Data

Page 36: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Middleware Technology

• Integrated Grid Architecture

• Grid Services Infrastructure

• Multicast Protocols for Rapid Image Transfer

• Analyzing the User of Network Resources

Page 37: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

The Grid from a Services View

Resource-specific implementations of basic services:E.g., Transport protocols, name servers, differentiated services, CPU schedulers, public keyinfrastructure, site accounting, directory service, OS bypass

Resource-independent and application-independent services:E.g., authentication, authorization, resource location, resource allocation, events, accounting,remote data access, information, policy, fault detection

DistributedComputing

ApplicationsToolkit

Grid Fabric(Resources)

Grid Services(Middleware)

ApplicationToolkits

Data-Intensive

ApplicationsToolkit

CollaborativeApplications

Toolkit

RemoteVisualizationApplications

Toolkit

ProblemSolving

ApplicationsToolkit

RemoteInstrumentation

ApplicationsToolkit

Applications Chemistry

Biology

Cosmology

Nanotechnology

Environment

Page 38: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Monitoring : Globus I/O & Netlogger

Page 39: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Type Latency Bandwidth Reliable Multicast Security Streaming DynQosControl < 30 ms 64Kb/s Yes No High No LowText < 100 ms 64Kb/s Yes No Medium No LowAudio < 30 ms Nx128Kb/s No Yes Medium Yes MediumVideo < 100 ms Nx5Mb/s No Yes Low Yes MediumTracking < 10 ms Nx128Kb/s No Yes Low Yes MediumDatabase < 100 ms > 1GB/s Yes Maybe Medium No HighSimulation < 30 ms > 1GB/s Mixed Maybe Medium Maybe HighHaptic < 10 ms > 1 Mb/s Mixed Maybe High Maybe HighRendering < 30 ms >1GB/s No Maybe Low Maybe Medium

Teleimmersion Networking Requirements

Audio

Video

Tracking

Database and Event Transactions

Simulation Data

Haptic Drivers

Remote Rendering

Text

Control

• Immersive environment• Sharing of objects and virtual space• Coordinated navigation and discovery• Interactive control and synchronization• Interactive modification of environment• Scalable distribution of environment

Page 40: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Corridor One Testbed

Page 41: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

High Bandwidth Data Distribution

Achieved 35 MBytes/sec.

Page 42: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

Midwest Networked CAVE and ImmersaDesk Sites Enabled by EMERGE

Page 43: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

CorridorOne Application Campaigns

Approximately two weeks in duration (will do approximately three or four each year)

Focused testing and evaluation of one application area during that time

Involving the participation of external applications scientists Part of the effort is qualitative to determine how the users will

use the remote capabilities Part of the effort is a set of well designed quantitative

experiments to collect data

Page 44: Participants: Argonne, Berkeley, Illinois, Los Alamos, Princeton, Utah

The CorridorOne Project Argonne Berkeley Illinois Los Alamos Princeton Utah

First Year Milestones

• Access Grid nodes up for supporting C1 Collaboration (Oct 31)• Integrate Visualization Tools, Middleware and Display Technologies • Conduct Phase 1 Applications Experiments beginning Dec 1-10• For each applications domain area we will:

– Collect relevant problem datasets and determine possible visualization modalities

– Develop remote scientific visualization and analysis scenarios with the end users,

– Prototype a distributed collaborative visualization application/demonstration– Test the application locally and remotely with variable numbers of participants

and sites– Document how the tools, middleware and network were used and how they

performed during the tests– Evaluate the tests and provide feedback to Grid middleware developers,

visualization tool builders, and network providers