56
Part´ ıculas Elementales una vista desde San Luis Potos´ ı Seminar Universidad Veracruziana Jalapa, March 11, 2004 urgen Engelfried 1 Instituto de F´ ısica Universidad Aut´ onoma de San Luis Potos´ ı Outline Introduction Conservation Laws and Violation Charm – SELEX CP Violation in Kaons – CKM Summary 1 jurgen@ifisica.uaslp.mx, http://www.ifisica.uaslp.mx/˜jurgen

Part¶‡culasElementales unavistadesdeSanLuisPotos¶‡jurgen/public/jalapa_mar04.pdfPart¶‡culasElementales unavistadesdeSanLuisPotos¶‡ SeminarUniversidadVeracruziana Jalapa,March11,2004

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Partıculas Elementalesuna vista desde San Luis Potosı

Seminar Universidad Veracruziana

Jalapa, March 11, 2004

Jurgen Engelfried1

Instituto de Fısica

Universidad Autonoma de San Luis Potosı

Outline• Introduction

• Conservation Laws and Violation

• Charm – SELEX

• CP Violation in Kaons – CKM

• Summary

[email protected], http://www.ifisica.uaslp.mx/˜jurgen

Some centuries ago...

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 2

Mendeleev (19. Century)��� � �� � � ��� �� � � � ��� � �� �� �� �� � �� � �� ��� � � � �� � � �� �� � �� � ��

� � �� ��� �� � � � � � �! "#$ �%& �� � � �� �� ' �( � � ��� �� � � � � � ) � *+ ,- ./ - 0 12 34 + .5 16 + + 4 + 7 + 8 1 9 : '( � � �� � � ) � �

;<= > � �� � � � � � �� ?@ �% � � ��� � � � � �) ABC � � �� : � � � ��� DE �� � � � F GH I I GJ KLM� � ? �@ � �� � � �� ��� � ? NO � �� �� � � � ) �� � �

� � P QR = � � S �� ��� � ! � : � �� � � ' �� � ' �� ' �� � ' �� � � ' � T� � � � � U � �� ' � �� � '� ! �VW �� � � �� �X YZ [\] ^_ \�� ` #O � ��a � �� ) � � ) : :� : bc& �S d&e_f Z [g _ g Y]� `O� �h� ! � � � �� ;V<& �� � � ! : � � : � �� ) �iW � � �! � � �� )� � jc � % = S S �� �! � � � � ) !

� � ; N<= �a �� �� � � � � )� � `kOa = � �� �l lZ [ ^ ^ [] f� � m #n �% = � �� �� � � ) �� ! �o= �= �� �: � � �� � :�� ;i<& � � �� �: �� � � �� : PpR = � �= � S :� � � ! ) �� �� D �q � �: : � ) � :�� ;r< � > = �%^\ Z [_ _ Xf f� ) ? #@ �as �: ) � � !�� � ;t< � d d ! � :�

! � upv � �a : � ! �! � w Nx = � ��� � � � � � !! � w �x � = �e� � � �! ! � yW S � �a� � � � � � �!� ` �O � � �� �� ) � � ! : 'i( � � � � � � � � � �! jiz � d% � �) ! � ) �!� { |} � > � �� �) : � � � )

! ) `iO% � �% �� �)� � �! � ~� % % �� �) ) � � � : ) :� � uiv � a � � �� �� �� � ��� � ? |@ � � > �� �� � � � � ! )� � P rR � � � > e� : � � �� ! m kn a & � %e� [g Z [f g X] ^ �� � {t} � %& �e� � �� ��� : {�}& � � � �] f XZ [f ^ ^f� b �c= � �= � � �� � � � �� � � QO � �� � �� � ) ) �� ) ; �<= � �� �� � � � � � �� � �pq � �� �� �� � ) � )

: � `pn � �� � ) � � � �: � ` |W �% � � � � �� � �� � �: � m �n � �� �� �� � � � �: ! �q� � � ] X YZ [f l l g:� � �� � � �� ! �� � �: : ; y< S �� �] _ XZ [f ^ l ^

: ' N( = �� �� !� � ! ��:�� � �$= �%& =�� � S� � ��� = h � �� ��� ) � � �� ! m Nn= �% = �� �� ) � � �� � �� � �n � � �S % �� ) ! � ) �� : { �}& � �� �� ) � � ��� A yBS � �� �� � � � � !� � �iq � �� �� � � � � ��� ) b �c �= % � �� �� � : � �� )� � � tx � �] [ YZ [ Y Y ^ ^) � � QR a � �� � � � : �) � mVn& = � ��� �� �� � ! ) ! !) � b |$ = � �� � �) ! ' #( �S � � %&Xf \ Z [\f _ \)� brc � �� � �� ��M K GH I GM J F � �) : � �WS % = % � � �M K IH I G� FL F �) {p} = � ��M M M H K F� �� K �)� DiE = �a �� ��M M L H K F I� L F �

) ) { N} = �� ��M M �H KM �J KM �) �� � � !W a % � � � S � �� {�} � %& h � e� X Y] Z] f \ [ �� � : � |� � > � �� �� X Y XZ] ] l l �� � ` QO = > � �e� X Y _ Z] ] \ Y �� �� ' �( �& �� �� X Y XZ] X _] �� � ) � y� = S S � � �� X Y ^Z] _f Y �� � � P �R �% � e� X Y YZ] _ g \ �� � �

� � � � �� ! �� � �

� �� � �� � �

� �� � �

� �� �� ��� ����� � � � : � " N$= �%& = �e� ! ) � � � : :: ) ; �< �� ��� � � � � : � bic = S � � �e] lf Z [f g Y ^ � ? �@ � � �e�� � � �� � b c � � %&e� FJ J H I FM � J � � � ` O= � = �� �� : � � ! ! ¡t¢ � � d �� �� : �� � � � w �x = � �� �e� :� � � : : m |n > �� �] ^ \ Z [ X ^_ l � £� �S d �Se� � � : � � � r� � � � �� �] Y lZ [_f _ X ) ¡i¢ > �� �� � � � � m  n& � ��� �] Y \ Z [_ l X]� � ~ |� % % > �� ��� ! � ��� � "t$ � % % � � ��� � � � �

¤ ¥ �� � � � ���� � � � ) � � kW a % � � �� ��M M � H KM � � J � �� � m �n& � �� �� ! � � � ! ) �� � b Nc � % = a % � �eX _] Zf _ ^\ \� � ¦§ = � �� �� ! ) � � � ) �� ! ? ¨@ d% � � �� ��M L � H KJ G F � � ��� btc �� % � � �� ��M J J H K �J F I� �� : �  W � �ae�M J L H K � FL �M �� ;  < � �� ��M J � H K� KL J � ��� '©( s ��� ��M J � H K� KM I G �� ) ;�<= �� h � �e�M � FH K� I �� I �� � ¡ y¢ � �S % � �e�M �M H K GM I� �� � � D E � �� ��M � � H K I � K I � �� � � P �R � � �e�M � GH K I GJ M � �� � � ? r@ � > ��� �� X ^ [Z] f ] ] �� � ! "i$=ª �ae� X Y XZ] f [\ �

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 3

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 4

Elementary Particles

≈ 1950 : Known elementary particles:

• Electron (1897)

• Proton (1905)

• Neutron (1932)

• Positron (1932)

• Myon (1937)

• Pion (1947)

Last discovered:

• top quark (1995)

• tau neutrino (ντ ) (2000)

Still missing today:

• Higgs

• Graviton

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 5

Composition of Hadron

Exhibit Strong Interaction, composed of Quark

• Baryon: 3 quarks. Example: proton, neutron

• Meson: 1 quark, 1 antiquark. Example: pion,

kaon

Do we understand this? Somehow....

• quarks carry additional quantum number color

(strong charge)

• 3 colors, 3 anti-colors (compare to EM: 1 charge)

• Described by Group Theory SU(3) (compare: EM

charge U(1), spin SU(2))

• “Gluons” mediate interaction (compare EM: pho-

ton)

• Only color singlets (white) objects observable as

free particles

Experimental Observations:

• All possible Mesons from 5 quarks observed

• Baryons: all combinations up to one c-quark, and

Λb (bud)

Open Questions

• More “white” objects are possible:

– 2 quarks, 2 antiquarks

– 4 quarks, 1 antiquark (Pentaquarks)

– 3 quarks, 3 antiquarks (H)

• Most extreme case: A lot of Quarks and Gluons

form one soup:

Quark-Gluon Plasma

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 6

Conservation Laws

Classical

Hamiltonian invariant under space translation

=⇒ Conservation of momentum

Hamiltonian invariant under time translation

=⇒ Conservation of energy

Hamiltonian invariant under rotation

=⇒ Conservation of angular momentum

gauge invariant

=⇒ Conservation of electric charge

Quantum Mechanics equivalent description:

(a) Momentum is conserved

(b) Hamiltonian is invariant under space translations

(c) Momentum operator commutes with Hamiltonian

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 7

Important in Particle Physics: Discrete Symmetries

• Parity PPΨ(~r)→ Ψ(−~r)

– Strong and Electromagnetic Interaction conserve Parity

– Weak Interaction violates Parity (1957)

• Charge Conjugate C– exchange sign of electric charge and magn. moment

– exchange particle with antiparticle

• Time Reversal T

Until 1964: All Interaction are invariant under CPK0

L → π0π0π0 (21%) CP = +1

→ π+π−π0 (13%) CP = +1

→ π+π− (0.2%) CP = −1 CP Violation!!!

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 8

Basic Interactions

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 9

Weak Interaction

≈ 1960 weak decay of strange particles

• Why “strange”?

– produced abondandly

– long living

• Explanation:

– produced in pairs by Strong Interaction

– decay by Weak Interaction supressed

eigenstates to Strong Interaction and mass are NOT eigenstates to Weak Interaction

• −→ Cabbibo theory (1963)

– 2× 2 rotation matrix for quarks (not! for leptons)

d′

s′

=

cos θc sin θc− sin θc cos θc

d

s

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 10

Examples for Weak Decays

• µ− → e− + νe + νµ

ªªª

®®®e−

νe

µ− νµg

g

W−

• beta decay: n→ p + e− + νe.

On quark level: d→ u + e− + νe

ªªª

®®®e−

νe

d ug · cos θc

g · Vud

g

W−

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 11

Some more History

≈ 1970: Are there more quarks? (most people: NO!)

If yes, how to change Cabbibo theory?

1972: Kobayashi and Maskawa: If there are 6 quark, we can describe CP Violation (3× 3 matrix)

1974: “November Revolution” charm quark discovered (Brookhaven, SLAC)

1976: b quark (Fermilab)

1994: t quark (Fermilab)

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

d′

s′

b‘

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b

0.9745− 0.9760 0.217− 0.224 0.0018− 0.0045

0.217− 0.224 0.9737− 0.9753 0.036− 0.042

0.004− 0.013 0.035− 0.042 0.9991− 0.9994

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 12

Decay of charm

Just like strange:

ªªª

®®®u

d

c s

W+

g · Vcs

g · Vud

Measure Vcs? Yes, but... quarks are never alone!

Need a lot of measurements −→ SELEX

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 13

Lifetime Difference of Charm Particles – The Ξc as Example

Ξ+c (csu) decay: τ = 442 · 10−15 sec

ªªª

®®®un

d

c snW+

g · Vcs

g · Vud

s snu un

Ξ0c (csd) decay: τ = 98 · 10−15 sec

ªªª

®®®u

d

c snW+

g · Vcs

g · Vud

s snd d

c sn)

)(

(W+

s snd u

g · Vcs

g · Vud

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 14

Experimental Setup

To do a good job on charm, you need:

– High Statistic (charm cross section small)

– Good Trigger or Software Filter (σc ≈ 10−3σtot)

– Extremely good Silicon Detectors (secondary vertex, lifetime)

– Extremely good Particle Identification (proton, kaon)

Or even better: All of the above!

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 15

Fermilab Tevatron

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 16

Fermilab – High Rise and Fixed Target Area

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 17

Elevator

W

E

S N

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �

� � �

G as

H ouse

H yperon Targetting

M agnet Photon 2

Target,

V ertex

region

M 1

Photon 1

D C

PW C

BTRD

M 2

PW C

���

HOD1 ���

eTRD Ring-Im aging Cherenkov

neutron

calorim eter

Photon3M 3

PC3 PC4

V ee A V ee B V ee C

.

PW C

0 m 20 m 40 m 50 m

HOD2

10 m 30 m 60 m

Selex (E781)Proton Center Layout

20 µm pitch VX Si detectors

25 µm pitch VX Si detectors

u y x

20 µm pitch Beam Si detectors

TargetsCu Diamond

InteractionScintillators

0 20-20 40 Z [cm]

-2

0

+2

X [cm]

Vertex RegionS4 Beam Scintillator

Interaction Veto (V5) Scintillator

30 50-10 10

x y 1 u v x y 2 u v

x y 3 u v x y 4 u v x v 5 u x

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 18

The SELEX Collaboration

G.P. ThomasBall State University, Muncie, IN 47306, U.S.A.

E. GulmezBogazici University, Bebek 80815 Istanbul, Turkey

R. Edelstein, S.Y. Jun, A.I. Kulyavtsev1, A. Kushnirenko, D. Mao1,P. Mathew2, M. Mattson, M. Procario3, J. Russ, J. You4

Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A.M.F. EndlerCentro Brasiliero de Pesquisas Fısicas, Rio de Janeiro, Brazil

P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow, L. StutteFermilab, Batavia, IL 60510, U.S.A.

V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg,V.V. Molchanov, S.B. Nurushev, S.I. Petrenko, A.N. Vasiliev, D.V. Vavilov,

V.A. VictorovInstitute for High Energy Physics, Protvino, Russia

Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling, Zheng Shuchen,Mao Zhenlin

Institute of High Energy Physics, Beijing, P.R. China

M.Y. Balatz5, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko,A.V. Evdokimov, M.A. Kubantsev, I. Larin, V. Matveev, A.P. Nilov,V.A. Prutskoi, A.I. Sitnikov, V.S. Verebryusov, V.E. Vishnyakov

Institute of Theoretical and Experimental Physics, Moscow, Russia

U. Dersch6, I. Eschrich7, I. Konorov8, H. Kruger9, J. Simon10,K. Vorwalter11

Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany

I.S. Filimonov5, E.M. Leikin, A.V. Nemitkin, V.I. RudMoscow State University, Moscow, Russia

A.G. Atamantchouk, G. Alkhazov, N.F. Bondar, V.L. Golovtsov, V.T. Kim,L.M. Kochenda, A.G. Krivshich, N.P. Kuropatkin, V.P. Maleev,P.V. Neoustroev, B.V. Razmyslovich, V. Stepanov, M. Svoiski,

N.K. Terentyev12, L.N. Uvarov, A.A. VorobyovPetersburg Nuclear Physics Institute, St. Petersburg, Russia

I. Giller, M.A. Moinester, A. Ocherashvili, V. SteinerTel Aviv University, 69978 Ramat Aviv, Israel

J. Amaro, A. Blanco, J. Engelfried4, A. Morelos, I. Torres, E. VasquezUniversidad Autonoma de San Luis Potosı, San Luis Potosı, Mexico

M. LuksysUniversidade Federal da Paraıba, Paraıba, Brazil

V.J. SmithUniversity of Bristol, Bristol BS8 1TL, United Kingdom

M. Kaya, E. McCliment, K.D. Nelson13, C. Newsom, Y. Onel, E. Ozel,S. Ozkorucuklu, P. Pogodin

University of Iowa, Iowa City, IA 52242, U.S.A.

L.J. DauweUniversity of Michigan-Flint, Flint, MI 48502, U.S.A.

M. Gaspero, M. IoriUniversity of Rome “La Sapienza” and INFN, Rome, Italy

L. Emediato, C.O. Escobar14, F.G. Garcia4, P. Gouffon, T. Lungov15,M. Srivastava, R. Zukanovich-Funchal

University of Sao Paulo, Sao Paulo, Brazil

A. Lamberto, A. Penzo, G.F. Rappazzo, P. SchiavonUniversity of Trieste and INFN, Trieste, Italy

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 19

SELEX Appartus

3 segment forward spectrometer (xF > .1)

• 74000 strip silicon system, 4µm transverse position resolution at 600GeV

• Beam tagging (Σ−/π−, p/π+) with Beam TRD

• 3000 phototube RICH – K/π separation up to 165GeV

• Secondary e− identification with Electron TRD for semileptonic decays

• Precise downstream tracking

– 18 large silicon planes (σ ∼ 8µm)

– 26 PWC planes (σ ∼ 0.6− 1mm)

– 3× 24 Vector Drift Chambers (σ ∼ 100µm)

• 3 lead glass photon detectors

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 20

Primary and Secondary Vertex ResolutionPrimary and Secondary Vertex Resolutioncm

even

tsPrimary

Secondary

Primary vertex positionscm

even

ts

Primary vertex positions

0

2000

4000

6000

8000

10000

12000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

500

1000

1500

2000

2500

3000

-7 -6 -5 -4 -3 -2 -1 0 1

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 21

SELEX Particle ID detectors

0

200

400

600

800

1000

1200

1400

0 10 20 30

Number of BTRD planes ON

Σ- 600 GeV

π- 600 GeV

Npl

Eve

nts

0255075

100125150175200225

0 5 10 15

Number of ETRD clusters

e

π

Ncl

Eve

nts

0

10

20

30

40

50

60

70

80

9 9.5 10 10.5 11 11.5 12 12.5 13

Ring Radius from 95-105 GeV tracks

K π

(cm)

Eve

nts

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 22

Online Filter

Filter is Online Program which select events that have evidence for a secondary vertex.

• Algorithm:

– Start from downstream tracking to find high-momentum (p > 20GeV/c) tracks in PWCs

– extrapolate tracks back to vertex silicon within the roads predicted by downstream tracking

– Rejext events if tracks form just a primary vertex

• Charm efficiency about 50%, Rejection 8

• 4 times more charm per tape, 8 times faster to process.

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 23

Reconstruction of Λ+c

• Λ+c consists of (udc) quarks

• Mass m0 = 2.285GeV/c2 (remember: proton 0.938GeV/c2)

• Lifetime: τ = (2.0± 0.06) · 10−13 sec (SELEX Collaboration, PRL 86 5243)

• Decays to Λc → pK−π+ in 5.0% of the time.

• Only in 1 out of 1000 collisions a charm quark gets produced.

Special Theory of Relativity:

E = m · c2

m = m0 · γ

γ =1

1− v2

c2

=E · c2

m0

p = m · v ≈ m0 · γ · cTime dilation: t = t0 · γ

Mean flight path: L = c · τ · γ

=⇒ A Λ+c with momentum 200GeV/c flies on avarage 5.4mm

=⇒ Do a Fixed Target Experiment – But even there we cannot observe a Λc directlyPartıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 24

What do we do?

• Measure type, direction, momentum, and charge of all decay products

• Apply momentum and energy conservation to ”interesting” decay vertex and calculate energy and

momentum of hypothetical mother particle

• Transform into rest system of mother particle to obtain rest mass (”Invariant Mass”)

• Do this for a lot of events, fill histogram with results

Measuring direction and decay vertex

• Use silicon microstip detectors

Measuring momentum and charge

• Deflection in magnetic field, measure track angles before and after with wire chambers

Measuring type (is it a proton?)

• Measure total energy in calorimeter, calculate mass

• Measure velocity with Cherenkov effect

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 25

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 26

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 27

16171819

Run: 10439 Spill: 41 Event_in_Spill: 17156 Event: 100034284 Tubes: 63Date: 98/10/08 22.59.43

Masses: Sigma Proton Kaon Pion Muon Electron Backgrnd

Tracks :Momenta:

16-095

17+154

18+074

19-153

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 28

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 29

Cherenkov Radiation

A charged particle with a velocity v larger than the velocity of light in a medium emits light

(Pavel A. Cherenkov, Ilja M. Frank, Igor Y. Tamm, Nobel Price 1958)

Threshold: βthres =vthres

c≥ 1

nγthres =

n√n2 − 1

Angle of emission: cos θc =1

β n=

1vc n

θmaxc = arccos

1

nWater: θmax

c = 42◦ Neon (1atm): θmaxc = 11mrad

Number of photons:d2N

dEdl=

αz2

hc

1− 1

(βn)2

=αz2

hcsin2 θc

d2N

dλdl=

2παz2

λ2sin2 θc

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 30

Usage in Detectors

• Water Cherenkov Detectors (SuperKamiokande, Auger Tanks)

• Threshold Cherenkov Detectors (Beamlines, Experiments)

• Ring Imaging Cherenkov Counters – RICH

Advertisement

5th International Workshop on

Ring Imaging Cherenkov Detectors (RICH2004)

Celebrating the Centenary of Pavel Cherenkov’s Birth

November 30 - December 5, 2004

Playa del Carmen, Quintana Roo, Mexico

http://www.ifisica.uaslp.mx/rich2004

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 31

Ring Imaging Cherenkov Detectors

Measure Cherenkov angle, not only threshold

SELEX RICH, 53 Million single negative track events

J. Engelfried et al., Nucl. and Instr. and Methods A 50 2 (2003) 62-65Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 32

SELEX PublicationsNon-Charm Topics

1. Measurement of the Σ− Charge Radius by Σ−–Electron Elastic Scattering. Physics Letters B522

(2001) 233-239.

2. Radiative decay width of the a2(1320)− meson. Physics Letters B521 (2001) 171-180.

3. First Measurement of π−e → π−eγ Pion Virtual Compton Scattering. Phys. Rev. C 66, 034613

(2002).

4. Total Cross Section Measurements wit π−, Σ− and Protons on Nuclei and Nucleons around

600GeV/c. Nucl. Phys. B 579 (2000) 277-312.

Charm Topics

5. Observation of the Cabibbo-suppressed decay Ξ+c → pK−π+. Phys. Rev. Letter 84 (2000) 1857-

1861.

6. Precision measurements of the Λ+c and D0 lifetimes. Phys. Rev. Letter 86 (2001) 5243-5246.

7. Hadronic Production of Λc from 600GeV/c π−, Σ− and p beams. Physics Letters B528 (2002),

49-57.

8. Measurement of the Ds lifetime. Physics Letters B523 (2001) 22-28.

9. First Observation of the Doubly Charmed Baryon Ξ+cc. Phys. Rev. Letters 89 112001 (2002).

10. Production Asymmetry for Ds for 600GeV/c Σ− and π− beam. Physics Letters B558 (2003) 34-40.

10 publications (2 more submitted), 3 of them PRL. Plus several detector publications.Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 33

The Double-Charm

First Observation of the Doubly Charmed Baryon ��

cc

M. Mattson,3 G. Alkhazov,11 A. G. Atamantchouk,11,a M. Y. Balatz,8,a N. F. Bondar,11 P. S. Cooper,5 L. J. Dauwe,17

G. V. Davidenko,8 U. Dersch,9,b A. G. Dolgolenko,8 G. B. Dzyubenko,8 R. Edelstein,3 L. Emediato,19 A. M. F. Endler,4

J. Engelfried,5,13 I. Eschrich,9,c C. O. Escobar,19,d A. V. Evdokimov,8 I. S. Filimonov,10,a F. G. Garcia,5,19 M. Gaspero,18

I. Giller,12 V. L. Golovtsov,11 P. Gouffon,19 E. Gulmez,2 He Kangling,7 M. Iori,18 S. Y. Jun,3 M. Kaya,16 J. Kilmer,5

V. T. Kim,11 L. M. Kochenda,11 I. Konorov,9,e A. P. Kozhevnikov,6 A. G. Krivshich,11 H. Kruger,9,f M. A. Kubantsev,8

V. P. Kubarovsky,6 A. I. Kulyavtsev,3,5 N. P. Kuropatkin,5,11 V. F. Kurshetsov,6 A. Kushnirenko,3 S. Kwan,5 J. Lach,5

A. Lamberto,20 L. G. Landsberg,6 I. Larin,8 E. M. Leikin,10 Li Yunshan,7 M. Luksys,14 T. Lungov,19,g V. P. Maleev,11

D. Mao,3,h Mao Chensheng,7 Mao Zhenlin,7 P. Mathew,3,i V. Matveev,8 E. McCliment,16 M. A. Moinester,12

V. V. Molchanov,6 A. Morelos,13 K. D. Nelson,16,j A. V. Nemitkin,10 P. V. Neoustroev,11 C. Newsom,16 A. P. Nilov,8

S. B. Nurushev,6 A. Ocherashvili,12,k E. Oliveira,4 Y. Onel,16 E. Ozel,16 S. Ozkorucuklu,16 A. Penzo,20 S. V. Petrenko,6

P. Pogodin,16 M. Procario,3,l V. A. Prutskoi,8 E. Ramberg,5 G. F. Rappazzo,20 B. V. Razmyslovich,11,m V. I. Rud,10 J. Russ,3

P. Schiavon,20 J. Simon,9,n A. I. Sitnikov,8 D. Skow,5 V. J. Smith,15 M. Srivastava,19 V. Steiner,12 V. Stepanov,11,m

L. Stutte,5 M. Svoiski,11,m N. K. Terentyev,3,11 G. P. Thomas,1 L. N. Uvarov,11 A. N. Vasiliev,6 D. V. Vavilov,6

V. S. Verebryusov,8 V. A. Victorov,6 V. E. Vishnyakov,8 A. A. Vorobyov,11 K. Vorwalter,9,o J. You,3,5 Zhao Wenheng,7

Zheng Shuchen,7 and R. Zukanovich-Funchal19

(SELEX Collaboration)

1Ball State University, Muncie, Indiana 473062Bogazici University, Bebek 80815 Istanbul, Turkey

3Carnegie-Mellon University, Pittsburgh, Pennsylvania 152134Centro Brasileiro de Pesquisas Fısicas, Rio de Janeiro, Brazil

5Fermi National Accelerator Laboratory, Batavia, Illinois 605106Institute for High Energy Physics, Protvino, Russia

7Institute of High Energy Physics, Beijing, People’s Republic of China8Institute of Theoretical and Experimental Physics, Moscow, Russia9Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany

10Moscow State University, Moscow, Russia11Petersburg Nuclear Physics Institute, St. Petersburg, Russia

12Tel Aviv University, 69978 Ramat Aviv, Israel

13Universidad Autonoma de San Luis Potosı, San Luis Potosı, Mexico14Universidade Federal da Paraıba, Paraıba, Brazil

15University of Bristol, Bristol BS8 1TL, United Kingdom

16University of Iowa, Iowa City, Iowa 5224217University of Michigan-Flint, Flint, Michigan 48502

18University of Rome ‘‘La Sapienza’’ and INFN, Rome, Italy19University of Sao Paulo, Sao Paulo, Brazil

20University of Trieste and INFN, Trieste, Italy(Received 22 July 2002; published 20 August 2002)

We observe a signal for the doubly charmed baryon ��cc in the charged decay mode ��

cc ! ��c K

���

in data from SELEX, the charm hadroproduction experiment at Fermilab. We observe an excess of15.9 events over an expected background of 6:1� 0:5 events, a statistical significance of 6:3�. Theobserved mass of this state is 3519� 1 MeV=c2. The Gaussian mass width of this state is 3 MeV=c2,consistent with resolution; its lifetime is less than 33 fs at 90% confidence.

DOI: 10.1103/PhysRevLett.89.112001 PACS numbers: 14.20.Lq, 13.30.Eg

The addition of the charmed quark to the (uds) tripletextends the flavor symmetry of the baryon octet and dec-uplet from SU(3) to SU(4). Even though the large mc

breaks the symmetry, SU(4) still provides a good classi-fication scheme for baryons composed of uds and c [1].There is strong experimental evidence for all the predicted

baryon states which contain zero or one valence charmedquark [1]. In this Letter, we present the first experimentalevidence for one of the six predicted baryon states whichcontain two valence charmed quarks—the doubly charmedbaryons. There have been many predictions of the massesand other properties of these states [2–5]. The properties of

VOLUME 89, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER 2002

112001-1 0031-9007=02=89(11)=112001(5)$20.00 2002 The American Physical Society 112001-1

Also mentioned in “Physics News Update”

Article in “La Jornada”

Frontpage (with photo) “El Sol de San Luis”

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 34

SELEX Double Charmed Baryon States

0

1

2

3

4

5

6

7

8

3.3 3.35 3.4 3.45 3.5 3.55 3.6

remove slow pion from Λ+

c K- π+ π+

peak at 3520 MeV/c2

sig/bkg 9.6/3.4

Prob. < 5.3 x 10-6

Lo sideband

Hi sideband2

Even

ts/1

0 M

eV/c

2

0

2

4

6

8

10

12

3.3 3.35 3.4 3.45 3.5 3.55 3.6

Λ+

c K- π+

Mass 3520 MeV/c2

Sigma 3 MeV/c2

signal/√(back)16/√(6) = 6.5σPoisson Prob < 10-6

0

0.5

1

1.5

2

2.5

3

3.5

4

3.3 3.35 3.4 3.45 3.5 3.55 3.6

Mass 3443 MeV/c2 Λ+

c K- π+

Data cosθ*

K>-.6

sig/bkg 7.4/1.6

Poisson Prob

< 3.8 x 10-5

L/σ >1

An exited state and a pair of isodoublets?

3400

3500

3600

3700

3800Λ

+

cK-π+ Λ

+

cK-π+π+

3780 MeV (1/2-)

3520 MeV3541 MeV L>0

(1/2-)21 MeV

3443 MeV3460 MeV L=0

(1/2+)17 MeV

π+260 MeV

78MeV

337MeV

0

2

4

6

8

10

12

3.4 3.5 3.6 3.7 3.8 3.9 4

Λ+

c K- π+ π+

peak: 3780 MeV/c2

sig/bkg 31/31

Ev/b

in

0

0.5

1

1.5

2

2.5

3

3.3 3.35 3.4 3.45 3.5 3.55 3.6

Λ+

c K- π+ π+Mass 3541 MeV/c2

Data L/σ > .25

cosθK*cosθΛ < -.25

Poisson Prob< 5 x 10-5

signal/bkg

7.4/1.6

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

3.3 3.35 3.4 3.45 3.5 3.55 3.6

Mass 3460 MeV/c2 Λ+

c K- π+ π+

RIGHT-SIGN cos(θK*) > -.6

signal/√(back)

7.1/√(.9) = 7.5σ

Poisson Prob

< 10-5

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 35

Work in San Luis Potosı on SELEX

Mostly analysis work:

• Search for exotic state decaying into Λpπ+π+ (Master)

• Semileptonic decay of Λ+c → pK−e+νe (Ph.D., finish in ∼ 6 months)

• Double Charm Baryons – search and properties (Ph.D., one more year)

• Charmed Strange Baryons – properties (Ph.D., two more years)

• Hyperon Properties, production cross section and multiplicities (Licenciatura, Master)

• Search for Pentaquarks (Θ(1540) and charmed partner)

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 36

The CKM Experiment

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

d′

s′

b‘

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b

Theory (Standard Model): Matrix is unitary (rotation).

|V | =

0.9741− 0.9756 0.219− 0.226 0.0025− 0.0048

0.219− 0.226 0.9732− 0.9748 0.038− 0.044

0.004− 0.014 0.037− 0.044 0.9990− 0.9993

Wolfenstein parameterization:

V =

1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 37

Wolfenstein parameterization:

V =

1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

ρ = ρ(1− λ2

2 )

η = η(1− λ2

2 )

l l l l

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 38

Quantitative Access to CKM parameters

• Goal is to test the Standard Model hypothesis that a single phase in the CKM matrix is the sole source

of CP violation.

• This means over-constraining the prediction, and testing for consistency. Paraphrasing Wolfenstein:

“. . . I invented the parameters ρ and η, and I don’t care what the values are so why should you?? The

substance here is to over-constrain the model and test for consistency. . . ”2

• To falsify the Standard Model hypothesis the only foreseeable results with controlled errors are:

– B physics: B0d → ΨKs, xs/xd mixing.

– K physics: K+ → π+νν and K0 → π0νν.

2Wolfenstein at Kaon’99Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 39

K+→ π+νν Theory

Calculated3 by weak isospin rotation from K+ → π0e+ν

u u

ªªª

®®®e+

νe

s u

u u

-s

¾d

6u,c,t

_ _ _^ ^_ _ _^ ^W+

_ _ _^ ^_ _ _^ ^W−

?l

- ν

¾ νVtd@@R

u u

-s

¾d

(

(

(

)

)W+

¡¡¡

@@@_ _ _^ ^

Z0¡¡¡ν

@@@ν

Vtd?

B(K+ → π+νν)

B(K+ → π0e+ν)=

3α2

8π2 sin4 θW|V ∗

csVcdD(Xc) + V ∗tsVtdD(Xt)|2

1

|Vus|2

D(X) =1

8{1 + 3

(1−X)2− (4−X)2

(1−X)2}Xln(X) +

X

4− 3X

4(1−X)

Xj = {mj

mW}2; j = c, t.

Br[K+ → π+νν] = 0.55× 10−10[(1.35− ρ)2 + (1.05η)2]

= (0.72± 0.21)× 10−10

3T. Inami and C.S. Lim, Progress of Theoretical Physics 65 (1981) 297-314Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 40

K+→ π+νν Theory (cont.)

• Total theoretical uncertainty of 8% estimated by Buras, et al.4

• Dominated by uncertainty in charmed quark mass.

• Structure of K+ is put in with measured K+ → π0e+ν branching ratio.

• All other corrections are small and calculated (NLO QCD, isopsin, long distance contributions).

=⇒ We can measure Vtd to 10% if we

can measure Br[K+ → π+νν] to 10%

(100 Events).

4A.J. Buras, hep-ph/971217Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 41

A short estimate for an inflight decay experiment

• BR = 10−10

• 100 Events

• Acceptance ∼ 1%

=⇒ 1014 live K+

• Duty cycle of machine 30% (Fermilab Main Injector)

• Uptime of machine and experiment 50%

• 2 years of running time (lifetime of a graduate student)

=⇒ 30MHz of K+

In addition: Only a few background events

=⇒ Suppress background to 10−12

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 42

Charged Kaons at the Main Injector

A Proposal for a Precision Measurement of the Decay

K+→ π+νν and Other Rare K+ Processes at Fermilab

Using the Main Injector

CK

M

J. Frank, S. Kettell, R. StrandBrookhaven National Laboratory, Upton, NY, USA

L. Bellantoni, R. Coleman, P.S. Cooper∗, T.R. Kobilarcik, H. Nguyen, E. Ramberg, R.S. Tschirhart, H.B. White, J.Y. WuFermi National Accelerator Laboratory, Batavia, IL, USA

G. Britvich, V. Burtovoy, A.V. Inyakin, V. Kurshetsov, A. Kushnirenko, L.G. Landsberg,V. Molchanov, V. Obraztsov, S.I. Petrenko,V.I. Rykalin, A. Soldatov, M.M. Shapkin, O.G. Tchikilev, D. Vavilov, O. Yushchenko

Institute of High Energy Physics, Serpukhov, Russia

V. Bolotov, S. Laptev, A. Polarush, A. Pastsiak, R. SirodeevInstitute of Nuclear Research, Troisk, Russia

J. Engelfried, A. MorelosInstituto de Fisica, Universidad Autonoma de San Luis Potosi, Mexico

A.R. Barker, H. Haung, R. Niclasen, M. WilkingUniversity of Colorado, Bolder, CO

M. Campbell, R. Gustafson, M. Longo, H. ParkUniversity of Michigan, Ann Arbor, Michigan 48109

C.M. JenkinsUniversity of South Alabama, Mobile, Alabama 36688

K. LangUniversity of Texas at Austin, Austin, Texas 78712

C. Dukes, L. Lu, K. NelsonUniversity of Virgina, Charlottesville, VA 22901

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 43

Experimental Method

BIGGEST PROBLEM IS BACKGROUND

• Signal: K+ → π+νν. Only measurable: K+, π+

• Biggest backgrounds: K+ → µ+ν (64%) and K+ → π+π0 (21%)

Calculate “Missing Mass”

M 2miss = M 2

K(1− pπ/pK) + m2π(1− pK/pπ)− pπpKθ2

For 2-body decays, Mmiss is fixed value. For signal, Mmiss has distribution.

• Reduce all material to minimum

• Make redundant measurements

• Use only proven detector technology

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 44

CKM ApparatusV6.1 21-Apr-03

BeamTimeStamp

50 MHzSeparatedK+ Beam22 GeV/c

UpstreamMagneticSpectrometer

KaonRICH.7 atmCF4

KaonEntranceAngleTracker

BeamInteractionVeto

VacuumVeto

DownstreamMagneticSpectrometer

Pion RICH1 atm Neon

ExitTimePlane

ConversionVetoPlane

Forward Veto

MuonVeto

BM109Magnet

HoleVeto

BeamDump

t

c

u

d s b

CK

M

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 45

Velocity Spectrometers: 2 RICH Detectors

• Ring Radius depends on velocity

• Ring Center depends on track angles

}

=⇒ RICH measures vector velocity

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 46

Design of RICH Detectors

Pion RICH: Like SELEX RICH, but with 20m Vessel

Beam

BeamWindow

PhototubeArray

Mirrorf = 10m1m

Kaon RICH: 10m Vessel, folded light path

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 47

The Final Signal Plot

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 48

Other possible measurements

10−12 in single event sensitivity is a long way.

There are a lot of interesting modes to be picked up.

This list is NOT finished, and is open to more suggestions.

These are just a few examples we where thinking of:

• K+ → µ+νµγ Form Factor: Test of Chiral Perturbation Theory

• K+ → π+e+e−, K+ → π+µ+µ−, Form Factor and Branching Ratio: Test of Chiral Perturbation

Theory

• K± → π±π+π−, K± → π±π0π0, K± → π±π0γ, K± → π±γγ: Test of Chiral Perturbation Theory,

Search for Direct CP Violation in K± decays.

• K+ → π0e+ν, K+ → π0µ+ν Branching Ratio: Measurement of Vus

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 49

Work in San Luis Potosı

• Design work on Kaon and Pion RICH

• Monte Carlo studies

• Construction of flat, thin mirror for Kaon RICH

• Tests and Classifications of Photomultipliers

• (Maybe:) Supervision of spherical mirror production (in Mexico?)

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 50

Flat Mirror Prototypes

¾ “Good” spherical mirror to test flat mirrors

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢®

First Prototype (glass, CIO Leon)

?

Ronchigram of first prototype

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 51

Flat Mirror Prototypes (cont.)

Second Prototype: Aluminized Mylar, Plastic Ring

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 52

Schedule CKM Experiment

• April 1996: Expression of Interest (EOI)

• April 1998: Proposal (version 1) submitted

• October 1998: Approved as an Fermilab R&D project

• October 1999: R&D project financed

• April 2001: Proposal (version 2) submitted

• June 2001: EXPERIMENT RECEIVED STAGE1 (Physics) APPROVAL from Fermilab

• September 2003: EXPERIMENT was killed by P5 committee

• Beginning 2004: Redesigning to for unseparated beam, at Fermilab or CERN

• 2004-????: Testbeams, construction

• ????- : Data taking

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 53

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 54

My Personal List of Unanswered Questions

• Why do particles have mass? (Higgs)

• Are there other states of matter, in addition to Baryons and Mesons?

– Quark-Gluon Plasma

– 4-quark states, Pentaquarks

• Why is there more matter than anti-matter in the Universe? (CP Violation)

• What is the mass of the neutrinos?

• Why do we have exactly 3 generations?

• What is the orign of the Cosmic Rays?

• Of what is the Universe made?

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 55

Conclusions

• High Energy Physics is a very active field – Experimentally and Theoretically

• There are still a lot of unanswered questions

• IF-UASLP is collaborating in SELEX – mostly with data analysis

• IF-UASLP is collaborating in CKM – preparing the experiment, including hardware!

• IF-UASLP has 2 (nearly 3) theoreticians

Fermilab: http://www.fnal.gov

IF-UASLP: http://www.ifisica.uaslp.mx

Jurgen: http://www.ifisica.uaslp.mx/~jurgen

SELEX: http://www-selex.fnal.gov

CKM: http://www.fnal.gov/projects/ckm/Welcome.html

RICH2004: http://www.ifisica.uaslp.mx/rich2004

Partıculas Elementales – una vista desde San Luis Potosı Jurgen@UV-Jalapa 11Mar2004. 56