Parker 1984 Aquacultural-Engineering

Embed Size (px)

Citation preview

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    1/12

    Aqua c u l tu ra l Eng ine er ing 3 (1984) 91-I 02

    T o t a l G a s P r e s s u r e a n d O x y g e n a n d N i tr o g e n S a tu r a t io nin W a r m w a t e r P o n d s A e r a t e d w i th A ir li f t P u m p s

    Nick C. Park er , M ary A nn a Su ttle and Karen Fitzm ayer

    US Fish and Wildlife Service, Southeastern Fish Cultural Laboratory,Marion, Alabama 36756, USA

    A B S T R A C TGas bu bb le disease and im pro per #zf lat ion o f sw im bladders in larvals t r iped bass Morone saxatilis have been recent ly re la ted in laboratorystudie s to very l ow levels o f gas supersaturation. In oth er species, k i l lsresu l t ing f rom gas supersa tura t ion have been repor ted in natura l watersas large as Galves ton Bay. We m on i tor ed warm water pon ds d ur ing spr ing tode te rm ine the e x t e n t o f na tura ll y oc curr ing gas supe rsa tura t ion andcom par ed these levels wR h levels o f gas sa tura t ion in po nd s equ ipped w i thair l if t pump s . To ta l gas pressure averaged 110% in the mo rning a t thesur fac e o f non - ae ra te d ponds and in the a f t e rnoon in pon ds w i th a i rl if tpump s . A t o the r t ime s o f t he day to ta l gas p re ssure av eraged 106 - 10 7% a tthe sur face and bo t to m , mo rn ing and a f t e rnoon , in bo th ae ra ted and non -aerated ponds . No ev idence o f gas bubble d isease was fo un d in 15-day-o lds tr iped bass f ry cu l tur ed fo r 42 days in e i ther aera ted or non-aerated ponds .

    INTRODUCTIONGas bubble disease (GBD) in fish was first associated with pressure in1899 (Gorham, 1899) and then with supersaturation of nitrogen gas in1905 (Marsh and Gorham, 1905). By 1913 the disease had been experi-mentally induced in fish maintained under laboratory conditions(Shelford and Alice, 1913). Most incidences of GBD were associatedwith alterations in the aquatic environment caused by leaking waterintake lines (Marsh and Gorham, 1905), cavitation of pumps (Westgard,

    91

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    2/12

    92 l~: C P a r k e r , M . A . S u t t l e , K . F i t z m a y e r1 9 6 4 ) , a i r e n t r a i n m e n t i n p l u n g e p o o l s b e l o w d a m s ( E b e l e t a l ., 1 9 7 4 )a n d s u p e r s a t u r a t i o n o f t h e r m a l e f f l u e n t s ( D e M o n t a n d M ille r, 1 9 71 ).G a s s u p e r s a t u r a t i o n h a s a ls o b e e n r e p o r t e d u n d e r s o m e n a t u r a l c o n d i-t io n s , i n c l u d i n g p e r i o d s o f i n te n s i v e p h o t o s y n t h e t i c a c t iv i ty o f alg a lb l o o m s ( W o o d b u r y , 1 9 41 ; R e n f r o , 1 9 63 ).

    V a r i o u s i n v e s t i g a to r s ( W e i t k a m p a n d K a t z , 1 9 8 0 ) h a v e r e p o r t e d t h ep e r c e n t s a t u r a t i o n o f th e c o m p o n e n t g as es as s o c ia t ed w i t h s u p er -s a t u r a t i o n a n d G B D . T y p i c a ll y , n i tr o g e n h a s b e e n c o n s i d e r e d u n s a f ea b o v e 1 10 % s a t u r a t i o n , w h e r e a s o x y g e n h a s b e e n c o n s i d e r e d s af e u p toa b o u t 2 5 0 - 3 0 0 % s a tu r a ti o n . T o t a l g as p r e ss u re h a s b e e n r e c o m m e n d e das b e in g a m o r e m e a n i n g f u l m e a s u r e m e n t t h a n t h e p e r c e n t s a t u r a t i o n o fn i t r o g e n a n d o x y g e n ( C o l t a n d W e s te r s, 1 9 8 2 ; C o l t , 1 9 8 3 ). T h e U SE n v i r o n m e n t a l P r o t e c t i o n A g e n c y ( 1 9 7 6 ) s p e c if ie d 1 1 0 % s a tu r a t i o n a st h e m a x i m u m s a fe le v el o f t o t a l g a s p r e s s u r e f o r f is h .

    R e c e n t r e s e a r c h h a s i n d i c a t e d t h a t t h e s a fe le v e l o f t o t a l g a s p r e s s u rein th e h a t c h e r y e n v i r o n m e n t m a y b e m u c h l o w e r t h a n 1 10 % . A e r a t o rsh a v e b e e n c o m m o n l y u s e d in a q u a c u l t u r e t o i nc r e as e t h e o x y g e n c o n -t e n t o f th e w a t e r ; h o w e v e r , C o l t a n d W e s t er s ( 1 9 8 2 ) f o u n d a e r at o rs ,t h a t w e r e h i g h l y e f f i c ie n t f o r o x y g e n t r a n s fe r , a ls o p r o d u c e d g a s s u p e r -s a t u ra t io n . C o r n a c c h i a a n d C o l t ( 1 9 8 4 ) r e p o r t e d t h a t u n d e r l a b o r a to r yc o n d i t i o n s G B D c o u l d b e i n d u c e d in la rv a l s t r i p e d b as s M o r o n e s a x a t i l i se x p o s e d t o t o t a l g a s p r e s s u r e s a s l o w a s 1 0 2 . 9 % . T h e y u s e d a i r l i f tp u m p s t o p r o d u c e ga s s u p e r s a t u r a t i o n i n t h e ir e x p e r i m e n t a l sy s t e m .

    A i r l i f t p u m p s h a v e b e e n u s e d t o r e d u c e s t r a t i f i c a t i o n a n d i n c r e a s ef is h p r o d u c t i o n in w a r m w a t e r p o n d s ( P a rk e r , 1 9 7 9 a ), i n c lu d i n g p o n d si n w h i c h 5 - d a y - o l d s tr i p e d b a ss h a d b e e n s t o c k e d ( P a r k e r , 1 9 7 9 b ) . G a sb u b b l e d i s e a se h a s n o t b e e n o b s e r v e d i n s t r i p e d b a s s r e a r e d in p o n d se q u i p p e d w i t h a ir li ft p u m p s . T h e s u rv iv a l o f f is h i n a d j a c e n t p o n d sw i t h o u t p u m p s h a s r a n g e d f r o m 0 t o n e a r ly 1 00 % a n d av e ra g ed a b o u t4 0 % ( G e i g e r a n d P a r k e r , 1 9 8 4 ) . T h e o b j e c t i v e s o f t h i s s t u d y w e r e t od e t e r m i n e t h e e f f e c ts o f a ir li f t p u m p s o n t o t a l g a s p r e s s u re in w a r m -w a t e r p o n d s a n d t o o b s e r v e s tr i p e d b a ss f o r t h e p r e s e n c e o f G B D .

    M E T H O D SA i r l i f t p u m p sS i x 0 .0 4 - h a e a r t h e n s t r i p e d b a s s r e a r in g p o n d s w e r e u s e d i n t h i s s t u d y ;

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    3/12

    Total gas pressure and 02 and t~ saturation in aerared ponds 93

    b

    ,, ~

    F ig . 1 . De ta i led ske tch of a i r li f t pu m p and supp or t s t ruc ture . A s tee l p ipe (1)c e m e n te d in to a c onc r e t e b loc k ( 2 ) a n c hor e d the p um p . A slid ing c o l l a r ( 3 ) a ndf lo t a t i on m a te r ia l ( 4 ) he ld t he d i sc ha rge a t t he w a te r su r f a ce . The a i rl i ft pum p wa sc ons t r uc t e d f r om a 7 - 6 c m d ia m e te r P VC p ipe ( 5 ) , a 90 e lbow ( 6 ) a nd ba l la s t ( 7 ) .Air (open a r rows) w as in jec ted in to the s ide o f the ve r t ica l r i se r th ro ug h a tub e (8)1 .3 c m in d i a m e te r a t a de p th o f 61 c m ( a ) a nd wa te r (so l id a r r ows ) was pum pe d

    f r om a de p th o f 1 m ( b ) a nd d i sc ha rge d a t t he su r f a c e .

    t h r e e p o n d s w e r e e q u i p p e d w i t h a i r li ft p u m p s ( t r e a t m e n t p o n d s ) a n dt h r e e ( t h e c o n t r o l s ) w e r e n o t . W a t e r in t h e t r e a t m e n t p o n d s w a s c o n -t i n u o u s l y c i r c u l a t e d b y t h e p u m p s w h i c h d i sc h a r ge d a t t h e s u r f a ce o ft h e p o n d . T h e p u m p s w e r e c o n s t r u c t e d o f p o l y v i n y l c h l o r i d e ( P V C )p i p e 7 - 6 c m i n d i a m e t e r . T h e v e r t i c a l r i s e r in e a c h a i r l i f t w a s 1 m l o n ga n d w a t e r w a s d i s c h a r g e d t h r o u g h a 9 0 e l b o w ( F i g . 1 ) . A i r a t 8 5 l i t e rsm i n - t a n d 6 . 2 - 6 . 9 k P a w a s i n j e c t e d i n t o t h e s id e o f a v e r t i c a l r i se r6 1 c m b e l o w t h e s u r f a c e o f th e w a t e r . A i r w a s r e l ea s e d d i r e c t l y i n t o t h ev e r t i c a l r i s e r f r o m a n a i r l i n e 1 .3 c m i n d i a m e t e r ; n o a i r d i f f u s e r s o rs p a rg e r s w e r e u s e d . T h e w a t e r f l o w w a s 1 5 0 - 1 8 0 l i te r s m i n - t f r o m e a c ha i rl i f t p u m p .

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    4/12

    94 N.C. Parker , M.A. Su t t le , K . F i t zmayerGa s om e t e r s

    Total gas pressure was measured at the surface and bott om of six of theponds used to culture striped bass; three of the six ponds wereequipped with airlift pumps ( tre atmen t ponds) and three were unaeratedcontro l ponds. Twelve (six in the tr eatmen t group and six in the controlgroup) gasometers (Bouck, 1982) were used in the study. Two gaso-meters were connected in parallel to each pump (Little Giant Pump,model 3E-12N, Little Giant Pump Co., Oklahoma City)* and operatedas a unit to provide replicate readings at each of two depths. The dupli-cate readings were taken on water from the 'surface' (10-15 cm belowthe surface) and ' bo tt om ' (abou t 1.8 m below the surface) of onetreatment pond and one control pond. Non-replicated readings weretaken from the surface and bottom of two other treatment ponds andtwo other control ponds. Pumps supplying water (9 liters min -~ at35 kPa; 5-8 liters min -~ at 40 kPa ) to the gasometers were operatedcontinuously from 21 April until 6 June 1983. Water flow in thegasometers ranged from a low of 3 liters min -~ when two gasometerswere connected in parallel to one pump, to a high of 9 liters min -twhen only one gasometer was connected to a pump.

    Gasometer readings, water temperature, dissolved oxygen (DO),and barometric pressure were recorded daily in the morning (08.00-09. 00h) and afternoon (15.00-16.00 h). The temperature and DOmeasurements were made at the surface and bot tom of each pond.Gas pressure was monito red throughout a 42-day period o f stripedbass culture. Total gas pressure, reported as percent saturation (TGP%),and the percentages of nitrogen and oxygen saturation were calculatedaccording to Bouck (1982).

    Pond managementStriped bass, received from South Carolina as 2-day-old fry, werestocked into the ponds 13 days later on 26 April 1983 at an estimateddensi ty of 375 000 fry ha -t. Supplemental feeding was begun 11 daysafter the fish were stocked. Ten fish were collected weekly from each* Reference to a trade name does not imply endorsement of commercialproductsby the US Government.

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    5/12

    T o t a l g a s p r e s s u r e a n d O z a n d N , s a t u r a t i o n i n a e r a t e d p o n d s 95p o n d , w e i g h ed a n d m e a s u r e d , a n d g r o ss ly e x a m i n e d t b r e v i d en c e o fG B D . A l l f is h w e r e h a r v e s t e d 4 2 d a y s a f t e r s t o c k i n g in t h e p o n d s .

    A l l p o n d s w e r e f e r ti li z e d w i t h c o t t o n s e e d m e a l ( 1 7 0 2 k g h a -L t o ta l ) ,l iq u i d a m m o n i u m n i t r a t e ( 3 2 % N o f N H 4 N O 3 ; 1 6 5 li te r s h a -~ to t a l ) ,a n d l iq u i d p h o s p h o r i c a c i d ( 5 4 % a c t iv e P 2 O s ; 1 9 6 l it e r s h a - l t o t a l ) .C o t t o n s e e d m e a l w a s a p p l ie d t o t h e p o n d s tw o o r t h r e e t im e s ea c hw e e k , b u t t h e l iq u id i n o r g a n ic s o n l y a f t e r t h e s e c o n d w e e k o f c u l tu r ea n d o n l y w h e n c h l o r o p h y l l a le v els w e r e b e l o w 2 0 /. tg l i te r - t .

    W a t e r s a m p l e s w e r e c o l l e c t e d w e e k l y f r o m e a c h p o n d a n d a n a l y z e dt b r p H , a l k a li n it y (a s C a C O 3 ) , a m m o n i a - n i t r o g e n ( N H 3 - N ) , n i t r i te -n i tr o g e n ( N O 2 - N ) , n i t r a t e - n i t r o g e n ( N O 3 - N ) , t o t a l f il te r ab l e p h o s p h a t e( P O 4 - P ), a n d c h l o r o p h y l l a b y s t a n d a r d m e t h o d s ( A P H A e t a l . , 1 9 7 5 ) .E m e r g e n c y a e r a t io n w a s p r o v i d e d b y 0 .2 2 - k W s u r fa c e a g it a to r s w h e n e v e rD O f ell b e l o w 3 m g l it e r - l . T w o o f t h e t h r e e c o n t r o l p o n d s w e r et r e a t e d w i t h A q u a z i n e ( 1 . 6 m g l it e r - l ) d u r i n g w e e k s 3 a n d 4 w h e n ap r o l if i c g r o w t h o f t h e n e t a lg a H y d r o d i c t y o n c o v e r e d t h e e n t i r e s u r fa c eo f t h e p o n d s .D a t a ana l ys i sD a t a w e r e a n a l y z e d b y a n a l y s is o f v a ri a n c e ( A N O V A ) a n d m u l t i p l ec o m p a r i s o n t e s t ( D u n c a n m u l t i p l e r a n g e t e s t ) b e t w e e n v a r i a b l e s . S t a t e -m e n t s o f s i g n i f i c a n c e r e f e r t o P ~< 0 . 0 5 .

    R E S U L T SA l t h o u g h d i s so l v e d g as p r e s s u r e w a s s u c c e s s f u l ly m o n i t o r e d , th e g a so -m e t e r s r e q u ir e d d a i l y m a i n t e n a n c e . W h e n t h e g a s o m e t e r s w e r e o p e r a t e dc o n t i n u o u s l y , th e S il as ti c t u b i n g ( D o w C o m i n g C o r p o r a t i o n , M i d l a n d ,M i c h i g an ) w h i c h s e r v es as th e g as tr a n s f e r m e m b r a n e , w a s f r e q u e n t l yp u n c t u r e d o r b r o k e n . S n a i l s h e ll s a n d o t h e r d e t r i ta l p a r t ic l e s c o n t i n u a l l ya b r a d e d t h e S i la s ti c t u b i n g a s w a t e r f l o w e d t h r o u g h t h e g a s o m e t e r .G a s o m e t e r f a il u re r a t e s in c r e a s e d a s t h e w a t e r f lo w r a t e i n c re a s e d .I n o p e r a t i v e g a s o m e t e r s c o u l d b e e a s i l y i d e n t i f i e d w h e n t w o u n i t s w e r eo p e r a t e d in p a r a ll e l, b u t r e a d i n g s f r o m a s in g le u n i t c o u l d s o m e t i m e s b ee r r o n e o u s . I f t h e S il as tic t u b i n g w a s b r o k e n , t h e p re s s u r e o n t h e m a n o -m e t e r e q u a l e d t h e w a t e r p r e s s u r e i n t h e g a s o m e t e r . S u c h r e a d in g s w e r en o t i n c l u d e d i n o u r d a t a a n a l y s e s .

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    6/12

    TABLE1

    TaGPeueO

    SuaoNoSuaoDsovO

    aTmpaueMeueahSaa

    BomMonnaAen

    nTeP

    EpwhA

    Pm(TemeaTeNAaeP

    (Co

    0"

    SmcIo

    7oagpu

    O

    sauao

    Nrosauao

    Dsowdo

    Tmau

    lomo

    {%sauao

    (%

    (%

    (aeJ

    (07

    da

    ceoMSadNoMSadNoMeSadNoMeSadNoMeSadNo

    p

    daosame

    daosame

    d~aosame

    daosame

    daoSUd

    Sa

    Inorning

    'lrene14*38(58231(511*14(577

    31

    (32725

    (3

    Co1959(37835(41329(469

    35

    (32523

    (3

    Sa

    at'terqoon

    Tem

    1185

    (41155(41218(41646

    (32025

    (3

    Co1249

    (31155(31619(394

    46

    (2

    2726

    (2

    Bom m

    nn Tem

    17*56(58533(517*12(576

    31

    (3

    2725(3

    Co1354(46732(41016(461

    33

    (3

    2326

    (3

    Bom ae

    n Tem

    1356(41667(413*13(4I11*52

    (3

    2926

    (3

    (oo1647(3865((31116(374

    45

    (2

    2024

    (2

    *Temm

    sgcydeefomcomaP

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    7/12

    Total gas pressure and O, and N: saturation in aerated ponds 97Dissolved gasesComparisons between treatment and control ponds indicated that con-tinuously operated airlift pumps altered TGP%, DO, oxygen saturationand nitrogen gas saturation (Table 1). Airlift pumps significantlydecreased TGP% at the surface and bottom of the ponds during themorning and increased it at the surface during the afternoon.

    Individual TGP% readings ranged from 100 to 149 in the controlponds, and from 100 to 143 in the ponds with airlift pumps (Fig. 2).A diel change in TGP% occurred at the bottom in control ponds, butnot in the treatment ponds. Nitrogen gas saturation in treatment pondsdecreased at the surface and bottom during the morning and at thesurface during the afternoon. In treatment ponds, oxygen saturationat the bott om increased in both the morning and af ternoon and DOincreased at the bottom during the afternoon.

    In ponds with airlift pumps, dissolved gas and temperature variedwith the time of day and with the depth from which the measurements

    T r e a t m e n t C o n t r o l

    e=eaeo .

    m

    1 6 0

    1 4 0

    1 2 0

    1 0 0

    S u r f a c e

    0: : . ' l , ~ : ~ ' . ' .

    . . . . . . . , . , . " : .

    1 6 0 [ 8 o l t o m

    1 4 0 t

    1 2 0 1

    i . * e . -

    i , . , 1 0 0 " ~ ' l . .

    A p r i l M a y

    ! . : , , .

    1 6 0

    1 4 0

    1 2 0

    S u r f a c e

    - . . . . , . ,1 0 ( 3 " " " " ' "

    1 6 0 I I Q t t o m1 4 0

    1 2 0 I~ . ' . " ,. . , . . . .1 0 0 i ' ' " " ' "

    S *" ' . . - .

    . . . ; ' . .% ',

    J u n e A p r i l M a y J u n e

    T i m e

    Fig. 2. Total gas pressure from ponds with (treatment) and without (control)airlift pumps. Data presented were collected in the morning and afternoon fromthree treatment and three control ponds.

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    8/12

    98 iV. C. Parker, M.A. Surtle, K. Fitzmayerw e r e t a k en . L e v els o f T G P a t t h e s u rf ac e o f t r e a t m e n t p o n d s w e r eh i g h e r in t h e a f t e r n o o n ( 1 1 0 .1 % ) t h a n in t h e m o r n i n g (1 0 6- 4% ) . A t t h eb o t t o m o f t r e a t m e n t p o n d s , D O f l u c tu a t e d d a i ly as di d o x y g e n s atu r a-t io n . T h e r m a l s t r a t i fi c a t i o n ( 2 4 . 0 C , s u r f a c e ; 2 2 -9 C b o t t o m ) d i d n o to c c u r in p o n d s w i t h a ir li ft p u m p s . N i tr o g e n s a t u r a t i o n w a s h i g h e r i n t h em o r n i n g a t b o t h s u rf a c e ( 1 1 2. 1 % ) a n d b o t t o m ( 1 1 3 .7 % ) l o c a t io n s t h a ni t w a s i n t h e a f t e r n o o n ( 1 0 5 . 2 % a n d 1 0 1 .3 % , r e s p e c t iv e l y ) .

    D i s s o l v e d g a s a n d t e m p e r a t u r e i n c o n t r o l p o n d s a l s o v a r i e d w i t h t h et im e o f d a y a n d d e p t h . L e v e ls o f T G P a t th e s u r f ac e o f c o n t r o l p o n d sw e r e s li g h tl y h i g h e r in t h e m o r n i n g ( 1 0 9 .9 % ) t h a n i n t h e a f t e r n o o n( 1 0 6 - 2 % ) . D i s s o l v e d o x y g e n a n d o x y g e n s a t u r a t i o n d i d n o t f l u c t u a t ed a i l y a t t h e b o t t o m o f c o n t r o l p o n d s . T h e c o n t r o l p o n d s w e r e t h e r -m a l l y s t r a t i f i e d ( 2 4 - 7 C , s u r f a c e ; 2 2 - 0 C , b o t t o m ) d u r i n g t h e a f t e r n o o n .N i t r o g e n s a t u r a t i o n a t t h e s u r f a c e w a s h ig h e r d u r i n g t h e m o r n i n g( 1 22 .3 % ) t h a n i n t h e a f t e r n o o n ( 1 0 6 -6 % ) , a n d i n c o n t r o l p o n d s w a sh i g h e r a t t h e b o t t o m in t h e a f t e r n o o n ( 1 2 2 .0 % ) t h a n in t h e m o r n i n g( 1 0 6 . 6 % ) .F is h p r o d u c t i o nS t r i p e d b as s f i n g er li n g s w e r e h a r v e s t e d f r o m t h e p o n d s 4 2 d a y s a f t e rs t o c k i n g . T h e s u r v iv a l a n d p r o d u c t i o n o f f is h d i d n o t d i f f e r s ig n i f ic a n t lyb e t w e e n t r e a t m e n t a n d c o n t r o l p o n d s ( T a b le 2 ). F i s h f r o m t h e t re a t -m e n t p o n d s w e i g h e d an a v er ag e o f 1.2 g w h i le t h o s e f r o m t h e c o n t r o lp o n d s a v e ra g e d 1 .8 g .

    N o s ig n s o f G B D w e r e d e t e c t e d i n a n y o f t h e f i sh c o l l e c t e d d u r i n gt h e w e e k l y sa m p l e s . A s j u d g e d b y t h e w e e k l y a na l ys e s , c h a n g e s in w a t e rq u a l i ty d i d n o t a f f e c t g r o w t h o r su rv iv a l o f t h e fis h . A h e a v y g r o w t h o ft h e n e t a l g a Hydrodictyon o c c u r r e d in all p o n d s w i t h in 2 w e e k s a f t e rt h e f is h w e re s t o c k e d .

    D I S C U S S I O NA i r li ft p u m p s e l i m i n a t e d t h e r m a l s t r a t if i c a t io n a n d in c r e a s e d D O a t th eb o t t o m o f t h e p o n d s . T h e r e le a s e o f 8 5 l it er s m i n -~ a ir i n t o e a c h 0 - 0 4 - h ap o n d d i d n o t r a is e t h e l ev el o f T G P % a b o v e t h e d i e l r a n g e f o u n d inc o n t r o l p o n d s . D ie l r a n ge s o f T G P % a n d o x y g e n s a t u r a t i o n i n t r e a t m e n ta n d c o n t r o l p o n d s w e r e n o r m a l l y w i t h i n t h e le ve ls r e p o r t e d s af e f o r

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    9/12

    Tota l gas pres sure and 02 and N,. sa tura t ion in aera ted po nd s 99T A B L E 2Summary of Striped Bass Harvesting Data after 42 Days of Culture in 0.04-ha

    Ponds Stocked with 15-day-old Fry from South Carolina at a Rate of 375 000 fryha -1. (An Airlift Pump was Operated Continuously in Each Treatment Pond, ButNo Pumps Were Used in Control Ponds)

    Category , De ns i t y Weight Surv iva lpo nd nu m be r ( g ) (7o)

    N u m b e r h a - l k g h a - lT r e a t m e n t

    1 75 325 82.3 0-9 20.12 104 500 78.5 1.3 27.93 58 475 38-6 1.5 15.6Mean 79 433 66-5 1.2 21.2

    C o n t r o l4 a 116 325 63.7 1.8 31.05a 72 150 36.9 2-0 19,26 122 350 80. t 1.5 32.6Mean 103 608 60.2 1.8 27-6

    a Indicates ponds which were treated with 1-6 mg liter -t Aquazine during the study.

    most fish. Levels of nitrogen saturation in control ponds, however,were slightly above recommended safe levels.The average and diel ranges of dissolved gases in our study weregreater than those repo rted for a 0- 1-ha mar icul ture pond (Parker e t a l . ,1976). These differences may be partly due to the instruments used inthe two studies. Bouck (1982) reported that the form ati on of bubbleson the Silastic tubing of a Weiss saturometer, which was used by Parkere t a l . , could produce erroneously low estimates of gas pressure. Bouckdesigned the gasometer to overcome this problem and readings takenfrom the two different types of instrume nts may not be directlycomparable.

    The transitory increases in TGP% noted were probably compensatedfor by fish diving (sounding) to the bottom of the pond. Fish weretypically seen near the surface during the morning and when the auto-

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    10/12

    100 N. C. Parker, M.A. Sutt le , K . Fitz m aye rmatic feeders were activated, but were in deeper water at other times.Since 1 m depth provides a 10% compensation for gas pressure, fish inwater with 110% TGP at a depth of 1 m have a relative exposure ofonly 100% TGP. In our ponds (1.8-2.0 m deep) fish could sound to thebottom to compensate for transi tory high levels of TGP%.

    Knittel e t a l . (1980) reported that when juvenile steelhead troutS a l m o g a i r d n e r i were allowed to sound during high levels of gas super-saturation, there was some physiological conditioning. Fish that wereacclimated to gas supersaturation at a depth of 300 cm were moreresistant to lethal condit ions when they were later returned to thesurface.

    In laboratory studies Chamberlain e t a l . (1980) found that juvenileAtlantic croakers M i c r o p o g o n u n d u l a t u s sounded almost immediatelyin response to supersaturation of oxygen and sounded after 2-4 hexposure to nitrogen supersaturation. Crunkilton e t a l . (1980) reportedthat mortality of bottom-dwelling fishes in a midwestern lake withsurface TGP of 135-139% was insignificant compared with that ofpelagic and nearshore species. Fish examined shortly after death hadthe classic signs of GBD and, in some species, larger fish were moresusceptible to GBD than were smaller ones.

    Since the fish in the present study were not examined histologically,we cannot state that GBD did not occur. However, no gross signs ofGBD were detected in fish collected and examined weekly; therefore,we do not consider GBD to have been a major problem. Mortalitieswere attributed to the presence of the net alga H y d r o d i c t y o n . Four-week-old striped bass were 'gill netted ' and trapped by the H y d r o d i c t y o nthat developed in all ponds early in this study. However, in five otherponds (0-02-ha) equipped with airlift pumps and stocked with fish fromthe same lot, net algae developed later, when the fish were 6 weeks old.These larger fish were able to avoid entanglement in the net algae andsurvival was 53%. On the basis of a survey of hatche ry managers in thesoutheastern US, Geiger and Parker (1984), found that striped basssurvival averaged about 40% and usually ranged from 0 to 49%.

    Extrapolation from conditions as reported in this study and fromprevious laboratory studies to other field conditions should only bedone with caution. When Cornacchia and Colt (1984) used airliftpumps to induce GBD in larval striped bass exposed to TGP of 102.9%,their fish were confined in laboratory tanks 0.4 m deep. Bouck (1976)found that TGP values of 107-110% did not induce GBD in fish in a

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    11/12

    Tota l gas pres sure and 02 and ?~ sa tura t ion in aera ted pon ds 101natural stream; whereas 105% was sufficient to cause the disease underhatchery conditions.

    Continuously operated airlift pumps did not increase TGP% abovelevels found in ponds without airlift pumps. Consequently, we believethat airlift pumps can be safely used in warmwater ponds in spring toincrease DO concentrations and reduce thermal stratification.

    ACKNOWLEDGEMENTSWe thank J. E. Colt, K. B. Davis and B. A. Simco for their criticalreview of the manuscript.

    REFERENCESAPHA (American Public Health Association), American Water Works Association

    & Water Pollution Control Federation (1975). S t a n d a r d M e t h o d s f o r t h eE x a m i n a t i o n o f W a t er a n d W a s t e w a te r , 14th edn, American Public HealthAssociation, Washington DC.Bouck, G. R. (1976). Supersaturation and tishery observations in selected alpineOregon streams, eds D. H. Fickeisen and M. J. Schneider, C O N F - 7 4 1 0 3 3 , ERDA

    Technical Information Center, Oak Ridge, Tennessee, pp. 37-40.Bouck, G. R. (1982). Gasometer: an inexpensive device for continuous monitoring

    of dissolved gases and supersaturation. Trans . Am. Fish. Soc. , 111,505-16.Chamberlain, G. W., Neill, W. H., Romanowsky, P. A. & Strawn, K. (1980). Verticalresponses of Atlantic croaker to gas supersaturation and temperature change.Trans . Am. Fish. Soc. , 109,737-50.Colt, J. E. (1983). The computation and reporting of dissolved gas levels. WaterR e s e ar c h , 17, 841-9.

    Colt, J. E. & Westers, H. (1982). Production of gas supersaturation by aeration.Trans . Am. F i sh . Soc . , 111,342-60.

    Cornacchia, J. W. & Colt, J. E. (1984). The effects of dissolved gas supersaturationon larval striped bas s Mor one s ax a t i l i s (Walbaum). J. Fish D is ., 7, 15-27.Crunkilton, R. L., Czarnezki, J. M. & Trail, L. (1980). Severe gas bubble disease ina warmwater fishery in the midwestern United States. Trans . Am. Fish. Soc. ,109,725-33.

    DeMont, D. J. & Miller, R. W. (t971). First reported incidence of gas bubble diseasein the heated effluent of a steam generating station. Proc . Southeas tern Assoc .G a m e a n d F i sh C o m m . . 2 5 , 3 9 2 - 9 .

  • 7/28/2019 Parker 1984 Aquacultural-Engineering

    12/12

    102 N. C. Parker, M.A. Suttle, K. FitzmayerEbel, W. J., Raymond, H. L., Monan, G. E., Farr. W. E. & Tanonaka, G. K. (1974).

    Effect of atmospheric gas supersaturations caused by dams on salmon and steel-head trout of the Snake and Columbia Rivers. Northwest Fisheries CenterProcessed Report, National Marine Fisheries Service, Seattle.

    Geiger, J. G. & Parker, N. C. (1984). Survey of striped bass hatcher5' managementin the southeastern United States, Progressive Fish Culturist, in press.

    Gorham, F. P. (1899). The gas bubble disease of fish and its cause. Bull. UnitedStates Fish. Comm., 19, 33-7.Knittel, M. D., Chapman, G. A. & Garton, R. R. (1980). Effects of hydrostaticpressure on steelhead survival in air-supersaturated water. Trans. Arr~ Fish. Soc.,109,755-9.

    Marsh, M. C. & Gorham, F. P. (1905). The gas disease in fishes. Report UnitedStates Bureau of Fisheries for 1904, pp. 343-76.Parker, N. C., Strawn, K. & Kaehler, T. (1976). Hydrological parameters and gasbubble disease in a mariculture pond and flow-through aquaria receiving heatedeffluent. Proc. Southeastern Assoc. Game and Fish Comm.. 30, 179-9 I.

    Parker, N. C. (1979a). Channel catfish production in continuously aerated ponds,Proc. Texas Fish Farming Conf. and Ann. Convention o f Catfish Farmers Texas,Texas A & M University, College Station, pp. 39-52.Parker, N. C. (1979b). Striped bass culture in continuously aerated ponds. Proc.Southeastern Assoc. Fish and Wildlife Agencies. 33,353-60.Renfro, W. C. (1963). Gas-bubble mortality of fishes in Galveston Bay, Texas.Trans. Am. Fish. Soc., 92,320-2.Shelford, V. E. & Allee, W. C. (1913). The reactions of fishes to gradients of

    dissolved atmospheric gases.J. Exp. Zool.. 14, 207-66.US Environmental Protection Agency (19761. Quality Criteria for lfater, United

    States Government Printing Office, Washington DC.Weitkamp, D. E. & Katz, M. (1980). A review of dissolved gas supersaturation

    literature. Trans. Am. Fish. Soc., 109, 659-702.Westgard, R. L. (1964). Physical and biological aspects of gas-bubble disease inimpounded adult chinook salmon at McNary Spawning Channel. Trans. Am.Fish. Soc., 93,306-9.Woodbury, L. A. (1941). A sudden mortality of fishes accompanying a super-saturation of oxygen in lake Waubesa, Wisconsin. Trans. Am. Fish. Soc., 71,112-17.