Parasitic Components Effect Resonant

Embed Size (px)

Citation preview

  • 8/13/2019 Parasitic Components Effect Resonant

    1/39

    1

    Effects of Parasitic Components inHigh-Frequency Resonant Driversfor Synchronous Rectification

    MOSFETs

    Department of Information Engineering DEIUniversity of Padova, ITALY

    Speaker:Giorgio Spiazzi

  • 8/13/2019 Parasitic Components Effect Resonant

    2/39

    2

    Outline

    Review of voltage source driver topology

    Analysis of resonant voltage source drivertopologies

    Unclamped turn-on and clamped turn-off Clamped turn-on and clamped turn-off

    Unclamped turn-on and unclamped turn-off

    Analysis of parasitic component effects

  • 8/13/2019 Parasitic Components Effect Resonant

    3/39

    3

    Voltage Source Topology

    +Vdd

    S1

    S2

    Rch

    M

    Dissipative driver

    CR

    t

    CoffgonCoffCone1VVVtv

    Vgon

    +

    Ron

    C+

    vC(t)

    i(t)

    Ron= RDSon(S1)+Rch+Rg

  • 8/13/2019 Parasitic Components Effect Resonant

    4/39

    4

    Possible energy

    recovery to output in

    VRM applications

    Resonant Driver DR1

    Vdd

    Vo

    +

    +

    S1

    S2

    Db1

    Db2Dc1

    Lext M

    Unclampedturn-on and clampedturn-off

  • 8/13/2019 Parasitic Components Effect Resonant

    5/39

    5

    Resonant Driver DR1

    Unclampedturn-on and clampedturn-off

    triTon tfu

    VConIpk_p

    VCoff

    Ipk_n

    t

    vC(t)i(t)

    I1

    Toff

    ig(t)

    Vdd

    Vo

    +

    +

    S1

    S2

    Db1

    Db2

    Dc1

    Lext M

    vC

    +

    -

    i(t)

  • 8/13/2019 Parasitic Components Effect Resonant

    6/39

    6

    Resonant Driver DR1

    Turn-on phase

    triTon tfu

    VConIpk_p

    VCoff

    Ipk_n

    t

    vC(t)i(t)

    I1

    Toff

    ig(t)

    Vdd+ S1 Db1

    RDSon

    C

    Lext

    M

    Lint +VDb RLp Rg

    Vgon

    +

    Ron L

    C

    +vC(t)

    i(t)

    on

    oon

    R

    ZQ

    C

    LZo

    on

    oon

    Q2L2

    R 2

    on

    oQ4

    11

    Resonant circui t parameters

  • 8/13/2019 Parasitic Components Effect Resonant

    7/397

    Resonant Driver DR1

    tsine

    Q4

    11Z

    VVti t

    2on

    o

    Cog

    tcos

    Q4

    11Q2tsine

    Q4

    11Q2

    VVVtv

    2on

    ont

    2

    on

    on

    Cog

    gC

    Inducto r current and capaci tor vol tage

    onQ2CoffgongonCononC eVVVVTv

    Final capacitor vo ltage

    tsineZ

    VVti o

    tQ2

    o

    Cogon

    o

    tcostsinQ2

    1eVVVtv oo

    on

    t

    Q2CoggC on

    o

    If Qon>>1:

  • 8/13/2019 Parasitic Components Effect Resonant

    8/398

    Unclamped Resonance

    0.2

    0.4

    0.6

    0.8

    1

    0

    3 32

    34

    35 20

    0.4

    0.8

    1.2

    1.6

    2

    0

    Q = 1000

    Q = 10Q = 5

    Q = 2

    Q = 1

    Q = 0.5

    [VN][IN]

    Normalized capacitor voltage and inductor current as a

    function of

    ot for different Q values(vC(0) = 0, VN= Vgon, IN= Vgon/Zo)

    o

    onT

    Ton

  • 8/13/2019 Parasitic Components Effect Resonant

    9/399

    Unclamped Resonance

    0.2

    0.4

    0.6

    0.8

    1

    0

    1.2

    1.4

    1.6

    1.8

    2

    1

    [VN][]

    0.1 1 10 100Q

    Normalized f in al

    capacitor voltage

    NONres

    res

    P

    P

    Ideal performance comparison between a voltage

    source and an unclamped resonant drivers

    0.5

  • 8/13/2019 Parasitic Components Effect Resonant

    10/3910

    UnclampedResonance

    High Q means high L, that means lower

    resonant frequency, i.e. higher turn on interval

    Minimum loss resistance is the SR gate internal

    resistance Rg

    sw

    o

    on TLCT

    C

    TL

    2

    2

    sw

    C

    T

    C

    LZ swo

    don

    o

    on QR

    Z

    Q CQ

    T

    R d

    sw

    on

    k1

    1lnC

    TR swonFor a voltage source topology:

    gon

    Con

    V

    Vk

  • 8/13/2019 Parasitic Components Effect Resonant

    11/3911

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.01

    0.1

    1

    10

    100

    fsw

    [MHz]

    Ron[W]

    Voltage source

    topology

    Unclamped

    resonance

    topology

    Q = 4

    Q = 2

    Q = 1

    Maximum Ron

    Q = 0.5Ron_min

    = 0.05, k = 0.8, Ron_min= 1W, C = 10nF

  • 8/13/2019 Parasitic Components Effect Resonant

    12/3912

    Vgoff

    +

    Roff-Rg L

    C

    +vC(t)

    i(t)

    Rg

    +VDc

    ig(t)

    Resonant Driver DR1

    Turn-off phase

    triTon tfu

    VConIpk_p

    VCoff

    Ipk_n

    t

    vC(t)i(t)

    I1

    Toff

    ig(t)

    Vgoff

    +

    Roff L

    C

    +vC(t)

    i(t)

  • 8/13/2019 Parasitic Components Effect Resonant

    13/3913

    DR1 Characteristics

    both switches S1and S2turn on and off at zero current; the control signals of S1and S2have no critical timing, the only

    requirement being to avoid any cross conduction; the switching times of S1and S2have no influence in the circuit

    behavior; S1and S2body diodes are not used (they have high voltage drop and

    bad reverse recovery behavior); switch lead inductances as well as any parasitic inductance due to

    traces and layout simply add to the external inductance (they areactually exploited by the circuit);

    different Tonand Tofftimes can be easily achieved;

    Toffinterval duration as well as the amount of recovered energydepends on Vovalue (disadvantage); S2command signal must be suitably higher than Voto completely

    turn it on (disadvantage). No low impedance paths during on and off intervals

  • 8/13/2019 Parasitic Components Effect Resonant

    14/3914

    Resonant Driver DR2

    Dc1and Dc2can be substituted by MOSFETs,thus ensuring a low impedance path to Vddan toground during on-time and off-time

    tritfi

    Ton

    Toff

    tfu

    VCon

    Ipk_p

    VCoff

    Ipk_n

    ttru

    tfwtfw

    vC(t)i(t)

    I2

    I3

    ig(t)

    Clampedturn-on and clampedturn-off

    +Vdd

    S1

    S2 Dc1

    Dc2

    Lext

    M

  • 8/13/2019 Parasitic Components Effect Resonant

    15/39

    15

    Vgon

    +

    Ron L

    C+vC(t)

    i(t)

    Vdd

    +RLp L

    C

    +vC(t)

    i(t)

    Rg+

    VDc

    ig(t)

    +VD2

    Vdd

    +R

    on-R

    g L

    C

    +vC(t)

    i(t)

    Rg+

    VDc

    ig(t)

    Resonant Driver DR2

    tritfi

    Ton

    Toff

    tfu

    VCon

    Ipk_p

    VCoff

    Ipk_n

    ttru

    tfwtfw

    vC(t)i(t)

    I2

    I3

    ig(t)

    Turn-on phase

  • 8/13/2019 Parasitic Components Effect Resonant

    16/39

    16

    DR2 Characteristics

    both S1and S2switches turn on at zero current, but they turn off

    almost at the inductor peak current; the control signals of S1and S2have critical timing, having to

    minimize the freewheeling intervals tfw, in order not to adverselyaffect the overall efficiency;

    the switching times of S1and S2have a great influence on the

    circuit behavior, causing a significant power loss at turn off (seepoint 1) as well as increase of Tonand Toffintervals; S1and S2body diodes are involved during the recovery of the

    inductor energy; switch lead inductances as well as any parasitic inductance due to

    traces and layout have a great impact on the circuit behavior,

    since they cause high frequency parasitic oscillations at turn offand delay S1and S2turn off times;

    VConvalue is easily controlled by the supply voltage Vdd(advantage)

  • 8/13/2019 Parasitic Components Effect Resonant

    17/39

    17

    Resonant Driver DR3

    +Vdd

    S1

    S2

    Db1

    Db2

    LextM

    Unclampedturn-on and unclampedturn-off

    Ton

    Toff

    VConIpk_p

    VCoffIpk_n

    t

    vC(t)i(t)

    offon

    offonon

    Q

    1

    Q

    1

    2

    Q2Q2

    goff

    Q2

    gon

    Con

    e1

    e1eVe1V

    V

    offon

    onoffoff

    Q

    1

    Q

    1

    2

    Q2Q2gon

    Q2goff

    Coff

    e1

    e1eVe1V

    V

  • 8/13/2019 Parasitic Components Effect Resonant

    18/39

    18

    DR3 Characteristics

    Same considerations as DR1. Moreover:

    high VConvalues can be achieved with verylow supply voltage Vdd;

    Vddvalue must be higher than the threshold

    voltage of S1(p-channel MOSFET) in orderto fully turn it on;

    the driver needs some oscillating cycles in

    order to achieve a steady state operation

  • 8/13/2019 Parasitic Components Effect Resonant

    19/39

    19

    Losses Comparison

    S1,2= IRF7319 Db1,2, Dcl, and Dc1,2= STPS1L40U Switching frequency: fsw= 1.8MHz

    Maximum diode voltage drop: VDc= VDb= 0.63V External inductance parasitic resistance: RLp= 200mW External inductance: Lext= 30nH (DR1), Lext= 35nH

    (DR2), Lext= 30nH (DR3) Internal gate resistance: Rg= 0.25W Equivalent gate capacitance: C = 10nF Supply voltage: Vdd= 5V (DR1), Vdd= 6.8V (DR2), Vdd=

    3.85V (DR3) VRM output voltage for DR1: Vo= 1.3V

    Driver parameters:

  • 8/13/2019 Parasitic Components Effect Resonant

    20/39

    20

    Losses Comparison: calculations

    Details of Losses Calculation for DR1(VCon= 7.41V, Lext= 30nH, Vdd= 5V, Vo= 1.3V)

    Pdd

    [mW]

    PDb1,2

    [mW]

    PDcl

    [mW]

    PR[mW] Po[mW] PLoss

    [mW]

    Ton, Toff

    [ns]

    Ipk

    [A]

    PTot_loss

    [mW]

    Turn on 724 91 142 233 55 2.28

    502

    Turn off 103 13 153 212 269 58.3 -2.55

    RDS(on)

    [W]VD[V]

    LSint

    [nH]

    LDint

    [nH]Tsw_off[ns]

    Qg@ VGS=5V

    [nC]

    Qg@ VGS=7V

    [nC]

    IRF 7319p-MOS 0.098 1 4 6 32 13 17

    n-MOS 0.046 1 4 6 17 12.5 16.5

    MOSFET S1and S2parameters

  • 8/13/2019 Parasitic Components Effect Resonant

    21/39

    21

    Losses Comparison

    Pdd[mW] PDb1,2[mW]

    PR[mW] PLoss[mW]

    Ton, Toff[ns] Ipk [A] PTot_loss[mW]

    Turn on 772 126 272 399 54.4 3.16

    773Turn off 126 242 374 54.4 -3.17

    Details of Losses Calculation for DR3

    (VCon= 7.44V, VCoff= -3.71V,Lext= 30nH, Vdd= 3.85V)

    Details of Losses Calculation for DR2(V

    Con= 7.43V, L

    ext= 35nH, V

    dd= 6.8V)

    Pdd

    [mW]

    Pdd_recovered

    [mW]

    PD1,2

    [mW]

    PDcl ,2

    [mW]

    PR

    [mW]

    PLoss

    [mW]Ton, Toff[ns]

    Ipk

    [A]

    PTot_loss

    [mW]

    Turn on 967 179 22 51 241 295 56.1 3.2

    574Turn off 199 29 36 215 280 50.5 -3.25

  • 8/13/2019 Parasitic Components Effect Resonant

    22/39

    22

    Losses Comparison

    Driver DR2 losses do not include S1

    and S2switching losses:

    at turn-on: Psw_on= 220mW

    at turn-off: Psw_off= 135mW

    Total DR1 losses: Ptot_loss= 502mW

    Total DR2 losses: Ptot_loss= 574+355 = 929mWTotal DR3 losses: Ptot_loss= 773mW

  • 8/13/2019 Parasitic Components Effect Resonant

    23/39

    23

    Experimental Waveforms: DR1

    vC[2V/div]

    vRs[100mV/div]

    VGS_n-MOS[1V/div]

    vG_p-MOS[1V/div]

    vDS_n-MOS [2V/div]

    With Lext

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 5V, fsw= 1.8MHz

    Rs

    Dcl1

    +VRs

    +VCC

  • 8/13/2019 Parasitic Components Effect Resonant

    24/39

    24

    Experimental Waveforms: DR1

    vC[2V/div]

    vRs[200mV/div]

    VGS_n-MOS[1V/div]

    vG_p-MOS[1V/div]

    vDS_n-MOS [2V/div]

    Without Lext

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 5V, fsw= 1.8MHz

    Rs

    Dcl1

    +VRs

    +VCC

  • 8/13/2019 Parasitic Components Effect Resonant

    25/39

    25

    Experimental Waveforms: DR2

    vC[2V/div]

    vRs[100mV/div]

    VGS_n-MOS[2V/div]

    vG_p-MOS[2V/div]

    vDS_n-MOS [2V/div]

    With Lext

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 7.5V, fsw= 1.8MHz

    TpNMOS= 58.4ns, TpPMOS= 58.4ns (misurati a 1V)

  • 8/13/2019 Parasitic Components Effect Resonant

    26/39

    26

    Experimental Waveforms: DR2

    vC[2V/div]

    vRs[200mV/div]

    vG_p-MOS[2V/div]

    VGS_n-MOS[2V/div]

    vDS_n-MOS [2V/div]

    Without Lext

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 7.5V, fsw= 1.8MHz

    TpNMOS= 58.4ns, TpPMOS= 58.4ns (misurati a 1V)

  • 8/13/2019 Parasitic Components Effect Resonant

    27/39

    27

    Experimental Waveforms: DR3

    With Lext

    vC[2V/div]

    vRs[100mV/div]

    VGS_n-MOS[1V/div]

    vG_p-MOS[1V/div]

    vDS_n-MOS [2V/div]

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 4V, fsw= 1.8MHz

    E l f

  • 8/13/2019 Parasitic Components Effect Resonant

    28/39

    28

    Experimental Waveforms: DR3

    Without Lext

    vC[2V/div]

    vRs[200mV/div]

    VGS_n-MOS[1V/div]

    vG_p-MOS[1V/div]

    vDS_n-MOS [2V/div]

    CLoad= 10nF (smd), Rs= 0.1W, Ualim= 4V, fsw= 1.8MHz

  • 8/13/2019 Parasitic Components Effect Resonant

    29/39

    29

    Effect of Device Parasitic Capacitances

    RLp

    +vCC

    +

    Lext

    i(t)vCp

    Cp

    +Vdd

    The final capacitor voltage during turn on is lower than

    expected, especially for driver DR2. Why?

    Effect of devices

    output capacitances

    0

    2

    4

    6

    8

    -2

    -4

    vC

    vDS_n-MOS

    iL

    [V,A]

    Time

    VCon

    VCoff

    Ton_sw= 150ns

    X axis scale = 50ns/div

    0

    2

    4

    6

    8

    -2

    -4

    vC

    vDS_n-MOS

    iL

    [V,A]

    Time

    VCon

    VCoff

    Ton_sw= 90ns

    VCon_nominal

    Eff f

  • 8/13/2019 Parasitic Components Effect Resonant

    30/39

    30

    Effect of Device Parasitic Capacitances

    Tsw-cond= 60ns

    Tsw-cond= 90ns

    DR2 Measurements: Vdd= 7V, fsw= 1.8MHz, Lext = 0

    vc(t)

    [2V/div]

    Time [100ns/div]

    Eff f D i P i i C i

  • 8/13/2019 Parasitic Components Effect Resonant

    31/39

    31

    Effect of Device Parasitic Capacitances

    Pdd[mW]VCon

    [V]

    VCoff

    [V]

    Tsw_cond

    [ns]Pnom[W]

    0.5901 5.93 1.5 64 0.63 0.068

    0.6482 5.86 1.28 90 0.62 -0.049

    0.7049 6.14 1.23 99 0.68 -0.039

    With

    Lext

    0.7791 6.42 1.17 140 0.74 -0.050

    1.0878 6.94 -0.22 140 0.878 -0.255

    1.0689 6.8 -0.22 120 0.83 -0.284

    1.0437 6.94 0.14 107 0.87 -0.204

    0.9408 6.6 0.22 90 0.78 -0.2

    Without

    Lext

    0.6965 5.86 1 60 0.62 -0.127

    DR2: Effect of Switch Conduction Time on VConand VCoff

    (Vdd= 7V, Rs= 0)

    sw2

    Connom fCVP

    nom

    ddnom

    P

    PP

    DR1 P L Diff V

  • 8/13/2019 Parasitic Components Effect Resonant

    32/39

    32

    DR1 Power Losses at Different Vdd

    Vdd[V]

    VCpeak[V]

    VCon[V]

    Pdd[mW]

    Pnom[W]

    3 4.19 3.95 0.264 0.281 0.061

    3.5 5.23 4.9 0.375 0.432 0.133

    4 6.1 5.72 0.496 0.589 0.1584.5 6.95 6.5 0.635 0.761 0.166

    With Lext

    5 7.8 7.34 0.792 0.970 0.184

    3 3 2.9 0.197 0.151 -0.298

    3.5 4 3.84 0.285 0.265 -0.0754 4.93 4.72 0.404 0.401 -0.006

    4.5 5.88 5.58 0.545 0.560 0.027

    Without

    Lext

    5 6.68 6.42 0.698 0.742 0.059

    (Rs= 0, Vo= 0)

    DR2 P L t Diff t V

  • 8/13/2019 Parasitic Components Effect Resonant

    33/39

    33

    DR2 Power Losses at Different Vdd

    Vdd

    [V]

    VCpeak

    [V]

    VCon

    [V]

    Pdd

    [mW]

    Pnom

    [W]

    5 5.62 4.09 0.310 0.301 -0.030

    5.5 6.5 4.71 0.384 0.399 0.037

    6 7.24 5.22 0.449 0.490 0.084

    6.5 7.8 5.54 0.519 0.552 0.060

    7 8.34 6 0.594 0.648 0.084

    With Lext

    7.5 9.02 6.38 0.683 0.733 0.068

    5 6.78 4.4 0.372 0.348 -0.067

    5.5 7.56 4.66 0.433 0.391 -0.1096 8.28 5.04 0.505 0.457 -0.104

    6.5 9 5.4 0.588 0.525 -0.121

    7 9.58 5.78 0.683 0.601 -0.136

    Without

    Lext

    7.5 10.22 6.16 0.779 0.683 -0.141

    (Rs= 0, Tsw-cond= 58.4ns)

    DR3 P L t Diff t V

  • 8/13/2019 Parasitic Components Effect Resonant

    34/39

    34

    DR3 Power Losses at Different Vdd

    Vdd

    [V]

    VCon

    [V]

    VCoff

    [V]

    Pdd

    [mW]

    Pnom

    [W]

    3 3.99 -1.9 0.363 0.287 -0.268

    3.5 5.78 -2.88 0.609 0.601 -0.013

    3.75 6.5 -3.32 0.744 0.761 0.021

    4 7.1 -3.74 0.880 0.907 0.030

    4.25 7.8 -4.11 1.037 1.095 0.053

    4.5 8.42 -4.54 1.197 1.276 0.062

    With Lext

    5 9.63 -5.16 1.589 1.669 0.048

    3 2.91 -1.02 0.255 0.152 -0.675

    3.5 3.74 -1.31 0.373 0.252 -0.480

    4 4.71 -1.78 0.542 0.399 -0.356

    4.5 5.9 -2.26 0.752 0.627 -0.201

    Without

    Lext

    5 6.94 -2.7 1.011 0.867 -0.166

    (Rs= 0)

    I t l MOSFET I d t

  • 8/13/2019 Parasitic Components Effect Resonant

    35/39

    35

    Internal MOSFET Inductance

    For the same Vddvalue, the final VConvoltage without the

    external inductor Lextin DR1 and DR3 (and, to a less extent, alsoin DR2) is much lower than the corresponding value with Lext, and

    this phenomenon is more pronounced at lower Vddvalues

    This result can be explained only by a lower Qonfactor of the

    circuit without Lext, i.e. a higher RDSonof the p-channel MOSFETS1caused by a reduced gate-to-source voltage due to the

    voltage drop across the internal source inductance (4nH for the

    IRF7319) that becomes worse at higher di/dt values, i.e. without

    Lext. This explains why the observed phenomenon is morepronounced at lower Vddvalues, and justify why DR1, that

    requires a higher Vddthan DR3 to achieve the same VConvalue,

    has lower overall losses than DR3 even without energy recovery.

    R t VRM

  • 8/13/2019 Parasitic Components Effect Resonant

    36/39

    36

    Resonant VRM

    Square-waveoperation of the primary half-bridge

    Zero-voltageand zero-currentcommutations of SR MOSFETsQ1and Q2

    Operation at fs= 1.8MHz, VIN= 48V, Vo= 1.3V, Io= 50A

    Resonant driversfor SRs

    VIN

    +

    HB1

    HB2

    LR

    N:1

    CA

    CB C2

    C1

    LF1

    LF2

    Q2

    Q1

    +

    VO

    iF2

    CF

    RL

    iF1

    iR

    +

    +

    TR

    VGS_Q1

    VGS_Q2

    VC1

    VC2

    VRM P t t

  • 8/13/2019 Parasitic Components Effect Resonant

    37/39

    37

    VRM Prototype

    4 IRF7836 SR

    MOSFETs

    (Qg= 18-27nC@VGS= 4.5V,

    Rg= 1 )

    E i t l W f DR1

  • 8/13/2019 Parasitic Components Effect Resonant

    38/39

    38

    Experimental Waveforms: DR1

    VGS1[2V/div] VGS2[2V/div]

    DR1measured waveforms driving 4 IRF7836

    SR MOSFETs (no energy recovery)Ploss= 1W each

    HB1

    HB2

    R f

  • 8/13/2019 Parasitic Components Effect Resonant

    39/39

    References1. D. Maksimovic, A MOS gate drive with resonant transitions,in Proc. Power Electron. Spec. Conf., 1991, pp. 527532.2. Y. Ren, M. Xu, Y. Meng, F. C. Lee, 12V VR Efficiency Improvement based on Two-stage Approach and a Novel Gate

    Driver,IEEE Power Electronics Specialists Conf. (PESC), June 2003, pp.2635-2641.3. T. Lopez, G. Sauerlaender, T. Duerbaum, T. Tolle, A Detailed Analysis of a Resonant Gate Driver for PWM

    Applications,IEEE Applied Power Electronics Conf. (APEC), 2003, pp. 873-878.4. K. Xu, Y. F. Liu and P. C. Sen, A New Resonant Gate Drive Circuit with Centre-Tapped Transformer,IECON, 2005, pp.

    639-644.5. Z. Yang, S. Ye and Y. F. Liu, A New Dual Channel Resonant Gate Drive Circuit for Synchronous Rectifiers, IEEE

    Applied Power Electronics Conf. (APEC), 2006, pp. 756-762.6. Z. Zhang, Z. Yang, S. Ye, Y. F. Liu, Topology and Analysis of a New Resonant Gate Driver, IEEE Power Electronics

    Specialists Conf. (PESC), June 2006, pp. 1453-1459.7. W. A. Tabisz, P. Gradzki, and F. C. Lee, Zero-voltage-switched quasi-resonant buck and flyback converters

    experimental results at 10 MHz,IEEEPower Electronics Specialists Conf. (PESC), 1987, pp. 404413.8. S. H. Weinberg, A novel lossless resonant MOSFET driver,IEEE Power Electronics Specialist Conf. (PESC), 1992, pp.

    10031010.

    9. H. L. N. Wiegman, A resonant pulse gate drive for high frequency applications,IEEE Applied Power Electronics Conf.(APEC), 1992, pp. 738743.10.Y. Panov and M. Jovanovic, Design considerations for 12-V/1.5-V, 50-A voltage regulator modules,IEEE Transactions.

    on Power Electronics, Vol.16, N6, Nov. 2001, pp. 776-783.11.Y. Chen, F. C. Lee, L. Amoroso, H. P. Wu, A resonant MOSFET Gate Driver with Efficient Energy Recovery, IEEE

    Transactions on Power Electronics, Vol. 19, NO. 2, March 2004, pp.470-477.12.S. Pan, P. K. Jain, A New Pulse Resonant MOSFET Gate Driver with Efficient Energy Recovery, IEEE Power

    Electronics Specialists Conf. (PESC), June 2006.13.W. Eberle, P. C. Sen and Y. F. Liu, A New Resonant Gate Drive Circuit with Efficient Energy Recovery and Low

    Conduction Loss,IECON, 2005, pp. 650-655.14.W. Eberle, Y. F. Liu and P. C. Sen, A novel High Performance Resonant Gate Drive Circuit with Low Circulating

    Current,IEEE Applied Power Electronics Conf. (APEC), 2006, pp.324-330.15.K.Yao, F. C. Lee, A Novel Resonant Gate Driver for High Frequency Synchronous Buck Converters,IEEE Transactions

    on Power Electronics, Vol. 17, No. 2, March 2002, pp. 180-186.16.I. D. de Vries, A resonant power MOSFET/IGBT gate driver,IEEEApplied Power Electronics Conf. (APEC), 2002, pp.

    179185.17.J. T. Strydom, M. A. de Rooij, J. D. van Wyk, A Comparison of Fundamental Gate-Driver Topologies for High Frequency

    Applications,IEEE Applied Power Electronics Conf. (APEC), 2004.18.L. Huber, K. Hsu, M. Jovanovic, 1.8 MHz, 48 V Resonant VRM,IEEE Tran. on Power Electronics, Vol.1, N1, Jan. 2006,

    pp. 79-88.