53
1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter Identification in Partial Integro-Differential Equations for Physiologically Structured Populations Sylvia Moenickes, Otto Richter, and Klaus Schmalstieg Institut f¨ ur Geo¨ okologie, Braunschweig Presented at the COMSOL Conference 2008 Hannover

Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Parameter Identificationin Partial Integro-Differential Equations

for Physiologically Structured Populations

Sylvia Moenickes, Otto Richter, and Klaus SchmalstiegInstitut fur Geookologie, Braunschweig

Presented at the COMSOL Conference 2008 Hannover

Page 2: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

2/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Temporal mismatch

Population dynamics of G. pulex

Identifiability of parameters

Future Applications

Page 3: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

3/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Temporal mismatch

Population dynamics of G. pulex

Identifiability of parameters

Future Applications

Page 4: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

4/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Climate change

I arboreal population dynamics

I microbial population dynamics

I freshwater amphipod population dynamics

Page 5: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

5/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Climate change

I arboreal population dynamics

I microbial population dynamics

I freshwater amphipod population dynamics

Page 6: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

6/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Interdependency in ecology

I birthI growth

I food availabilityI temperature conditionsI . . .

I reproduction

I food availabilityI weightI . . .

I death

I food availabilityI temperature conditionsI ageI . . .

Page 7: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

7/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Interdependency in ecology

I birthI growth

I food availabilityI temperature conditionsI . . .

I reproduction

I food availabilityI weightI . . .

I death

I food availabilityI temperature conditionsI ageI . . .

Page 8: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

8/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Interdependency in ecology

I birthI growth

I food availabilityI temperature conditionsI . . .

I reproductionI food availabilityI weightI . . .

I death

I food availabilityI temperature conditionsI ageI . . .

Page 9: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

9/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Interdependency in ecology

I birthI growth

I food availabilityI temperature conditionsI . . .

I reproductionI food availabilityI weightI . . .

I deathI food availabilityI temperature conditionsI ageI . . .

Page 10: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

10/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring interdependency in ecology

I in-situ, highly dynamic

I in lab, highly specific

Page 11: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

11/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring I

Suhling et al., 2008

Page 12: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

12/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring I

Suhling et al., 2008

Page 13: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

13/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring I

Suhling et al., 2008

Page 14: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

14/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring I

Suhling et al., 2008

Page 15: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

15/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring II

Schneider et al., 2008

Page 16: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

16/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Measuring II

Schneider et al., 2008

Page 17: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

17/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Temporal mismatch

Population dynamics of G. pulex

Identifiability of parameters

Future Applications

Page 18: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

18/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Individual growth g(F , T , w)

dwdt = g(F , T , w)

dwdt = γw

23 − ρw

dwdt = γ F

F+Fhw

23 − ρw

dwdt = Φ(T )(γ F

F+Fhw

23 − ρw)

Page 19: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

19/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Individual growth g(F , T , w)

dwdt = g(F , T , w)

dwdt = γw

23 − ρw

dwdt = γ F

F+Fhw

23 − ρw

dwdt = Φ(T )(γ F

F+Fhw

23 − ρw)

Page 20: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

20/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Individual growth g(F , T , w)

dwdt = g(F , T , w)

dwdt = γw

23 − ρw

dwdt = γ F

F+Fhw

23 − ρw

dwdt = Φ(T )(γ F

F+Fhw

23 − ρw)

Page 21: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

21/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Individual growth g(F , T , w)

dwdt = g(F , T , w)

dwdt = γw

23 − ρw

dwdt = γ F

F+Fhw

23 − ρw

dwdt = Φ(T )(γ F

F+Fhw

23 − ρw)

Page 22: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

22/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Weight structured population n(w , t)

Population density n varying with time t and weight w :

∂n(w ,t)∂t = −∂g(F ,T ,w)n(w ,t)

∂w

+ λ∂2n(w ,t)∂w2

− p−(F ,T ,w , . . .)

+ p+(F ,T ,w , . . .)

Page 23: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

23/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Weight structured population n(w , t)

Population density n varying with time t and weight w :

∂n(w ,t)∂t = −∂g(F ,T ,w)n(w ,t)

∂w + λ∂2n(w ,t)∂w2

− p−(F ,T ,w , . . .)

+ p+(F ,T ,w , . . .)

Page 24: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

24/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Weight structured population n(w , t)

Population density n varying with time t and weight w :

∂n(w ,t)∂t = −∂g(F ,T ,w)n(w ,t)

∂w + λ∂2n(w ,t)∂w2

− p−(F ,T ,w , . . .)

+ p+(F ,T ,w , . . .)

Page 25: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

25/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Weight structured population n(w , t)

Population density n varying with time t and weight w :

∂n(w ,t)∂t = −∂g(F ,T ,w)n(w ,t)

∂w + λ∂2n(w ,t)∂w2

− p−(F ,T ,w , . . .)

+ p+(F ,T ,w , . . .)

Page 26: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

26/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23 n(w , t)dw

Page 27: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

27/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)

(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23 n(w , t)dw

Page 28: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

28/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))

(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23 n(w , t)dw

Page 29: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

29/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23 n(w , t)dw

Page 30: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

30/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23

n(w , t)dw

Page 31: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

31/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23

n(w , t)dw

Page 32: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

32/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Mortality and Fertility

Mortality

p−(F ,T ,w , . . .) = µ(F ,T ,w , . . .)n(w , t)

1− µ(F ,T ,w , . . .) = (1− µ0)(1− µT (1− Φ(T )))(1− µFFµ

Fµ+F )

Fertility

p+(F ,T ,w , . . .) = B(F ,T ,w , . . .)Π(w)

B(F , t) =∫ wmax

wminrmax

FF+Fh

w23 n(w , t)dw

Page 33: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

33/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Temporal mismatch

Population dynamics of G. pulex

Identifiability of parameters

Future Applications

Page 34: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

34/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Parameter identification

I Minimization of

L(θ) =∑

j

∑i

(ni (tj)− ni (tj , θ))2

I throughI direct simulation with Comsol in MatlabI optimization toolbox of Matlab

I with model efficiency ME

ME = 1−∑

j

∑i (ni (tj)− ni (tj))

2∑j

∑i (ni (tj)− n(tj))2

Page 35: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

35/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Process analysis

I Statistical method for comparison of nested models:Likelihood ratio test

I The test statistic is −2 log(Lcomplex(θ)Lsimple(θ)

)n2 .

I It is χ2 distributed with the difference in numbers ofparameters as degrees of freedom.

I A significance level of 0.05 is applied.

Page 36: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

36/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Process analysis

I Statistical method for comparison of nested models:Likelihood ratio test

I The test statistic is −2 log(Lcomplex(θ)Lsimple(θ)

)n2 .

I It is χ2 distributed with the difference in numbers ofparameters as degrees of freedom.

I A significance level of 0.05 is applied.

Page 37: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

37/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Process analysis

I Statistical method for comparison of nested models:Likelihood ratio test

I The test statistic is −2 log(Lcomplex(θ)Lsimple(θ)

)n2 .

I It is χ2 distributed with the difference in numbers ofparameters as degrees of freedom.

I A significance level of 0.05 is applied.

Page 38: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

38/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for continuity

I Experiments on temperature response are based onhomogeneity assumption over intervals.

I Adequateness depends on response itself.

I Our idea: dynamic parameter identification under controlledtemperature regimes.

O’Neill temperature response function:

Φ(T ) = k( Tmax−TTmax−Topt

)pep

T−ToptTmax−Topt

with

p = 1400W 2(1 +

√1 + 40

W )2

W = (q10 − 1)(Tmax − Topt)

Page 39: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

39/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for continuity

I Experiments on temperature response are based onhomogeneity assumption over intervals.

I Adequateness depends on response itself.

I Our idea: dynamic parameter identification under controlledtemperature regimes.

O’Neill temperature response function:

Φ(T ) = k( Tmax−TTmax−Topt

)pep

T−ToptTmax−Topt

with

p = 1400W 2(1 +

√1 + 40

W )2

W = (q10 − 1)(Tmax − Topt)

Page 40: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

40/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for continuity

I Experiments on temperature response are based onhomogeneity assumption over intervals.

I Adequateness depends on response itself.

I Our idea: dynamic parameter identification under controlledtemperature regimes.

O’Neill temperature response function:

Φ(T ) = k( Tmax−TTmax−Topt

)pep

T−ToptTmax−Topt

with

p = 1400W 2(1 +

√1 + 40

W )2

W = (q10 − 1)(Tmax − Topt)

Page 41: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

41/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for continuity

Page 42: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

42/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for continuity

γ ρ Topt q10

A 0.32 0.06 18.3 2.58 97.9B 0.30 0.07 17.7 2.04 98.5C 0.23 0.05 17.6 2.11 99.1D 0.15 0.03 17.7 1.75 99.2

0.16 0.04 17.5 1.7

Page 43: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

43/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for unmanageability

I Experiments on food response would require food control.

I Food control is unjustifiably expensive.

I Our idea: dynamic parameter identification including fooddynamic.

Litter dynamics

dF

dt= L(t,T )− ImaxΦ(T )

F

F + Fh

∫ wmax

0w

23 n(w , t)dw

Possible approximation

F (t) = F0e−(t/t1)p1 (1− e−(t/t2)p2 )

Page 44: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

44/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for unmanageability

I Experiments on food response would require food control.

I Food control is unjustifiably expensive.

I Our idea: dynamic parameter identification including fooddynamic.

Litter dynamics

dF

dt= L(t,T )− ImaxΦ(T )

F

F + Fh

∫ wmax

0w

23 n(w , t)dw

Possible approximation

F (t) = F0e−(t/t1)p1 (1− e−(t/t2)p2 )

Page 45: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

45/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for unmanageability

I Experiments on food response would require food control.

I Food control is unjustifiably expensive.

I Our idea: dynamic parameter identification including fooddynamic.

Litter dynamics

dF

dt= L(t,T )− ImaxΦ(T )

F

F + Fh

∫ wmax

0w

23 n(w , t)dw

Possible approximation

F (t) = F0e−(t/t1)p1 (1− e−(t/t2)p2 )

Page 46: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

46/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Accounting for unmanageability

Fh p1 p2 t1 t24.27 18.4 25.1 84.0 97.9

4.7 20 25.0 82 98

Page 47: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

47/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Identifying processes

I Mortality depends onmultiple processes.

I Effect of individual processoften unknown.

I Adequate simplificationscan be tested.

Page 48: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

48/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Identifying processes

µ0 µT µF RMSE ME (%)

• 268 99.0• 364 98.7

• 285 99.0

• • 263 99.0• • 264 99.0

• • 266 99.0

• • • 260 99.0

0.002 0.002 0.002

Page 49: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

49/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Identifying processes

µ0 µT µF RMSE Λ

0.004 268 •0.01 364

0.008 285 ◦0.003 0.004 263 •0.003 0.002 264 •

0.005 0.005 266 •0.002 0.003 0.004 260

0.002 0.002 0.002

Page 50: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

50/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Completing the circle

µ0 rmax ME (%)

0.006 0.007 94.1

0.01 0.008

Page 51: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

51/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

Temporal mismatch

Population dynamics of G. pulex

Identifiability of parameters

Future Applications

Page 52: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

52/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

What we learned

Page 53: Parameter Identification in Partial Integro-Differential ... · 1/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications Parameter

53/53 Temporal mismatch Population dynamics of G. pulex Identifiability of parameters Future Applications

What we learned