1
Conceptually Characterizing the Radiative Effects of Black Carbon Internal Mixing METHODOLOGY MOTIVATIONS RESULTS SUMMARIES Xiaoyuan Li 1 ([email protected]), Yi Ming 2 ([email protected]), and Denise L. Mauzerall 1,3 ([email protected]) 1 Department of Civil and Environmental Engineering, Princeton University; 2 Geophysical Fluid dynamics Laboratory (GFDL/NOAA), Princeton NJ; 3 Woodrow Wilson School of Public and International Affairs, Princeton University REFERENCES Adachi, K., S. H. Chung, and P. R. Buseck (2010), Shapes of soot aerosol parBcles and implicaBons for their effects on climate, J. Geophys. Res. Atmos., doi:10.1029/2009JD012868. Hansen, J., M. Sato, et al. 2005b. Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005/JD005776. Paper #: A53H-3307 Mie Theory CalculaBon GFDL Standalone RadiaBve Transfer Model Par+clelevel Radia+ve Proper+es Layerlevel Radia+ve Forcing Simplified Radia+ve Transfer Model Top of Atmosphere Surface Aerosol Layer MulBsca[ering F 0 —insolaBon A c —cloud fracBon T a —transmi[ance R s —surface albedo One Dimensional Two-layer Conceptual Radiative Transfer Model t—transmittance a—absorbance r—reflectance !"# !" = ! ! ! ! ! ! ! ! [ ! + ! ! ! ! ! ! ! ! ! ! ] !"# !" = ! ! ! ! ! ! ! [(! ! ! ) ! ! ! ! ! ! ] !"# !" = ! ! ! ! ! ! ! [! ! + !! ! ! ! ! ! ] I. Defini+on of radia+ve effects due to internal mixing !" !"# = !" !"# !" !"# !" !"# = !" !" + !" !"# + !" !"# !" !"# = !" !"# !" , !"# ! !" !" II. Par+clelevel radia+ve proper+es due to internal mixing Scenarios Mie Calcula+on Descrip+on External Mixing Mix of radiaBve properBes (BC, Sulfate+water) post MIE Internal Mixing Mix of RefracBve Indices (BC, Sulfate+water) before MIE Enhanced absorp+on Reduced scaGering III. Simplifying the conceptual radia+ve transfer model backscattering factor ! = !!! ! Simplified RTM Mie CalculaBon Mass Extinction Coefficient !"# = !"# (!, !" , ! ) optically thin layer ! 1 Single Scattering Albedo ! = !(!, !" , ! ) Asymmetry Factor ! = !(!, !" , ! ) ! = 1 ! !"# !"# !"#$ = !"# !"# !"#$ ! = ! ! !"# !"# !"#$ = ! !"# !"# !"#$ λ—wavelength, RH—relative humidity, σ—mass ratio ! !"# = !"# !"# !"# !"# ! !"# = ! !"# !"# !"# ! !"# !"# !"# ! !"# 0.133 ! !"# On layer level, change in absorbance due to internal mixing dominates over reflectance. Given and , the conceptual radiaBve transfer model can be simplified as: ! = 7.5 ! ! = 5 ! ! !"# 0.133 ! !"# ! ! ! ! 1 ! = ! ! = 2! Internal mixing enhances atmospheric absorpBon by increasing TOA forcing and decreasing surface forcing the same amount. !"# !" !"# ! ! 1 ! ! ! ! ! (2! ! )! !"# !"# !" !"# ! ! 1 ! ! ! ! 1 + ! ! ! !"# !"# !" !"# ! ! 1 ! ! ! ! 1 + ! ! + 2! ! ! ! ! !"# Calcula4on from standalone model shows linear rela4onship between the three forcing components due to internal mixing. The simplified model provides a good approxima4on when surface albedo falls between 0.3 and 0.4. !"# !" !"# ! !"# !" !"# ! !"# !" !"# V. Applica+on II: internal mixing between BC, sulfate and OC Mixing Scenario Mie Calcula+on Descrip+on All EXT BC, Sulfate(+water), and OC(+water) are all externally mixed BCSUL INT Only BC and Sulfate(+water) are internally mixed All INT BC, Sulfate(+water), and OC(+water) are all internally mixed TOA forcing would be underes+mated by 0.21 W/m 2 if OC is missing from internal mixing (given sulfate/BC raBo of 80%, and global mean aerosol column density of 7 mg/m 2 ). (Credits to Adachi et al., 2010) AbsorpBon Aerosol OpBcal Depth (AAOD, τ a ) AAOD is largely underes+mated by models in Asia and Africa, which is partly due to poor implementaBon of black carbon (BC) internal mixing. ! ! = !"# ! ! !" ! ! MAC –Mass AbsorpBon Coefficient n m –mass concentraBon Gaps in exis+ng studies: Mainly focus on top of the atmosphere (TOA) radiaBve forcing of BC internal mixing, without addressing verBcal energy redistribuBon. ComputaBonal costs are large using 3D aerosol models to perform each calculaBon. Climate sensitivity: 2 × CO 2 : 2 × Sulfate : 2 × BC (at different altitudes): ! ! ! = !. !"# /(!/! ! ) ! ! ! = !. !"" !" !. !"# /(!/! ! ) ! ! ! = !. !"! /(!/! ! ) Main findings: Internal mixing enhances atmospheric absorpBon by increasing TOA forcing and decreasing surface forcing the same amount. Change of layer absorbance due to internal mixing dominates over that of reflectance. It provides a good approximaBon that leads to a validated simplified radiaBve transfer framework. Using our new framework, we esBmate a global average increase of 0.21 W/m 2 when internal mixing of BC with sulfate and OC is included relaBve to a case where internal mixing with OC is absent. (Credits to Hansen et al., 2005) RESEARCH QUESTIONS I. How does BC internal mixing influence surface forcing and atmospheric absorp>on as well as TOA radia+ve forcing? II. How can we develop a more efficient framework to study the radiaBve effects of BC internal mixing with reduced complexi>es? More Forward sca[ering Slight increase in ex+nc+on MAC MEC

Paper #: A53H-3307 Conceptually Characterizing the …...Conceptually Characterizing the Radiative Effects of Black Carbon Internal Mixing METHODOLOGY MOTIVATIONS RESULTS SUMMARIES

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Paper #: A53H-3307 Conceptually Characterizing the …...Conceptually Characterizing the Radiative Effects of Black Carbon Internal Mixing METHODOLOGY MOTIVATIONS RESULTS SUMMARIES

Conceptually Characterizing the Radiative Effects of Black Carbon Internal Mixing

METHODOLOGY

MOTIVATIONS

RESULTS

SUMMARIES

Xiaoyuan Li1 ([email protected]), Yi Ming2 ([email protected]), and Denise L. Mauzerall1,3 ([email protected]) 1Department of Civil and Environmental Engineering, Princeton University; 2Geophysical Fluid dynamics Laboratory (GFDL/NOAA), Princeton NJ; 3Woodrow Wilson School of Public and International Affairs, Princeton University

REFERENCES  Adachi,  K.,  S.  H.  Chung,  and  P.  R.  Buseck  (2010),  Shapes  of  soot  aerosol  parBcles  and  implicaBons  for  their  effects  on  climate,  J.  Geophys.  Res.  Atmos.,  doi:10.1029/2009JD012868.  Hansen,  J.,  M.  Sato,  et  al.  2005b.  Efficacy  of  climate  forcings.  J.  Geophys.  Res.,  110,  D18104,  doi:10.1029/2005/JD005776.  

Paper #: A53H-3307

Mie  Theory  CalculaBon  

GFDL  Standalone  RadiaBve  Transfer  

Model  

Par+cle-­‐level    Radia+ve  Proper+es  

Layer-­‐level    Radia+ve  Forcing  

Simplified  Radia+ve  Transfer  Model  

…  

Top  of  Atmosphere  

…  

…  

Surface  

Aerosol  Layer  MulB-­‐sca[ering  

F0—insolaBon  

Ac—cloud  fracBon  Ta—transmi[ance  

Rs—surface  albedo  

One Dimensional Two-layer Conceptual Radiative Transfer Model

t—transmittance a—absorbance r—reflectance

!"#!!!" = !! !− !! !!![ !+!!!!

!− !!!− !!]!

!"#!!!" = !! !− !! !! [(!− !!)!

!− !!!− ! ]!

!"#!!!" = !! !− !! !! [! !+ !!!!− !!!

]!

I.  Defini+on  of  radia+ve  effects  due  to  internal  mixing            

∆!"!"# = !!"!"# − !"!"#!!"!"# = !"!" + !"!"# + ∆!"!"# !

∆!"!"# = ∆!"!"# !", !"# ≠ ! ∗ !"!" !!

II.  Par+cle-­‐level  radia+ve  proper+es  due  to  internal  mixing    

Scenarios   Mie  Calcula+on  Descrip+on  

External  Mixing   Mix  of  radiaBve  properBes  (BC,  Sulfate+water)  post  MIE  

Internal  Mixing   Mix  of  RefracBve  Indices  (BC,  Sulfate+water)  before  MIE  

ü  Enhanced  absorp+on  ü  Reduced  scaGering  

III.  Simplifying  the  conceptual  radia+ve  transfer  model      

backscattering,factor,! = !!!! ,

Simplified  RTM    

Mie  CalculaBon  

Mass$Extinction$Coefficient$!"# = !"#(!,!",!)$

optically)thin)layer)! ≪ 1)

Single'Scattering'Albedo'! = !(!,!",!)'Asymmetry(Factor(! = !(!,!",!)(

! = 1− ! !!"#!!"#!"#$ = !"#!!"#!"#$!

! = !!!!!"#!!"#!"#$ = !!!"#!!"#!"#$!

λ—wavelength,  RH—relative  humidity,  σ—mass  ratio  

∆!!"# = !"#!"# −!"#!"# !∆!!"# = !!"#!"#!"# − !!"#!"#!"# !!

∆!!"# ≅ 0.133 ∗ ∆!!"# !

On  layer  level,  change  in  absorbance  due  to  internal  mixing  dominates  over  reflectance.  

Given                                                                      and                                ,  the  conceptual  radiaBve  transfer  model  can  be  simplified  as:        

! = 7.5!!!

! = 5!!!

∆!!"# ≅ 0.133 ∗ ∆!!"# ! !!!! ≪ 1!

! = !! ! = 2!!

Internal  mixing  enhances  atmospheric  absorpBon  by  increasing  TOA  forcing  and  decreasing  surface  forcing  the  same  amount.  

!"#!!∆!"!"# ≅ !! 1− !! !!!(2!!)∆!!"#!!"#!!∆!"!"# ≅ −!! 1− !! !! 1+ !! ∆!!"#!!"#!!∆!"!"# ≅ !! 1− !! !! 1+ !! + 2!!!! ∆!!"# !

Calcula4on  from  standalone  model  shows  linear  rela4onship  between  the  three  forcing  components  due  to  internal  mixing.  The  simplified  model  provides  a  good  approxima4on  when  surface  albedo  falls  between  0.3  and  0.4.  

!"#!∆!"!"# ≅ −! ∗ !"#!∆!"!"# ≅ ! ∗ !"#!∆!"!"#!

V.  Applica+on  II:  internal  mixing  between  BC,  sulfate  and  OC  

Mixing  Scenario   Mie  Calcula+on  Descrip+on  

All  EXT   BC,  Sulfate(+water),  and  OC(+water)  are  all  externally  mixed  

BCSUL  INT   Only  BC  and  Sulfate(+water)  are  internally  mixed  

All  INT   BC,  Sulfate(+water),  and  OC(+water)  are  all  internally  mixed  

TOA  forcing  would  be  underes+mated  by  0.21  W/m2  if  OC  is  missing  from  internal  mixing  (given  sulfate/BC  raBo  of  80%,  and  global  mean  aerosol  column  density  of  7  mg/m2).  

(Credits  to  Adachi  et  al.,  2010)  

AbsorpBon  Aerosol  OpBcal  Depth  (AAOD,  τa)              AAOD  is  largely  underes+mated  by  models  in  Asia  and  Africa,  which  is  partly  due  to  poor  implementaBon  of  black  carbon  (BC)  internal  mixing.  

!! = !"# ∙ !! ∙ !"!

!!

MAC  –Mass  AbsorpBon  Coefficient  

nm          –mass  concentraBon  

Gaps  in  exis+ng  studies:  Ø  Mainly  focus  on  top  of  the  atmosphere  (TOA)  

radiaBve  forcing  of  BC  internal  mixing,  without  addressing  verBcal  energy  redistribuBon.  

Ø  ComputaBonal  costs  are  large  using  3D  aerosol  models  to  perform  each  calculaBon.  

Climate sensitivity:

2 × CO2 :

2 × Sulfate :

2 × BC (at different altitudes):

∆!!∆! = !.!"#!℃/(!/!!)!

∆!!∆! = !.!""!!"!!.!"#!℃/(!/!!)!

∆!!∆! = !.!"!!℃/(!/!!)!

Main  findings:  ²  Internal  mixing  enhances  atmospheric  absorpBon  by  

increasing  TOA  forcing  and  decreasing  surface  forcing  the  same  amount.  

²  Change  of  layer  absorbance  due  to  internal  mixing  dominates  over  that  of  reflectance.  It  provides  a  good  approximaBon  that  leads  to  a  validated  simplified  radiaBve  transfer  framework.  

²  Using  our  new  framework,  we  esBmate  a  global  average  increase  of  0.21  W/m2  when  internal  mixing  of  BC  with  sulfate  and  OC  is  included  relaBve  to  a  case  where  internal  mixing  with  OC  is  absent.  

(Credits  to  Hansen  et  al.,  2005)  

RESEARCH QUESTIONS

I.    How   does   BC   internal   mixing   influence   surface  forcing   and   atmospheric   absorp>on   as   well   as  TOA  radia+ve  forcing?  

II.   How  can  we  develop  a  more  efficient  framework  to  study  the  radiaBve  effects  of  BC  internal  mixing  with  reduced  complexi>es?  

ü  More  Forward  sca[ering  ü  Slight  increase  in  ex+nc+on    

MAC   MEC