38
Panasonic GaN Power Driver design and application https://industrial.panasonic.com/ww/products/semiconductors/powerics/ganpower Contributes to Global Eco Miniaturization Energy Saving Mar 6/2018 D S G SK Exhibiter Seminar

Panasonic GaN Power · 2020. 4. 27. · In the high-speed switching operation of GaN, even if the gate capacitance is small, the Gate voltage rises due to the Miller effect, and the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • D

    S

    GSK

    Panasonic GaN Power Driver design and application

    https://industrial.panasonic.com/ww/products/semiconductors/powerics/ganpower

    Contributes to Global Eco

    Miniaturization

    Energy Saving

    Mar 6/2018

    D

    S

    GSK

    Exhibiter Seminar

  • D

    S

    GSK

    Panasonic X-GaNTM Family Product PGA26E34HA PGA26E19BA PGA26E07BA PGA26H04KA

    Package

    Power SMD(DFN) Power SOP DFN 6x4 DFN 8x8 PSOP 20

    Blocking Voltage 600V 600V 600V 600V Drain Current 8.5A 13A 26A 52A

    Rdson(typ) 270mΩ 140mΩ 56mΩ 32mΩ Qg 1nC 2nC 5nC 8nC Qr 0nC 0nC 0nC 0nC

    Status Sampling (18/CQ1) Mass Production Mass production Sampling (18/CQ3) Samples available from

    Panasonic X-GaNTM Power Transistor

    Features

    GaN Epitaxial Growth Technique on Si Substrate Normally-Off operation with single GaN Device Current-Collapse-Free 600V and more Zero Recovery Characteristics

    High Speed

    First of Normally OFF GaN power Transistor qualifying Mass Production. Fully qualify JEDEC standards and beyond, current collapse free and so on.

    Small footprint

    High Power

    D

    S

    GSK

    2

  • D

    S

    GSK

    3

    1.Composition of Panasonic X-GaN 2. X-GaN gate design theory 3.X-GaN advantage 4.X-GaN application

  • D

    S

    GSK

    4

    1.Composition of Panasonic X-GaN 2. X-GaN gate design theory 3.X-GaN advantage 4.X-GaN application

  • D

    S

    GSK

    When system condition is Stand-by mode Start-up/Shut-down sequence Driver supply voltage malfunction,

    Normally ON characteristic

    Conventional

    Normally ON is GaN natural behavior undesired for power electronics and Turn to Normally OFF is GaN development challenge.

    0 2 4 -2 -4

    0.2

    0.0

    0.4

    0.6

    0.8

    1.0

    Dra

    in C

    urre

    nt (a

    .u.)

    Gate Voltage [V]

    Normally ON Conventional GaN FET

    Off

    Drain Current GaN

    AlGaN Drain Source Gate

    Exist 2 terminals, Drain & Source, then automatically start current flow. That transistor called “Depletion Mode”, means Normally ON characteristic. Applying negative gate voltage to turn off transistor is undesired. In power electronics application during the standby mode, gate voltage is 0V, bridge configuration results high rush current and break.

    Normally ON

    400V Transformer

    Driver

    Driver

    Shoot Current Occur! Break GaN-Tr!!

    Down

    Down

    Break

    Break

    ON

    ON

    Apply negative voltage to turn off

    5

  • D

    S

    GSK Single Device Normally OFF e-mode GaN FET

    GIT

    Adopt p-GaN gate layer to be Normally OFF and resistive connection called GIT: Gate Injection Transistor.

    Off

    GaN

    AlGaN Drain Source

    Gate

    pGaN layer lifts up potential at the channel and blocked electron movement. Halls inject from Gate to Drain region and Drain current increase using conductive modulation.

    pGaN

    ON

    Drain Current GaN

    AlGaN Drain Source

    Gate pGaN

    0 2 4 -2 -4

    0.2

    0.0

    0.4

    0.6

    0.8

    1.0

    Dra

    in C

    urre

    nt (a

    .u.)

    Gate Voltage [V]

    Normally ON Conventional GaN FET

    Normally OFF

    Vth=1.2V

    GIT

    Pure single device

    6

  • D

    S

    GSK GaN original reliability issue – Current Collapse

    Electrons TRAP, which might cause crystal dislocation, and blocks Drain current flow, results in higher Dynamic Rdson called Current Collapse.

    Mechanism

    AlN AlGaN

    GaN epitaxial

    Si(111) substrate

    GaN/AlN Super-lattice Buffer

    Occurs Minor Crystal dislocation by Compressive Strain though implemented Super-lattice buffer.

    Crystal Dislocation

    Compressive Strain

    Drain

    Si-substrate

    AlGaN

    GaN

    Gate

    Buffer layer

    Source

    Trapped Electron

    Trapped Electron occur on the surface and bulk, which might be caused Crystal Dislocation.

    Source terminal

    Drain terminal

    Trapped Electrons block Drain current flow and Rdson rises.

    The number of Trapped Electrons has Vds correlations. High electronic fields capture Trapped Electron easily.

    RDSon rises

    Static Condition (No switching)

    Reproduce same Rdson value as

    datasheet

    Dynamic Condition(Switching Operation)

    Drain voltage waveform

    7

  • D

    S

    GSK

    Si‐substrate

    AlGaN

    GaN

    DrainSource

    Buffer layer

    p-GaN

    Gate

    X-GaN Current Collapse Countermeasure – HD-GIT

    General method i.e. process countermeasure, reaches about 500V, but not enough. HD-GIT structure injects Hole and eliminate Trapped Electron immediately.

    Approach 1 Reduce Compressive Strain to minimize Crystal Distortion

    Approach 2

    Fine tuning Super-lattice Buffer. Fine tuning GaN epitaxial growing. AlN

    AlGaN

    GaN epitaxial

    Si(111) substrate

    GaN/AlNSuper-lattice Buffer

    CompressiveStrain

    Reach physical limit for above 500V. No way to eliminate Crystal Dislocation by process approach.

    Panasonic unique structure HD-GIT: Hybrid-Drain-embedded GIT (HD-GIT)

    General method

    Panasonic Original method

    Release Trapped Electrons By Hole(+) injected from Drain

    Perfectly solved 850V and above Drain voltage(V) D

    ynam

    ic R

    on (a

    .u.)

    【Current collapse characteristics】

    Approach2

    Approach1 No

    collapse

    2nd Drain as similar to gate structure is automatically turn on during the switching period.

    8

  • D

    S

    GSK D-HTOL: High-Temperature Operation Lifetime

    X-GaN has no Dynamic Rdson degradation, no breakdown, under D-HTOL test up to 3600 hours.

    Test items Test conditions Test standard Result

    HTOL test Vds=480V, Id=10A, f=6.6kHz, Ton=7.7us, 5000puls, Ron measure=4.5us 3600h

    Beyond-JEDEC (X-GaN origin) Pass

    DUT: PGA26E19BA

    D-HTOL test Aging result of Dynamic Rdson

    PGA26E19BA N=3

    Don’t observe Dynamic Rdson for 3600h under D-HTOL test. HD-GIT, current collapse counter measure, works well to keep GaN dynamic operation lifetime.

    9

  • D

    S

    GSK Robust Design – Gate transient

    X-GaN adapt resistive contact Gate structure and advantage for breakdown. GIT has robust Gate for voltage rise by external noise.

    Conventional X-GaN GIT: Gate Injection Transistor

    Structure

    Gate connection Schottky Connection Resistive Connection

    Gate Current Characteristic

    No current flow until breaking Current flow Keep safety Gate voltage.

    Gate Breakdown Voltage Control Gate Current Control Gate

    Normally off structure by P-GaN gate

    Normal Operation Absolute Maximum

    >5mA 50mA 1.5A

    Peak

    Wider Margin

    7V 6V

    Normal Operation Absolute Maximum

    No Margin

    10V

    Peak

    i-GaN

    i or n-AlGaNS D

    G

    p-typegate

    10

  • D

    S

    GSK

    11

    1.Composition of Panasonic X-GaN 2. X-GaN gate design theory 3.X-GaN advantage 4.X-GaN application

  • D

    S

    GSK GaN design challenges: Low Vth

    Vth=1.2V

    GaN Vth is much lower than SJMOS.

    Need special Driver IC?

    Need special Driver Design?

    No

    Yes To maximize GaN benefit. To adapt to GaN specific device characteristics

    12

  • D

    S

    GSK Low Vth courses False Firing

    CopperL/F

    ResinAu

    L/F

    GaN Die

    断面図 Source Drain

    All terminals has inherence stray inductance by wiring.

    Silicon GaN

    Switching speed Slow Fast

    Vth High; 3.5V Low; 1.2V

    False firing Low risk High risk

    Equivalent Circuit with Stray L

    ID

    vs VGS vgs

    VGS

    ID

    vs

    vgs

    ON Off

    Rapid current change

    Voltage drops by Stray L

    false firing

    false firing

    GaN has low Vth and able to switching very fast. Source pin stray L create the voltage drops at electrode of die even supply VGS=0V strictly. Then Gate turn on and courses False Firing.

    13

    0.7nH

    2.9nH

    1.3nH

    Vth=1.2V

  • D

    S

    GSK Kelvin Source Contact sloves False Firing by stray L

    Source2 Source1

    Drain

    Gate Driver

    By applying a voltage between the source on the sense side and Gate, even if the Source on the Power side fluctuates due to the influence of the parasitic inductance, control can be stably performed.

    Kelvin Source is necessary to prevent False Firing by Low Vth

    VGS

    ID

    Vs

    vgs

    ON Off

    Rapid current change

    Voltage drops by Stray L

    Eliminate false firing

    Eliminate false firing

    Equivalent Circuit with Stray L

    ID

    vs VGS vgs

    =vgs

    14

    Vth=1.2V

  • D

    S

    GSK GIT characteristics 1 – Current Control Gate -

    Panasonic unique structure GIT requires constant gate current to keep turn on.

    ON

    Drain Current

    GaN

    AlGaN

    Drain Source

    Gate

    pGaN

    5mA

    More than 5mA required to keep turn on.

    Rdson Minimum Gate current to keep ON

    PGA26E07BA 56mohm 5mA

    PGA26E19BA 140mohm 2mA

    PGA26E34HA 280mohm 1mA

    The minimum Gate current depend on device size

    15

  • D

    S

    GSK GIT characteristics 2 – Current Control Gate -

    Panasonic unique structure GIT requires constant gate current to keep turn on.

    5mA

    More than 5mA required to keep turn on.

    5mA

    GaN p-n junction V/I characteristic

    Appear approximate 2.7V at Gate – Source.

    16

  • D

    S

    GSK GIT characteristics 3 – Current Control Gate -

    Panasonic unique structure GIT requires constant gate current to keep turn on.

    2.7V

    Apply more than 2.7V at Vgs to keep turn-on.

    Voltage control method for GIT

    3.0V +/- 0.3V

    Driver Vdd voltage design with tolerance 3.0V +/- 0.3V. Gate current fluctuate up to 50mA or more. Create big gate current loss and exceed absolute maximum.

    50mA

    Not recommended

    Require narrow driver Vdd tolerance to allow Voltage control method.

    17

  • D

    S

    GSK GIT characteristics 4 – Current Control Gate -

    Panasonic unique structure GIT requires constant gate current to keep turn on.

    Rig

    Vdd

    Driver

    50mA > Irg = (Vdd-Vgsf)/Rig > 5mA

    The value of the Rig set between 5mA to 50mA.

    Vdd:Driver supply voltage Vgdf:Gate-Source voltage approx. 2.8V@Tj=125℃

    5mA

    18

  • D

    S

    GSK GIT characteristics 5 – Gate transient -

    Require transient Gate current for fast switching.

    Rig

    Vdd

    Igp = Vcc/Rgp < 1.5A

    Vcc:Driver power supply Vgp:Combined resistance of Rig and Rgon Vgdf:Gate-Source voltage approx. 2.8V@Tj=125℃

    Rgon Cs

    Qgp = Csx(Vcc-Vgsf) < 32nC

    Rgon determine transient Gate current for fast switching.

    Rig is too big to provide transient Gate current for first switching.

    Cs shuts off the transient current during static period.

    The value of the Rgon set below 1.5A

    The value of the Cs set below 32nC of gate charge Qgp

    Vgs

    Ig

    Vth

    Vgs

    Ig

    19

  • D

    S

    GSK GIT characteristics 6 - absolute maximum voltage for gate -

    No positive voltage limit. 10V limit for negative voltage by surge protection diodes.

    Voltage limit is not specified as long as it is within the absolute maximum rating, IG, IGP and QGP

    Vgs

    Ig

    Vth

    Large current IGP

  • D

    S

    GSK GIT characteristics 7 – Gate transient -

    Gate resistance Rgon control dV/dt through rate like Silicon.

    Turn off wave form Vds

    Turn on wave form Vds

    Rgon increase

    time

    Vds Tr, Tdon

    change

    Tf, Tdoff change

    Rgon increase

    time

    Vds

    GIT has Very simple dv/dt control method by external Rg like Silicon to prevent EMI issue.

    21

    Rig

    Vdd

    Rgon Cs

  • D

    S

    GSK GIT characteristics 8 - Mirror effect -

    Low Vth triggers False Firing by rising gate voltage causing mirror effect.

    Vdr

    Vgs

    Vds

    Vth

    Eliminate false firing

    In the high-speed switching operation of GaN, even if the gate capacitance is small, the Gate voltage rises due to the Miller effect, and the low Vth causes False Firing.

    Cs provides negative Gate voltage when Vgs OFF. Its prevent False Firing.

    Even if Vgs rises due to Miller effect, GaN can be protected from destruction due to False Firing by giving sufficient negative voltage not exceeding the Vth.

    22

    Rig

    Vdd

    Rgon Cs Vgs

    Ig

    Vdr Vds

  • D

    S

    GSK GIT characteristics 9 – Vth tolerance-

    The temperature dependence of X-GaN threshold voltage Vth is extremely small comparing with Silicon.

    Low Vth of GaN is an issue, but fortunately the temperature dependence is small, and it is not like Si as dramatically degrading Vth at high temperature.

    Less than 0.1V fluctuation

    23

  • D

    S

    GSK

    24

    1.Composition of Panasonic X-GaN 2. X-GaN gate design theory 3.X-GaN advantage 4.X-GaN application

  • D

    S

    GSK GaN bi-directional switching device

    X-GaN has same current capability to forward and revers mode conduction.

    Vgs 0V -1V -2V -3V -4V -5V

    25

  • D

    S

    GSK X-GaN reverse conduction mode

    Externally connect Gate and Source, Diode Connection, then conducts reverse with GaN diode VSD.

    X-GaN is pure GaN device and no parasitic, no body diode. Reverse current conducts by GaN diode connection mode.

    Vgs 0V -1V -2V -3V -4V -5V

    VSD=2.1V @Vgs=0V, Id=8A

    VSD=2.1V + Vgs (@Id=8A) Note: VSD is increase by Gate negative voltage Vgs.

    26

  • D

    S

    GSK Synchronous switching operation

    Synchronous switching operation reduce from Diode loss to Conductive loss.

    To minimize Diode loss, optimize dead time design, and Gate voltage close to 0V as much as possible.

    IL

    IL IL

    LX

    LX

    High side Low side

    Vcc

    Vcc

    VSD

    VSD=2.1V + vgs Diode loss Conductive loss

    Dead time

    Dead time High side

    ON High side ON

    Low side ON

    27

  • D

    S

    GSK Zero Recovery Loss

    X-GaN PGA26E07BA SJ-MOS

    VDSS 600V 650V

    Vth 1.2V 3.5V

    RDS(ON) 56mΩ 62mΩ

    Qg (RonQg)

    5.0nC (280mΩnC)

    64nC (3968mΩnC)

    Qrr 0nC 10000nC

    >1/10

    negligible

    Since GaN has no p-n junction like SJMOS, theoretically Qrr is Zero. This zero recovery characteristics has big advantage in hard switching topology.

    X-GaN PGA26E07BA SJ-MOS

    Vr 400V 400V

    frequency 10kHz 10kHz

    Qrr 0nC 10000nC

    Recovery loss 0W 40W

    Recovery Loss Pr Pr = f x Vr x Qrr

    f: frequency Vr: recovery voltage Qrr: recovery charge

    28

  • D

    S

    GSK Small Co(tr)

    Since GaN has no p-n junction like SJMOS, theoretically Qrr is Zero. This zero recovery characteristics has big advantage in hard switching topology.

    X-GaN PGA26E07BA SJ-MOS

    VDSS 600V 650V

    RDS(ON) 56mΩ 62mΩ

    Co(er) @400V 87pF 100pF

    Eoss @400V 7.2uJ 8.0uJ

    Co(tr) @400V 106pF 1100pF >1/10

    X-GaN

    SJMOS

    1/10

    Zero Volt Switching: ZVS

    GaN Drain Source Capacitance discharge period is 10 times faster than Si. GaN able switching 10 times faster in ZVS topology.

    29

  • D

    S

    GSK Vds transient

    X-GaN design Vds breakdown voltage 900V and above to guarantee 750V Vds transient. No longer necessary Avalanche proof technique as SJMOS.

    Si (P-N junction) has not high enough Vds breakdown voltage. Survive Vds transient by Avalanche proof technique. (Avalanche breakdown at 650V and Additional breakdown energy by parasitic resistance and transistor.)

    Breakdown Characteristic [Ids vs.Vds]

    Si X-GaN design Vds breakdown voltage Vds>900V, thanks to WBG. True device breakdown design, No need avalanche trick design anymore.

    GaN has no parasitic, can’t create Avalanche proof.

    Rating Item Symbol Values

    Unit Min. Typ. Max.

    Drain-source voltage (DC) VDSS - - 600 V

    Drain-source voltage (pulse) VDSP - - 750 V

    1000 900 800 700 600 Static

    500

    X-GaN

    Breakdown Vds > 900V A

    vala

    nche

    Bre

    akdo

    wn

    2

    4

    6

    8

    10

    750 Transient

    Vds [V]

    Id [A]

    Guarantee transient Vds>750V

    30

  • D

    S

    GSK

    31

    1.Composition of Panasonic X-GaN 2. X-GaN gate design theory 3.X-GaN advantage 4.X-GaN application

  • D

    S

    GSK GaN Application: PFC

    99 98 97 96 Efficiency [%] 95

    Driver

    AC110VAC240V

    AC110VAC240V

    Driver Driver

    Dual boost PFC

    Classic PFC

    Si

    GaN

    Miniaturization

    Small

    Large

    (Full bridge)

    (Semi Bridge)

    Smaller passive components by GaN high frequency operation.

    Totem Pole PFC (Bridgeless)

    Utilized GaN unique advantage Zero recovery characteristic.

    Miniaturization by higher frequency.

    Driver Driver

    AC110VAC240V

    32

    Zero Recovery advantage of GaN can realize the Totem Pole PFC and achieve efficiency of 99% or more

  • D

    S

    GSK GaN Application: LLC

    1M 250k Frequency [Hz

    Efficiency [%]

    500k 750k

    Miniaturization Small Large

    98

    97

    96

    95

    94

    99

    Si Limit

    GaN

    Si

    Further miniaturization by high frequency

    High Efficiency

    Small differentiation

    33

    X-GaN operates x10 faster than Si, because of its low Co(tr) characteristics. Device down sizing can be realized by miniaturization of peripherals by high frequency

    LLC

    Driver

    380V

    Driver

    12V

    L/S

    MCU

  • D

    S

    GSK GaN Application: AC-Adapter

    1M 250k Frequency [Hz]

    Efficiency [%}

    500k 750k

    94

    92

    90

    88

    86

    Active Clamp Fly-Back

    96

    >40 W/in3

    7-12 W/in3

    Active Clamp

    Si GaN

    Higher frequency

    Fly-Back

    1/3 to 1/4 smaller

    34

    X-GaN operates x10 faster than Si, because of its low Co(tr) characteristics. Device down sizing can be realized by miniaturization of peripherals by high frequency

  • D

    S

    GSK GaN Application: Inverter

    500 Output Power [W]

    Efficiency [%]

    1k 1.5k

    99

    98

    97

    96

    95

    100

    IGBT

    GaN Fewer losses by GaN zero recovery characteristic.

    30x68x12mm

    400W Servo Amp. Heat-sink-less

    Power Board

    Controller Board

    Heat sink less, 1/4 size against Si

    35

    Totally eliminate Recovery loss by X-GaN and reduce 60% losses. Enjoy heat-sink-less 400W motor driver.

    3 Phase Motor Driver

  • D

    S

    GSK GaN Application: Others

    36

    A set aiming for miniaturization and weigh-saving are required X-GaN adoption to enjoy benefits of zero recovery, fast switching characteristics.

    Class-D Audio Amplifire RF Power Supply for Plasma generator

    Wireless charge Others

    Transmitter

    Class-E

    Reciever

    Automotive AGV

    Consumer

    RFPower Supply

    Satellite

    Aircraft Automotive

  • D

    S

    GSK

    Thank you for your attention

  • 本書に記載の技術情報および半導体のご使用にあたってのお願いと注意事項

    (1) 本書に記載の製品および技術情報を輸出または非居住者に提供する場合は、当該国における法令、特に安全保障輸出管理に関する法令を遵守してください。

    (2) 本書に記載の技術情報は、製品の代表特性および応用回路例などを示したものであり、それをもってパナソニック株式会社または他社の知的財産権もしくはその他の権利の許諾を意味するものではありません。したがって、上記技術情報のご使用に起因して第三者所有の権利にかかわる問題が発生した場合、当社はその責任を負うものではありません。

    (3) 本書に記載の製品は、一般用途(事務機器、通信機器、計測機器、家電製品など)、もしくは、本書に個別に記載されている用途に使用されることを意図しております。特別な品質、信頼性が要求され、その故障や誤動作が直接人命を脅かしたり、人体に危害を及ぼす恐れの

    ある用途 - 特定用途(車載機器、航空・宇宙用、輸送機器、交通信号機器、燃焼機器、医療機器、安全装置など)でのご使用を想定される場合は事前に当社営業窓口までご相談の上、使用条件等に関して別途、文書での取り交わしをお願いします。文書での取り交わしなく使用されたことにより発生した損害などについては、当社は一切の責任を負いません。

    (4) 本書に記載の製品および製品仕様は、改良などのために予告なく変更する場合がありますのでご了承ください。したがって、最終的な設計、ご購入、ご使用に際しましては、事前に最新の製品規格書または仕様書をお求め願い、ご確認ください。

    (5) 設計に際しては、絶対最大定格、動作保証条件(動作電源電圧、動作環境等)の範囲内でご使用いただきますようお願いいたします。特に絶対最大定格に対しては、電源投入および遮断時、各種モード切替時などの過渡状態においても、超えることのないように十分なご検討をお願いいたします。保証値を超えてご使用された場合、その後に発生した機器の故障、欠陥については当社として責任を負いません。また、保証値内のご使用であっても、半導体製品について通常予測される故障発生率、故障モードをご考

    慮の上、当社製品の動作が原因でご使用機器が人身事故、火災事故、社会的な損害などを生じさせない冗長設計、延焼対策設計、誤動作防止設計などのシステム上の対策を講じていただきますようお願いいたします。

    (6) 製品取扱い時、実装時およびお客様の工程内における外的要因(ESD、EOS、熱的ストレス、機械的ストレス)による故障や特性変動を防止するために、使用上の注意事項の記載内容を守ってご使用ください。分解後や実装基板から取外し後に再実装された製品に対する品質保証は致しません。また、防湿包装を必要とする製品は、保存期間、開封後の放置時間など、個々の仕様書取り交わしの折に

    取り決めた条件を守ってご使用ください。

    (7) 本書に記載の製品を他社へ許可なく転売され、万が一転売先から何らかの請求を受けた場合、お客様においてその対応をご負担いただきますことをご了承ください。

    (8) 本書の一部または全部を当社の文書による承諾なしに、転載または複製することを堅くお断りいたします。

    No.010618