37
Page 1 hv (UV) hv (Vis.)

Page 1 hv (UV) hv (Vis.). Synthesis of spironaphthoxazine derivative having potential applications in Smart Polymers. Presented by: Sampath Weerasinghe

Embed Size (px)

Citation preview

Page 1

hv (UV)

hv (Vis.)

Synthesis of spironaphthoxazine derivativehaving potential applications in Smart Polymers.

Presented by : Sampath Weerasinghe

Supervised by: Dr. Thilini Gunasekara

Department of Chemistry,

University of Sri Jayewardenepura

18/02/2014

Page 3

What are Smart Polymers?

Learn and self-correct over time

Respond to external stimuli

Chen,M.; Wang,X.; Cheng,F. Light-driven mobile robot based on light-induced bending polymer film,

J. of Mech. Engineering Research, 2011,03,114

Smart polymerResponseExternal stimuli

pHHeatLight Stress

Chemicals

ShapeColour

SolubilitySol-to-gel transition

physical or chemical changes

Introduction

Page 4

Introduction

Photochromic polymer

Yu, Y.; Ikedaa, T., Alignment modulation of azobenzene-containing liquid crystal systems by

photochemical reactions. J. Photochem. and Photobiol. 2004, 5, 247–265.

hv

Photoresponsive chromophore Polymer system

Synthesis Incorporate

Page 5

Introduction

Spironaphthoxazine

Photoresponsive chromophore

Nishikiori, H.; Takamura, T.; Shimamura, S.; Fujii, T., Photochromic behavior of spironaphthoxazine in

metal ion-containing solutions, J. Photo.chem. Photo.biol. Chem. 2001, 222, 236-240.

CH3

N

CH3

CH3

N

O O

CH3CH3

N

CH3

N hv(UV)

hv(Vis)

CH3

N

CH3

CH3

N

O

1,3,3-Trimethylspiroindolinenaphthoxazine

O-

CH3CH3

C+

N

CH3

Nhv (UV)

hv (Vis.)hv (Vis)

hv (UV)

Page 6

Synthesise 1,3,3-Trimethyl-9’-

hydroxyspiroindolinenaphthoxazine pendant group which

could be used in future to develop novel smart polymers.

Research objectives

I.Develop and optimize simple synthesis pathway to produce

1,3,3-Trimethyl-9’-hydroxyspiroindolinenaphthoxazine.

II.Identify suitable purification methods.

III.Analyse and characterize the products.

Objectives

Page 7

Proposed synthesis pathway

Experimental methodology

OHOHOHOH

NO

CH3 CH3

N

N

O

CH3

OH

Step 1 Step 2

2,7-Dihydroxynaphthalene 2,7-Dihydroxy-1-nitrosonaphthalene

1,3,3-Trimethyl-9’-hydroxyspiroindolinenaphthoxazine

Page 8

Synthesis of 2,7-Dihydroxy-1-nitrosonaphthalene

Experimental methodology (step 1)

OHOH

1.00 g, 6.25 mmol

0.6M NaOH

15 ml

0 0C

0 0C

0 0C

NaNO0.43 g, 6.25 mmol

Conc. H2SO4

1.4 ml

Stir 1hlow temperature

Page 9

Analysis of the crude product 1

S – starting material R – reaction mixture

Mobile phase - 6 : 1, v/v mixture of Chloroform : Methanol

Results and Discussion (step 1)

R S

Stir for 1 hour

Page 10

Characterization of product 1 by GC-MS

Results and Discussion (step 1)

Gas chromatogram

4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.0012.00 13.0014.00 15.0016.00 17.00

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

900000

950000

1000000

1050000

1100000

1150000

1200000

1250000

1300000

1350000

1400000

1450000

T ime-->

Abundance

T IC: SJ P .GCMS_09.10.2013_CHEM_SAMPATH_P1H.D\ data.ms 3.939

Stir for 1 hour

Page 11

. +

. +

Results and Discussion (step 1)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 2100

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

Scan 150 (3.945 min): S J P .GCMS_09.10.2013_CHEM_SAMPATH_P1H.D\ data.ms (-136) (-)160.0

131.0

77.0 103.051.0

191.0145.9 207.8

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 2100

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

#30166: 2,7-Naphthalenediol160.0

131.0

77.0 103.051.0

29.0

131.0

OH OH

160.0

Mass Spectrum Stir for 1 hour

C+

Page 12

Analysis of the crude product 2

Results and Discussion (step 1)

S R

S – starting material R – reaction mixture

Mobile phase - 6 : 1, v/v mixture of Chloroform : Methanol

Stir for 2 hours

Page 13

Characterization of product 2 by GC-MS

Results and Discussion (step 1)

Gas chromatogram

4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.000

50000

100000

150000

200000

250000

300000

350000

T ime-->

Abundance

[_GCMS_SMT]*T IC: SJ P .GCMS_09.10.2013_CHEM_SAMPATH_P2H.D\ data.

3.259

3.882

3.974

4.500

5.553

6.543

8.139

Stir for 2 hours

Page 14

. +

. +

Results and Discussion (step 1)

Mass Spectrum

60 80 100 120 140 160 180 200 220 240 260 2800

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

m/ z-->

Abundance

Scan 602 (6.531 min): S J P .GCMS_09.10.2013_CHEM_SAMPATH_P2H.D\ data.ms (-596) (-)189.0

172.0

143.9

77.0

102.1

51.0

119.0209.0 263.1 281.0

OHOH

NOOH

C+

NO

OHOH C+

OH189.0

172.0

159.0

144.0

Stir for 2 hours

Page 15

Characterization of product 2 by IR spectrum

Nishikiori, H.; Takamura, T.; Shimamura, S.; Fujii, T., Photochromic behavior of spironaphthoxazine in metal

ion-containing solutions, J. Photo.chem. Photo.biol. Chem. 2001, 222, 236-240.

Results and Discussion (step 1)

1301

.98

3143

.54

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

OH

NOOHOH

NO

Page 16

Experimental methodology (step 2)

Synthesis of 1,3,3-Trimethyl-9’-hydroxyspiroindolinenaphthoxazine

1.6 ml (drop vice)

1,3,3,-trimethyl-2-methyleneindoline

2,7-dihydroxy-1-nitrosonaphthalene

1.88 g, 6.210mmol

CH3 CH3

N

CH3

CH2

OHOH

NO

anhydrous CH3OH

50 ml

OHOH

NO

CH3 CH3

N

N

O

CH3

OH

Step 2

Page 17

Experimental methodology (step 2)

1,3,3,-trimethyl-2-methyleneindoline

 

2,7-dihydroxy-1-nitrosonaphthalene in anhydrous methanol

Anhydrous Silica N2 gas

Page 18

Purification of crude product by column chromatography

Determination of solvents/ solvent system for column chromatography

Results and Discussion (step 2)

Solvent systems

Ratio of volume

used in the solvent system

1 Methanol 1

2 Ethanol 1

3 Ethyl acetate : Hexane 3 :1

4 Ethyl acetate : Hexane 1 : 1

5 Ethyl acetate : Hexane 1 : 2

6 Ethyl acetate : Hexane 1 : 4

5 6

Rf–0.90

Rf–0.83

Rf–0.91

Rf–0.40

Page 19

Characterization of the purified product

Results and Discussion (step 2)

Gas chromatogram

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

T ime-->

Abundance

T IC: SJ P .GCMS_27.11.2013_CHEM_SAMPATH_PR 131107.D\ data.ms11.836

20.224

Page 20

Characterization of the purified product

Results and Discussion (step 2)

Mass Spectrum

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3800

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

Scan 1530 (11.842 min): SJ P .GCMS_27.11.2013_CHEM_SAMPATH_PR131107.D\ data.ms (-1506) (-)149.0

57.0279.1

113.183.1

180.0 221.0 390.4249.1 361.4333.1

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3800

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

#119596: 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester149.0

57.0

113.0279.083.029.0

180.0

1,2-Benzenedicarboxylic acid

O

OHOHO

Page 21

Characterization of the purified product

Results and Discussion (step 2)

Gas chromatogram

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

T ime-->

Abundance

T IC: SJ P .GCMS_27.11.2013_CHEM_SAMPATH_PR 131107.D\ data.ms11.836

20.224

Page 22

. +

Results and Discussion (step 2)

Mass Spectrum

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 3600

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

Scan 2994 (20.219 min): S J P .GCMS_27.11.2013_CHEM_SAMPATH_PR 131107.D\ data.ms (-2870) (-)159.1

344.1

115.1 185.1314.177.0

286.1256.151.1 228.1 368.4

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 3600

1000

2000

3000

4000

5000

6000

7000

8000

9000

m/ z-->

Abundance

#29912: 1H-Indole, 5,6,7-trimethyl-144.0

39.0115.065.0

91.0

CH3 CH3

N

N

O

CH3

OH

344.1CH3

C+

N

N

O

CH3

OH

329.2

CH+

N

N

O

CH3

OH

314.1

CH3 CH3

CH+

N

CH3

159.1

CH3

CH+

N

CH3

144.1

Page 23

Characterization of the purified product

Nishikiori, H.; Takamura, T.; Shimamura, S.; Fujii, T., Photochromic behavior of spironaphthoxazine in metal ion-

containing solutions, J. Photo.chem. Photo.biol. Chem. 2001, 222, 236-240.

Results and Discussion (step 2)

IR spectroscopy

743.

46

829.

44

1356

.19

1627

.25

3064

.25

3313

.51

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

OH

C-O

C=N

=C-H

CH3 CH3

N

N

O

CH3

OH

Page 24

Results and Discussion (step 2)

Characterization of the purified product

Nishikiori, H.; Takamura, T.; Shimamura, S.; Fujii, T., Photochromic behavior of spironaphthoxazine in

metal ion-containing solutions, J. Photo.chem. Photo.biol. Chem. 2001, 222, 236-240.

UV-Vis spectrophotometry

Page 25

hv (UV)

hv (Vis.)

Page 26

Optimized the 1st synthesis step and successfully able to

synthesize 2,7-Dihydroxy-1-nitrosonaphthalene.

Peaks at 189.0, 172.0, 159.0 and 144.0 in the GC-MS

spectrum, we can conclude that the targeted product 2,7-

Dihydroxy-1-nitrosonaphthalene was successfully

synthesized.

IR spectroscopy, UV-Vis spectroscopy and Gas

Chromatography- Mass Spectrometry the final product was

characterized and identified.

Conclusion

Page 27

From the peaks at 344.1, 329.2, 314.1, 299.1, 172.1, 159.1,

144.1 in the GC-MS spectrum, we can conclude that the

targeted product 1,3,3-Trimethyl-9’-

hydroxyspiroindolinenaphthoxazine was successfully

synthesized.

Finally, we can confirm that we have successfully able to

synthesised a photo and electro sensitive chromophore.

Conclusion

Page 28

NMR spectrum analysis, can confirm the structure of 1,3,3-

Trimethyl-9’-hydroxyspiroindolinenaphthoxazine.

Carry out photochromic studies of 1,3,3-Trimethyl-9’-

hydroxyspiroindolinenaphthoxazine.

Incorporate into a polymer matrix to develop a novel smart

polymer material.

Future work

Page 29

Analytical thinking

Creativity

Problem solving

Technical skills

Patience

Skills developed

Page 30

Memories of my research

Page 31

Dr. Thilini Gunasekara, Lecturer, Department of Chemistry

Prof. P. M. Jayaweera, Head - Department of Chemistry

Dr. S. D. M. Chinthaka, Coordinator of Central Instrumentation Facility

Mr. J. G. R. P. S. Ubesena, Central Instrumentation Facility

Dr. U. Weerasuriya and Dr. Sujeewa at University of Texas at Austin,

USA for their precious support of this research.

Dr. M. N. Kaumal and Dr. Ashani Thilakarathne Department of Chemistry,

University of Colombo.

Mr. W. Senadeera and other non academic staff.

My parents, colleagues and to my friends.

Acknowledgement

Page 32

Page 33

Appendix

IR spectrum of 2,7-Naphthalenediol

796.

79

829.

22

882.

13

1149

.17

1180

.48

1183

.31

1368

.46

1465

.88

1518

.90

1615

.8930

51.9

9

3181

.63

3284

.90

40

45

50

55

60

65

70

75

80

85

90

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 34

Appendix

UV-Vis spectrum of literature reported 1,3,3-Trimethyl-9’

hydroxyspiroindolinenaphthoxazine

Nishikiori, H.; Takamura, T.; Shimamura, S.; Fujii, T., Photochromic behavior of spironaphthoxazine in

metal ion-containing solutions, J. Photo.chem. Photo.biol. Chem. 2001, 222, 236-240.

Page 35

The oven temperature was initially programmed at 200 0C and hold for

5minutes. Then the temperature was increased at the rate of 100Cmin-1 to

2800C and hold for 20minutes.

Page 36

O

OHOHO

Page 37

CH3 CH3

N

CH3

CH2

CH3 CH3

N

N

O

CH3

OH

OH

ON

OH