55
Package Trends for Today’s and Future mm-Wave Applications Maciej Wojnowski, Klaus Pressel, Grit Sommer, Mario Engl

Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Embed Size (px)

Citation preview

Page 1: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Package Trends for Today’s and Future mm-Wave ApplicationsMaciej Wojnowski, Klaus Pressel, Grit Sommer, Mario Engl

Page 2: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 2

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 3: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 3

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 4: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 4

Introduction

Cost &Time toMarket

Low/HighPower

Reliability & Failure Analysis

Size

ThermalPerformance

Functionality(System Integration)

Speed

Increasing industrial demands

Page 5: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 5

P-DIP

P-TQFP

BGA

Technology

P-TSOP I/IIChip ScalePackage

Chip ScalePackage

SMD

1st

EvolutionTHT

(Peripheral)Grid Array

2nd

EvolutionSMD

(Area)High performanceStacked Chips /3D PackagingWafer Level Packaging

3rd

Evolution

System IntegrationSystem Integration

Flip-ChipFlip-Chip

FunctionalityFunctionality

PackingSize

PackingSize

Pack

age

Dow

nsiz

ing

Pack

age

Dow

nsiz

ing

Electrical Performance

Thermal Performance

Pin Count

Modules(SoB) System in Package

SiP/SoP3D-Packaging

- in Package- on Board

4th

Evolution

22 mm

9,34 mm

13 mm

Package EvolutionUntil Today and Towards Tomorrow

Page 6: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 6

Packaging – Growing Challenges

IC Chip – Peripheral Pad Pitch

(100 30 µm)

Customer Board

(1000 500 µm)

in special cases400µm, but high board cost!!

Frontend Waferfab

Customer

Environmental protection

Electrical interface

Thermal interface

Size of component

Cost

Reliability & Failure Analysis

Shielding

RF-Performance

Signal interface (Sensors)

Interconnect Gap

Backend Production

Package as Interposer

Bridging the

Interconnect Gap

Page 7: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 7

Semiconductor Development Impact on Packaging

Combining SoC and SiP: Higher Value Systems

More than Moore: Diversification

BiochipsSensorsActuators

HVPowerAnalog/RF Passives

Information Processing

Digital contentSystem-on-chip

(SoC)

Interacting with people and environment

Non-digital contentSystem-in-package

(SiP)

Beyond CMOS

2008

32nm

Mo

re M

oo

re:

Min

iatu

riza

tio

n

Base

lin

e C

MO

S:

CP

U,

Mem

ory

, Log

ic

130nm

90nm

65nm

22nm...V

45nm

LogicDRAMFlash

Wireless Analog/RF Automotive

Medical

Page 8: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 8

stacked

side-by-side

Modulespassive integration

MCM

stacked die

>2 dies

WB/WB

FC/ WB

stacked package

F2F µ-FlipChip

embedded

Si thru hole

Pack. on Pack.

Technology for System in Package: Infineon’s Technology Tree for BGA type

eWLB

Pack. on SiP

Increasin

g in

tegratio

n d

ensity

>1 die

Page 9: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 9

Trends in Packaging: System-in-Package

Laminate based BGA

Embedded Wafer Level BGA

impedance-matched low loss TLs, integrated passives (L, C)

Today

Tomorrow

Form Factor Form Factor Interconnect Size, CostInterconnect Size, Cost

L C

Page 10: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 10

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 11: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 11

THD through hole DIP, TO 220

Pitch: 2.54mm

SMD gull wingSO, QFP

DSO-Pitch: 1.27mmSSOP-Pitch:0.65...0.5mmQFP-Pitch.0.8...0.65...0.5...0.4mm

SMD solder ballsBGA

Pitch:1.5...1.27...1.0mm

0.8…0.65...0.5mm[0.4…0,3]

SMD leadlessVQFN, TSLP

Pitch:0.8, 0.65, 0.5 mm[0,4; staggered lands]

Package Overview/Evolution

Small OutlineQuad Flat Package

Ball Grid ArrayDual Inline Plastic PackageVery thin Quad Flat No LeadThin Small Leadless Package

Page 12: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 12

ProcessesThinning and DicingDie attachWire bondingFlip chip in PackageMoldingThin film technologyWLP processes…

Physics of PackageSignal IntegrityRF capability Heat dissipationReliability PhysicsFA incl. adhesionMiniaturisationPower

PackagePlatformsPackage

Platforms

Methods/CCNCo-design Simulation&ModelingBDRTestKGDStandards

Materials&SubstratesGreen Laminate substrates (xBGA)Leadframes (TSLP, UFLGA, VQFN, ...)

LeadlessPackage

s

Laminate WLB

System in Package

LeadframePackages

Technology Development & Package Development

Integration enabler

QFPDSO

TSSOP

QFN BGA/SGA/LGARF-Modules

SG-WLBPG-eWLB

Page 13: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 13

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 14: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 14

The Leadless Package Concept TSLP

TSLP – Thin Small Leadless Package

Leadless package based on a leadframe concept

Low to medium pin count (< 80 I/Os)

Green package

Wirebond and Flip-Chip capabilities

Main advantages

Small dimensions (few mm)

Short interconnects

Excellent RF capabilities

Improved thermalperformance

Page 15: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 15

1. Die Bonding

2b. Wirebonding

3. Molding4. Copper Removal and Final Plating

6. Electrical Test5. Singulation

2a. Flip-Chip BondingCu Leadframe

DieNiAu Contact

50 µm

Au - Layer

Ni - Bump

The Leadless Package Concept TSLP

Page 16: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 16

Flexible leadframe concept

Typical padsizes range from 100 µm to 300 µm

Nearly arbitrary pad geometries

¬ Circular

¬ Rectangular

¬ …

Improved thermal performance

Power / GND supply

The Leadless Package Concept TSLP

Page 17: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 17

Wirebond Interconnects – Wire LengthVariation

0 10 20 30 40-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S11

[dB

]

Frequency [GHz]

l = 1000 µm l = 600 µm l = 300 µm

0 10 20 30 40-6

-5

-4

-3

-2

-1

0

S21

[dB

]

Frequency [GHz]

l = 1000 µm l = 600 µm l = 300 µm

Page 18: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 18

Wirebond Interconnects – Padsize Variation

0 20 40 60 80-50

-40

-30

-20

-10

0

S11

[dB

]

Frequency [GHz]

w = 100 µm w = 200 µm w = 300 µm

0 20 40 60 80-6

-4

-2

0

S21

[dB

]

Frequency [GHz]

w = 100 µm w = 200 µm w = 300 µm

Page 19: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 19

Flip-Chip Interconnects – Padsize Variation

0 20 40 60 80-60

-50

-40

-30

-20

-10

0

S11

[dB

]

Frequency [GHz]

w = 300 µm w = 200 µm w = 100 µm

0 20 40 60 80-3

-2

-1

0

S21

[dB

]

Frequency [GHz]

w = 300 µm w = 200 µm w = 100 µm

Page 20: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 20

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 21: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 21

WLB Basic PlatformsFan-In / Fan-Out

WLB Fan-Inrestricted to chip size

WLB Fan-Out (eWLB)offers fan-out possibility

SG

-UFW

LB-4

9

WLBs Fan-In are chip size packagesAll balls must fit UNDER chip shadow

• Number and pitch of Interconnects must be adapted to the chip size

• Fan-in WLBs are available on market

WLB without WLB withredistribution layer

Package design of Fan-Out Packageis INDEPENDENT from chip size:

• Fan-out area adaptable to needs• No restrictions for ball pitch • Fan-Out WLB actually strongly in

the focus of the market

eWLB

Test

Veh

icle

: Chip size: Package size

Page 22: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 22

Schematic Process Flow for eWLB Package

M. Brunnbauer, et al., “Embedded Wafer LevelBall Grid Array (eWLB),” 8th EPTC, Dec. 2006.

Page 23: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 23

Transmission Lines in eWLB Techology

CPW

W/S = 87/20 µm

Re Z0 = 49.2 Ω (Mold)

Re Z0 = 42.8 Ω (Si 1-100 Ωcm)

TFMSL

W/T = 20/3 µm

H = 10 µm

Re Z0 = 49.2 Ω (BCB)

MSL

W/T = 317/35 µm

H = 130 µm

Re Z0 = 46.9 Ω (RO3003) RO3003

Si 1-100 Ωcm

Mold (eWLB)/Si 1-100 Ωcm

BCB

Page 24: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 24

Transmission Lines cont.

Excellent performance of TMLs manufactured in eWLBInsertion loss 0.1 dB/mm @ 10GHz, 0.25 dB/mm @ 60GHz

eWLBeWLB

Measured performance

Page 25: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 25

Determination of charactersiticimpedance of the CPW

Transmission Lines cont.

Line Parameters RLCG

R ~ √f G ~ ωCtanδ

tanδ = 0.017(data-sheet = 0.026)

Page 26: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 26

Separation of the electrical effects of the conductors and dielectrics

where

Transmission Lines cont.

Further improvement of the performance of thetransmission lines by applying low-loss thin-film dielectrics

αC/αD = 90% αC/αD = 70%

Page 27: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 27

Layout parameters

Measured performance

Single-Layer Spiral Inductors

Page 28: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 28

Single-Layer Spiral Inductors cont.

Measured performance

Inductors in eWLB offer significantly better performancecompared to inductors in standard on-chip technologies

Page 29: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 29

MIM/Interdigital Inductors

MIM capacitors

Interdigital capacitors

Page 30: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 30

MIM/Interdigital Inductors cont.

Measured Performance

Further improvement of the quality factor of theintegrated capacitors by using low-loss thin-film dielectrics

Page 31: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 31

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 32: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 32

Via hole Dielectric layer

Silicon IC Die Metal layer (Cu)

µFC interconnect

Standard Solder Ball

More fan out WLBs : Silicon Carrier Concept

Passive Si carrier with regular grid of TSVHigh integration density (Wafer technology for RDL)Passive integration of L and CHigh reliability interconnects IC and carrier (CTE match)Low cost concept(Standard circuit dies, cost optimized carrier concept)

Macro porous silicon

Page 33: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 33

Embedded Passives in Si Low Cost Technology

No Resistor component in focus due to costs (missing specific material)

Inductor Capacitor

Resistor

Planar L using of RDL for loops

Si through hole via for inductor loops

C = 35pF/mm2Q = 500 – 2000Fres= 1-20 GHz

MIM Caps using RDL for plates

Trench Caps using Si – trough holes

C = 3000pF/mm2Q < 1000Fres < 10 GHz

L = 0.5 − 35 nHQ = 20 − 25Fres = 1 − 35 GHz

Page 34: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 34

Measurement

HFSS Model

Coplanar Waveguide (CPW) over TSVs

Floating TSVs Grounded TSVs

Gnd

Page 35: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 35

TFMSL and CPW over Floating TSVs

Influenceof TSVs

Influence of TSVs

Excellent performance of TMLs manufactured in SCInsertion loss 0.1 dB/mm @ 10GHz, 0.25 dB/mm @ 60GHz

Page 36: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 36

Single-layer inductors over floating TSVs

Double-layer inductors over floating TSVs

Single/Double-Layer Spiral Inductors

The inductors in SC offer significantly better performancecompared to inductors in standard on-chip technologies

Page 37: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 37

Single/double-layer inductors over floating TSVs vs. grounded TSVs

Influence of Floating/Grounded Configuration

Single-layer spiral inductor of L = 2.0 nH

Groundingof TSVs

Influenceof TSVs∆Q = 12

Page 38: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 38

3D Spiral Inductor

The low quality factor is caused by the losses for thecurrents induced in TSVs distributed around the windings

Page 39: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 39

3D inductors over floating TSVs vs. grounded TSVs

Influence of Floating/Grounded Configuration

Groundingof TSVs

Influenceof TSVs∆Q = 15

3D spiral inductor of L = 5.6 nH

Page 40: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 40

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 41: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 41

17 GHz WLAN Receiver

Fully assembled in TSLP-24

Package dimensions 3.5 mm x 3.5 mm

Package height 400 µm

Wirebond interconnect technology

Au wirebonds

500 µm wirelength at critical RF output

Approx. 400 pH parasitic inductance

Inductance of the wirebonds used as external impedance matching network

Page 42: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 42

17 GHz WLAN Receiver

400 µm

300 µm

Mold CompoundChip

Rogers RO4003 Substrate

Ni-Pad

400 µm

300 µm

Mold CompoundChip

Rogers RO4003 Substrate

Ni-Pad

Polished cut image

Evaluation board

Page 43: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 43

17 GHz WLAN Receiver

Measured gain

Two-tone measurement

Page 44: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 44

Fully assembled in TSLP-24

Package dimensions 3.5 mm x 3.5 mm

Package height 400 µm

Total power consumption of 2 W

Flip-Chip interconnect technology not possible

Wirebond technology and die-attach to leadframe forefficient thermal management

Wirebond interconnect technology

Au wirebonds

300 µm wirelength at critical RF output

250 pH parasitic inductance

80 GHz Voltage Controlled Oscillator

Page 45: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 45

80 GHz Voltage Controlled Oscillator

Page 46: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 46

80 GHz Voltage Controlled Oscillator

80 GHz Output80 GHz Output

2.4 GHz Output2.4 GHz Output

19.125 GHz Output19.125 GHz Output

Page 47: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 47

5.6 dBm81.888 GHz5V

5.83 dBm81.536 GHz4V

6.4 dBm81.088 GHz3V

6.67 dBm80.384 GHz2V

5.75 dBm79.136 GHz1V

5.45 dBm75.07 GHz0V

Output PowerfVCOVTUNE

Vss = 5.7 V

(Core temp ≈ 100°C)

Vss = 6 V

(Core temp ≈ 100°C)

6.11 dBm81.664 GHz5V

6.47 dBm81.31 GHz4V

6.92 dBm80.85 GHz3V

6.92 dBm80.128 GHz2V

6.11 dBm78.848 GHz1V

5.99 dBm74.656 GHz0V

Output PowerfVCOVTUNE

80 GHz Voltage Controlled Oscillator

Page 48: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 48

77 GHz SiGe Mixer

Chip size 550 × 550 µm2

Gain G = 21.4 dB @ 77 GHz

Noise Figure NFSSB = 11.8 @ 77 GHz

Page 49: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 49

Package Design for 77 GHz SiGe Mixer

Manufactured package family

Package size 2.5 × 1.5 mm²and 2.0 × 1.5 mm²

Full surface capability

Standard pitch 0.5 mm

Package P1X

extremely short RF and LO signal paths (about 100 µm)

Package P2X

longer signal paths (about 360 µm)

Three different RDL metallization profiles

Page 50: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 50

77 GHz SiGe MixerGain and Noise Figure Measurements

Page 51: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 51

TSV - RF Demonstrator on RF Test Board

Fully functional & fully programmableRX & TX chain fully functionalVCO locks on all channelsKey RF parameters within spec limitSpurious performance need improvementRemark:No design of application optimizationwas done for the Si Carrier Demonstrator

Page 52: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 52

TransceiverSi Carrier

2 Layer RDL

1st Cu RDL Layer2st Cu RDL Layer

DielectricRDL VIA

µ-Bump 50 µm

FC Ball 250 µm

SiliconCu-Alloy Si-Through Contacts Copper

TSV - RF Demonstrator : Cross Section

Dimensions: 7,5mm x 8,0 mm

Page 53: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 53

Outline

Introduction

Package Overview

Thin Small Leadless Package (TSLP)

Embedded Wafer-Level Ball Grid Arry (eWLB)

Through Silicon Vias (TSV)

Experimental Results

Conclusion

Page 54: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package

Page 54

Conclusion

Thin Small Leadless Package

Low cost solution based on leadframe concept

Suited for low pin count applications

Good RF performance for dedicated applications

Embedded Wafer-Level Ball Grid Array

Excellent RF capabilities

High pin count

Passive device integration capabilities

Through Silicon Vias

High interconnect density

Passive device integration capabilities

Page 55: Package Trends for Today’s and Future mm-Wave Applications · PDF filePackage Trends for Today’s and Future mm-Wave Applications ... Package Overview Thin Small Leadless Package