Author
others
View
0
Download
0
Embed Size (px)
Low Noise Amplifier(LNA)
⇒Always working
⇒LNA power reduction is must for low power transceiver
Daiki Oki, Satoru Kawauchi, Li CongBing, Masataka Kamiyama,
A Power-Efficient Noise Canceling Technique
Using Signal-Suppression Feed-forward for Wideband LNAs
Department of Electronic Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu 365-8515, Japan † Sanyo Semiconductor Co., Ltd.
Seiichi Banba †, Toru Dan †, Nobuo Takahashi †, Koji Sakata †, Haruo Kobayashi, Nobukazu Takai
Basic Noise Cancelling Technique
Power increase by Av.c operation
Division of 𝑹𝒇
Suppress input signal of Av.c (vA)
Power reduction of Av.c
Proposed Solution (Signal Suppression Technique) Research Goal
Noise Cancelling Technique
Signal Suppression
low noise and low power LNA. Realize
Proposed Noise Cancelling Technique Noise, Distortion Analysis of Proposed LNA
Performance Tradeoff
52
53
54
55
56
57
58
0 10 20 30 40 50 60
Rf2=0Ω
Rf2=10Ω
Rf2=20Ω
Rf2=30Ω
Rf2=40Ω
Rf2=50Ω
Signal Suppression at Noise Cancelling Amp
Power reduction of Av.c
Noise cancellation Av.c =𝑹𝑺 + 𝑹𝒇𝟏 + 𝑹𝒇𝟐 𝑹𝑺 + 𝑹𝒇𝟐 𝜸𝒈𝑴𝒊 + 𝑹𝒇𝟐
𝑹𝑺 + 𝑹𝒇𝟐𝟐
𝜸𝒈𝑴𝒊 + 𝑹𝒇𝟐
Distortion cancellation Av.c =𝑹𝑺 + 𝑹𝒇𝟏 + 𝑹𝒇𝟐
𝑹𝑺 + 𝑹𝒇𝟐= 𝟏 +
𝑹𝒇𝟏
𝑹𝑺 + 𝑹𝒇𝟐
Av.c = Noise cancelation point 𝑹𝒇𝟏 + 𝑹𝒇𝟐 = 𝒄𝒐𝒏𝒔𝒕
Optimal Av.c
𝐴𝑣,𝑐 =𝑔𝑀2𝑔𝑀3
Proposed Circuit for Simulation Performance Tradeoff
Simulation when Rf2=20Ω
・This work provides optimal tradeoff in between NF and power
in wide-band LNA.
⇒By adjusting feedback resistor Rf2.
・SPECTRE simulation with 90nm CMOS has proved
noise cancelling.
low power.
distortion cancellation.
good frequency characteristics with Rf2=20Ω
LNA frequency characteristics
Little influence by 𝑨𝒗,𝒄
Intro
du
ctio
n
Pro
po
sed
Circ
uit
Sim
ula
tion
Summary
Av,c=4.83 (noise cancelling point)
NF: 3.25dB Power : 8.23mW IIP3 : -2dBm
⇒Low power and low noise.
Av,c=6 (distortion cancelling point)
NF : 3.36dB Power : 9.87mW IIP3 : -1.53dBm
⇒Only small improvement of IIP3,
high power.
time(𝐧𝐬)
TSMC 90nm CMOS parameters
0
1
2
3
4
5
6
0
2
4
6
8
10
12
14
16
0 10 20 30 40 50
NF
[dB
]
Pow
er[m
W]
Rf2[Ω]
Av.c vs power, NF
PowerNF
-8
-7
-6
-5
-4
-3
-2
-1
0
1 2 3 4 5 6 7 8 9 10
IIP
3[d
Bm
]
Av.c
Av.c vs IIP3
0
1
2
3
4
5
6
7
8
9
10
1 2 3 4 5 6 7 8 9 10
NF
[dB
]
Av.c
Av.c vs NF
Rf2 = 10Ω
Distortion cancellation point
Input frequency : 849, 851 MHz
Fundamental frequency : 849 MHz IM3 : 847 MHz Small 𝑹𝒇𝟐
・・・low NF, high power
Large 𝑹𝒇𝟐
・・・low power, high NF
8
8.5
9
9.5
10
4.83 5.415 6
Pow
er [
mW
]
Av.c
Power
3
3.2
3.4
3.6
3.8
4
4.83 5.415 6
NF
[dB
]
Av.c
NF(1GHz)
-2.5
-2
-1.5
-1
-0.5
0
4.83 5.415 6
IIP
3[d
Bm
]
Av.c
IIP3
Performance change by 𝐀v.c
[1] F. Bruccoleri, E. A. M. Klumperink, B. Nauta
“ A Power-Efficient Noise Suppression Technique Using Signal-Nulled
Feedback for Low-Noise Wideband Amplifiers”
IEEE Trans on Circuits and Systems (Jan. 2012).
“A Noise-Suppressed Amplifier with a Signal-Nulled Feedback for Wideband
Applications”
IEEE Asian Solid-State Circuits Conference,(Nov.2008).
References
𝑣𝑛,𝑜𝑢𝑡2
= 4𝑘𝑇𝐵 𝑅𝑆 + 𝑅𝑓1 + 𝑅𝑓2 − 𝐴𝑣,𝑐 𝑅𝑆 + 𝑅𝑓22
𝛾𝑔𝑀𝑖 + 𝑅𝑓1 + 1 − 𝐴𝑣,𝑐2
𝑅𝑓2
“Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Cancelling”
IEEE Journal of Solid-State Circuits,(Feb. 2004).
[2] C.-F. Li, S.-C. Chou, G.-H. Ke, P.-C. Huang
[3] C.-F. Li, S.-C. Chou, P.-C. Huang
①
②
③
in,Mi in,Mi
Channel noise
① ③
②
in,Mi : channel noise
in,Rf1 : Rf1 noise
in,Rf2 : Rf𝟐 noise
50Ω 0
Hig
h
Lo
w
Suppression level
Rf2
Rf2
0
50Ω
580
vA(𝐦𝐕)
570
560
550
540
530
520
P71