P6-Polarization and Crystal Optics

  • Upload
    uni-ngo

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 P6-Polarization and Crystal Optics

    1/55

    6. Polarization and crystal Optics

    6. Polarization and crystal Optics

  • 7/27/2019 P6-Polarization and Crystal Optics

    2/55

    Spatial evolution of a plane wave vector: helicoidal trajectory

    http://sar.kangwon.ac.kr/polsar/Tutorial/Part1_RadarPolarimetry/1_What_Is_Polarization.pdf

    The electric field may be represented in an orthonormal basis (x, y, z) defined so that the direction of propagation in z-axis.

    http://sar.kangwon.ac.kr/polsar/Tutorial/Part1_RadarPolarimetry/

    !!!

  • 7/27/2019 P6-Polarization and Crystal Optics

    3/55

    Polarization ellipse

  • 7/27/2019 P6-Polarization and Crystal Optics

    4/55

    Polarization ellipse

    The polarization ellipse shape may be characterized using 3 parameters :

    -A is called the ellipse amplitude and is determined from the ellipse axis as

    is the ellipse orientation and is defined as the angle between the ellipse major axis and x.

    Is the ellipse aperture, also called ellipticity, defined as

  • 7/27/2019 P6-Polarization and Crystal Optics

    5/55

    Sense of rotation : Time-dependent rotation of

    The sense of rotation may then be related to the sign of the variable

    By convention, the sense of rotation is determined while looking in the direction of propagation.

    Right hand rotation :

    Left hand rotation :

    Left hand rotation : Right hand rotation :

  • 7/27/2019 P6-Polarization and Crystal Optics

    6/55

    Quick estimation of a wave polarization state

    A wave polarization is completely defined by two parameters derived from the polarization ellipse

    - its orientation,

    - its ellipticity with sign() indicating the sense of rotation

    Three cases may be discriminated from the knowledge of

    the polarization is linear since = 0 the orientation angle is given by

    the polarization is circular, since = /4

    the sense of rotation is given by sign().

    If0 the polarization is left circular.

    If0 the polarization is left elliptic.

  • 7/27/2019 P6-Polarization and Crystal Optics

    7/55

    Jones vector

  • 7/27/2019 P6-Polarization and Crystal Optics

    8/55

    Jones vector

    A Jones vector can be formulated as a two-dimensional complex vector function of the polarization ellipse characteristics :

    This expression may be further developed

  • 7/27/2019 P6-Polarization and Crystal Optics

    9/55

    Jones vectors for linear polarizations

  • 7/27/2019 P6-Polarization and Crystal Optics

    10/55

    Jones vectors for circular/elliptical polarizations

  • 7/27/2019 P6-Polarization and Crystal Optics

    11/55

    Jones vectors

  • 7/27/2019 P6-Polarization and Crystal Optics

    12/55

    Jones matrix

  • 7/27/2019 P6-Polarization and Crystal Optics

    13/55

    Coordinate transform of Jones vector/matrix

    x

    y

    x

    y

    The Jones vector is given by

    cos sin' ( )sin cos

    J R J J

    = =

    The Jones matrix T is similarly t ransformed into T

    ' ( ) ( )

    ( ) ' ( )

    T R T R

    T R T R

    =

    = (6.1-23) !!

  • 7/27/2019 P6-Polarization and Crystal Optics

    14/55

    Poincare sphere and Stokes parameters

    A characterization method of the wave polarization by power measurements

    if we consider the Pauli group of matrices

    Given the Jones vectorE of a given wave, we can create the hermitian product as follows

    where the parameters {g0, g1, g2, g3} receive the name ofStokes parameters.

    http://sar.kangwon.ac.kr/polsar/Tutorial/Part1_RadarPolarimetry/

  • 7/27/2019 P6-Polarization and Crystal Optics

    15/55

    Representation of Stokes vectors: The Poincar sphere

    g1

    g2

    g3

    2

    2

  • 7/27/2019 P6-Polarization and Crystal Optics

    16/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    17/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    18/55

    Th St k t f th i l l i ti t t

  • 7/27/2019 P6-Polarization and Crystal Optics

    19/55

    The Stokes vectors for the canonical polarization states

  • 7/27/2019 P6-Polarization and Crystal Optics

    20/55

    6.2 Reflection and Refraction6.2 Reflection and Refraction

    TE pol.

    TME pol.

  • 7/27/2019 P6-Polarization and Crystal Optics

    21/55

    Development of the Fresnel Equations

    cos co

    ' ,

    s co

    :

    s

    i r t

    i i r r t t

    E E EB B B

    From Maxwell s EM field theorywe have the boundary conditions at the interface

    Th tangential

    components of both E and B are equal on

    both sides o

    e above co

    f the i

    nditions imply that th

    for the T

    e

    E case

    + =

    =

    G G

    0

    cos cos

    .

    ,

    c

    :

    os

    .

    i i r r t t

    i t

    i r t

    We have also

    assumed that as is true for

    most dielectric materia

    nterface

    E E E

    B B B

    For the TM mode

    ls

    + =

    + =

    TE-case

    TM-case

  • 7/27/2019 P6-Polarization and Crystal Optics

    22/55

    1

    1 1

    1

    2

    2

    1

    :

    cos cos

    :

    cos cos c

    v

    s

    c

    o

    os

    i i r

    i r t

    i

    r t t

    i

    i r r t t

    cRecall that E B Bn

    Let n refractive index of incident medium

    n refractive index of refracting me

    For the TM m

    diu

    ode

    E

    For the TE mode

    E E E

    n E n E

    E E

    n

    n

    E n

    n

    c

    m

    E

    EB

    = = =

    =

    =

    =

    =

    =

    +

    +

    +

    2r tE n E=

    TE-case

    TM-case

    n1

    n2

    n1

    n2

    Development of the Fresnel Equations

  • 7/27/2019 P6-Polarization and Crystal Optics

    23/55

    2

    1

    cos cos:

    cos cos

    cos cos:

    co

    :

    sin sin

    cos 1

    s cos

    i tr

    i i t

    i tr

    i

    t

    i

    t

    t

    i

    t

    Eliminating E

    nn

    n

    n

    n n

    nETE case r

    E n

    nETM case r

    E

    from each set of equations

    and solving for the reflection coefficient we obtain

    where

    We know that

    n

    = = +

    =

    =

    =

    =

    +

    =

    2

    2 2 2

    2

    sinsin 1 sini

    t in n

    n

    = =

    TE-case

    TM-case

    n1

    n2

    n1

    n2

    Development of the Fresnel Equations

  • 7/27/2019 P6-Polarization and Crystal Optics

    24/55

    TE-case

    TM-case

    n1

    n2

    n1

    n2

    2 2

    2 2

    2 2 2

    2 2 2

    cos sin:

    cos sin

    cos sin:

    cos

    :

    :

    s

    in

    i ir

    i i i

    i ir

    i i i

    transmission coefficient t

    TE

    reflection coefficienSubst

    c

    ts r

    nETE case r

    E n

    n nETM case r

    E n

    as

    ituting we obtain the Fresnel equations for

    For the

    e

    n

    = =

    +

    = =+

    2 2

    2 2 2

    2cos:

    cos sin

    2 co

    :

    s:

    1

    : 1

    cos sin

    t i

    i i i

    t i

    i i i

    Et

    E n

    E nTM case t

    E n

    TE t r

    T nt r

    n

    M

    =

    = =+

    = =+

    +

    = +

    1

    2

    n

    nn

    These mean just the boundary conditions

    Development of the Fresnel Equations

  • 7/27/2019 P6-Polarization and Crystal Optics

    25/55

    TIR

    TIR

  • 7/27/2019 P6-Polarization and Crystal Optics

    26/55

    TIRTIR

    P R fl t (R) d T itt (T)

    Power : Reflectance(R) and Transmittance(T)

  • 7/27/2019 P6-Polarization and Crystal Optics

    27/55

    Power : Reflectance(R) and Transmittance(T)Power : Reflectance(R) and Transmittance(T)

    .

    1

    ,,

    :

    :

    tr

    i i

    i r t

    R and T are the ratios of reflected and transmit

    The quantities

    The ratios

    respectively to

    ted powers

    PPR T

    P P

    R T

    r and t are ratios of electric field amplitudes

    From conservation of ener

    the incident power

    P P P

    We can

    gy

    = =

    = += +

    2

    1 0

    2

    0 00

    :

    cos cos

    cos cos cos

    1

    cos

    1c

    22

    i i i r r r t t t

    i i r r

    i i r r t

    i i r r t

    i

    t

    t

    t t

    i

    express the power in each of the fie

    n terms of the product of an irradiance and area

    P I A P I A P I A

    I

    lds

    I A I A I A

    But n c

    I I

    I n c

    I A I I A

    E

    A

    E

    =

    =

    +

    =

    +

    = = =

    +

    = 2 21 0 0 2 0 0

    2 2 2 2

    0 2 0 0

    2 220 0

    2 2

    0 0

    0

    2 2 2 2

    0 1 0 0 0

    1 1os cos cos

    2 2

    cos cos1

    cos

    cos cos

    cos

    co

    s

    s

    co

    i

    r t t t

    i i

    r r t t

    r t t r t t

    i i i i

    i

    i i

    i

    n cE n cE

    E n E E E

    E ER r T n

    n R TE

    E

    n E E

    nE

    E

    =

    = +

    = + = + = +

    = = =

    2t 2

    2

    cos

    cos*

    cos

    cos

    *

    tnttnT

    rrrR

    i

    t

    i

    t

    =

    =

    ==

  • 7/27/2019 P6-Polarization and Crystal Optics

    28/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    29/55

    6.3 Optics of anisotropic media6.3 Optics of anisotropic media

    6 3 Optics of anisotropic media

    6 3 Optics of anisotropic media

  • 7/27/2019 P6-Polarization and Crystal Optics

    30/55

    6.3 Optics of anisotropic media6.3 Optics of anisotropic media

  • 7/27/2019 P6-Polarization and Crystal Optics

    31/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    32/55

    0

    2

    1i

    i in

    =: for principal axes

    Impermeabili ty tensor

    *Note, impedance

  • 7/27/2019 P6-Polarization and Crystal Optics

    33/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    34/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    35/55

    , for example,

  • 7/27/2019 P6-Polarization and Crystal Optics

    36/55

    Determination of two normal modes (with refractive indices na and nb)

    An index ellipse is defined.

  • 7/27/2019 P6-Polarization and Crystal Optics

    37/55

    E

    S

    Lets start with

  • 7/27/2019 P6-Polarization and Crystal Optics

    38/55

    For uniaxial case

    k-surface obtained from dispersion relation

  • 7/27/2019 P6-Polarization and Crystal Optics

    39/55

    k1

    k2

    k2

    k3

    k1

    k3

    k1

    k2

    k2

    k1

    k3

    k3

    Optic axisOptic axisOptic axis

    k1

    k2

    k2

    k1

    k3

    k3

    Determine the wavenumbers k and indices of two normal modes

  • 7/27/2019 P6-Polarization and Crystal Optics

    40/55

    u

    Determine the direction of polarization of two normal modes

    Z

  • 7/27/2019 P6-Polarization and Crystal Optics

    41/55

    k

    D. Rays, wavefronts, and energy transport

    D. Rays, wavefronts, and energy transport

  • 7/27/2019 P6-Polarization and Crystal Optics

    42/55

    k surface

    Equi-frequency surface

    k

  • 7/27/2019 P6-Polarization and Crystal Optics

    43/55

    E. Double refraction = Birefringence

    E. Double refraction = Birefringence

  • 7/27/2019 P6-Polarization and Crystal Optics

    44/55

    g

    AIR

  • 7/27/2019 P6-Polarization and Crystal Optics

    45/55

    6.4 Optical activity and faraday effect

    6.4 Optical activity and faraday effect

  • 7/27/2019 P6-Polarization and Crystal Optics

    46/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    47/55

    6.5 Optics of liquid crystals

    6.5 Optics of liquid crystals

  • 7/27/2019 P6-Polarization and Crystal Optics

    48/55

    Principles of LCD Optics

  • 7/27/2019 P6-Polarization and Crystal Optics

    49/55

    Principles of LCD Optics

    Operation of TN LCD

    VLc = 0V (off) VLc = 5V (on)

    0

    15

    30

    45

    60

    75

    90

    0 0.2 0.4 0.6 0.8 1normalized depth

    director

    [deg.

    ] a (0V)

    a (5V)

    a (8V)

    b (0V)

    b (5V)

    b (8V)

  • 7/27/2019 P6-Polarization and Crystal Optics

    50/55

    TNLC as a polarization rotator

  • 7/27/2019 P6-Polarization and Crystal Optics

    51/55

    (6.1-23)

  • 7/27/2019 P6-Polarization and Crystal Optics

    52/55

    6.6 Polarization devices

    6.6 Polarization devices

  • 7/27/2019 P6-Polarization and Crystal Optics

    53/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    54/55

  • 7/27/2019 P6-Polarization and Crystal Optics

    55/55