22
p212c33: 1 Electromagnetic Waves Maxwell’s Equations o m o M E c enc K K dt d l d E dt d I l d B A d B Q A d E ) ( 0

P212c33: 1 Electromagnetic Waves Maxwells Equations

Embed Size (px)

DESCRIPTION

p212c33: 3 A simple Electromagnetic Wave Pulse: E and B constant within a “sheet” moving at velocity v z x y E B v... need to verify consistency with Maxwell’s Equations

Citation preview

Page 1: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 1

Electromagnetic Waves

Maxwell’s Equations

om

o

M

Ec

enc

KK

dtdldE

dtdIldB

AdB

QAdE

)(

0

Page 2: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 2

“Sourceless” Maxwell’s Equations

AdBdtd

dtdldE

AdEdtd

dtdldB

AdB

AdE

M

E

0

0

Page 3: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 3

A simple Electromagnetic Wave

Pulse: E and B constant within a “sheet” moving at velocity v

z

x

y

E

Bv

... need to verify consistency with Maxwell’s Equations

Page 4: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 4

E dA

B dA

0

0

Field lines continue forever: each field line which enters (exits) a closed surface must also enter (exit), so net number of field lines entering (exiting) a closed surface must be zero.

Page 5: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 5

EvBELvBL

AdEdtdldB

ELvAdEdtd

ELvdtAdEd

BLldB

0)(

dldA

v dt

L

Page 6: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 6

dl

v dt

LdA

BvEBLvEL

AdBdtdldE

BLvAdBdtd

BLvdtAdBd

ELldE

0)(

Page 7: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 7

BvEBEv

smc

v

BvEvEB

oo

||

featuresimportant other

1099792458.21in vacuumlight of speed

1

Equations sMaxwell' with consistent is Pulse

8

iff

Page 8: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 8

x

y

a

x

tB

xE

x

xaBAdB

axExxEldE

AdBdtdldE

zy

z

yy

0lim take

))()((

General relations between (crossed) E and B fields creating EM waves.

Page 9: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 9

x

x

y

a

tE

xB

xaEAdE

axBxxBldB

AdEdtdldB

yz

y

zz

0xlim take

))()((

Page 10: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 10

1;1

1

Start with

2

2

22

2

2

2

2

2

2

2

2

2

vtE

vxE

tE

xE

xB

ttE

tE

t

tB

xxE

xE

x

tB

xE

tE

xB

yy

yy

zyy

zyy

zy

yz

Classical Wave Equation!

Page 11: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 11

Ey

Bz

x

Sinusoidal Electromagnetic Waves

maxmax

max

max

22)sin(ˆ

)sin(ˆ

vBE

vk

f

fk

tkxBzB

tkxEyE

Page 12: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 12

Energy in an electromagnetic wave

2

)(sin

WaveHarmonic aFor so

but

21

21

2max

22max

2

2

22

Eu

tkxEEu

Eu

EvEB

BEu

av

Page 13: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 13

eous)(instantanIntensity =Vector Poynting

1

:FlowEnergy )(

:Energy

22

2

SS

BES

EBEvEAdt

dUS

AvdtEudVdU

Energy in an electromagnetic wave

Page 14: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 14

Intensity222

)(sinˆ

1

2max

2maxmaxmax

2maxmax

IvEv

EBES

tkxBEx

BES

av

Energy Flow and Harmonic Waves

Page 15: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 15

Example: A radio station the surface of the earth emits 50 kW sinusoidal waves. Determine the intensity, and the Electric and Magnetic field amplitudes for an orbiting satellite at a distance of 100 km from the station.

Page 16: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 16

cS

AFP

cS

AFP

cS

Vp

Sp

avref

avabs

avgavg

2:PressureRadiation

c=

V

Density Momentum

2

2

Momentum in an electromagnetic wave

Page 17: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 17

Example: Satellite in previous example has a 2m diameter antenna. What is the force of the radiation on the antenna assuming perfect reflection?

Page 18: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 18

Standing Waves:Superposition of equal amplitude traveling waves

of opposite directions.

Lcncf

nL

nL

nx

tkxBtkxBtkxBB

tkxEtkxEtkxEE

nnn 2

;22

when mode waveStanding

2,

23,,

2

E)(for planes nodalsincos2

)sin()sin(cossin2

)sin()sin(

max

maxmax

max

maxmax

Page 19: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 19

Example: EM standing waves are set up in a cavity used for electron spin resonance studies. The cavity has two parallel conducting plates separated by 1.50 cm.

a) Calculate the longest wavelength and lowest frequency of EM standing waves between the walls.

b) Where in the cavity is the maximum magnitude electric field and magnetic field?

Page 20: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 20

Electromagnetic Spectrum

(see graphic)

in vacuum, v = c = 2.99792458x108 m/s

f = v increasing frequency <=> decreasing wavelength

visible spectrum: 400 nm (violet) to 700 nm (red)

Page 21: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 21

Radiation from a Dipole

Q

Q

Ep k

rkr t

Bp k

v rkr t

Ir

02

02

2

4

4

sin sin( )

sin sin( )

sin

Page 22: P212c33: 1 Electromagnetic Waves Maxwells Equations

p212c33: 22