21

P artial

  • Upload
    tanek

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

S quares. L east. P artial. A Standard Tool for :. Multivariate R e g r e s s i o n. Regression :. Modeling dependent variable(s): Y. Chemical property Biol. activity. By predictor variables: X. Chem. composition Chem. structure (Coded). MLR. - PowerPoint PPT Presentation

Citation preview

Page 1: P artial
Page 2: P artial

PartialLeast

Squares

Multivariate R e g r e s s i o nA Standard Tool for :

Page 3: P artial

Regression :

Modeling dependentdependent variable(s): YY

By predictorpredictor variables: XX

Chemical property

Biol. activity

Chem. composition

Chem. structure (Coded)

Page 4: P artial

Traditional method: MLRMLR

IfIf X-variables are:

few ( # X-variables < # Samples)

Uncorrelated (Full Rank X)

Noise Free ( when some correlation exist)

Page 5: P artial

But !But !

InstrumentsInstrumentsInstrumentsSpectrometers

Chromatographs

Sensor Arrays

Numerous

Correlated

Noisy

Incomplete

Data …Data …

Page 6: P artial

X : Independent VariablesCorrelated

PredictorPredictor

Page 7: P artial

The relation between

two Matrices X and Y

By a LinearLinear Multivariate Regression

PLSR Models:

The StructureStructure of X and Y

Richer results than

Traditional Multivariate regression

1

2

Page 8: P artial

PLSR is a generalizationgeneralization of MLR

PLSR is able to analyze Data with:

Noise

Collinearity (Highly Correlated Data)

Numerous X-variables (> # samples)

incompleteness in both X and Y

Page 9: P artial

HistoryHistory

Herman Wold (1975):

Modeling of chain matrices by:

Nonlinear Iterative Partial Least Squares

Regression between :

- a variablevariable matrix

- a parameterparameter vector

Other parameter vector

Fixed

Page 10: P artial

Svante Wold & H. Martens (1980):

Completion and modification of

Two-blocksTwo-blocks (X,Y) PLS (simplest)

Herman Wold (~2000):

Projection to Latent Structures

As a more descriptivemore descriptive interpretation

Page 11: P artial

A QQSSPPRR example

One Y-variable: a chemical propertyproperty

Quant. descriptiondescription of variation in chem. structurestructure

The Free Energy of unfolding of a protein

Seven X-variables:

19 different AminoAcids in position 49 of proteinHighlyHighly

CorrelatedCorrelated

Page 12: P artial

123456789

10111213141516171819

Table1 PIEPIE0.23

-0.48-0.610.45

-0.11-0.510.000.151.201.28

-0.770.901.560.380.000.171.850.890.71

PIFPIF0.31

-0.60-0.771.54

-0.22-0.640.000.131.801.70

-0.991.231.790.49

-0.040.262.250.961.22

DGRDGR-0.550.511.20

-1.400.290.760.00

-0.25-2.10-2.000.78

-1.60-2.60-1.500.09

-0.58-2.70-1.70-1.60

SACSAC254.2303.6287.9282.9335.0311.6224.9337.2322.6324.0336.6336.3366.1288.5266.7283.9401.8377.8295.1

MRMR2.1262.9942.9942.9333.4583.2431.6623.8563.3503.5182.9333.8604.6382.8762.2792.7435.7554.7913.054

LamLam-0.02-1.24-1.08-0.11-1.19-1.430.03

-1.060.040.12

-2.26-0.33-0.05-0.31-0.40-0.53-0.31-0.84-0.13

DDGTSDDGTS8.58.28.5

11.06.38.87.1

10.116.815.0

7.913.311.2

8.27.48.89.98.8

12.0

VolVol82.2

112.3103.799.1

127.5120.565.0

140.6131.7131.5144.3132.3155.8106.788.5

105.3185.9162.7115.6

X YY

Page 13: P artial

TransformationTransformation Symmetrical Distribution

12.542350.2546100584

loglog

1.0973.627-0.6992.7375.002

Page 14: P artial

ScalingScaling Increase in weights of

more informative X-variables

No Knowledge about importance of variables

Auto ScalingAuto Scaling

1.Scale to unit variance (xi /SD).

2.Centering (xi – xaver).

Same weights for all X-variables

Page 15: P artial

Auto Scaling

Numerically More Stable

Page 16: P artial

The PLSR ModelModel (usually linearlinear)

A few “new” variables :

X-scores tta a (a=1,2, …,A)

Orthogonal

& Linear Combination of X-variables

Modelers of X Predictors of Y

: T = X W*

Weights

Page 17: P artial

X = T P’ + E

TT (X-scores) (X-scores) ttaa (a=1,2, …,A)(a=1,2, …,A)

Are:

Modelers of X:

Predictors of Y: Y = T C’ + F

loadings

Y = XW* C’ + FPLS-Regression PLS-Regression

Coefficients Coefficients ((BB))

Page 18: P artial

Estimation of Estimation of TT : :

By stepwise subtraction of each component (ttaap’p’aa) from X

X = T P’ + E

X - T P’ = E

X - ta pa’ = Ea

Residual after Residual after subtraction of subtraction of aathth component component

Page 19: P artial

X= t1pp11 +t2pp22+ t3pp33+ t4pp44+… + tappaa

X= X1 + XX22 + + X3 + + XX44 + … + + … + XXAA

EE11 EE22 EE33 Ea-1

Page 20: P artial

Stepwise “DeflationDeflation” of X-matrix t1 = Xw1

E1 = X – t1 p1’t2 = E1w2

E2= E1 – t2 p2’t3 = E2w3

Ea-1 = EEa-2a-2 – ta-1 p’a-1ta = Ea-1 wa

.

.

.

.

.

.

Page 21: P artial

W